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UNPATH NUMBER OF 
A COMPLETE MULTIPARTITE GRAPH 

BOHDAN ZELINKA 

In [1] J. A k i y a m a , G. E x o o and F. H a r a r y suggested the problem to 
determine the unpath number of a complete multipartite graph. We shall solve this 
problem. 

The unpath number Y(G) of an undirected graph G is the maximum number of 
edge-disjoint connected graphs into which G can be decomposed and none of 
which is a path. (The authors of [1] call them non-paths.) This concept was 
introduced in [2]. 

A complete multipartite graph is a graph G with the property that there exists 
a partition 0 of the vertex set V(G) of G such that two vertices of G are adjacent 
if and only if they belong to distinct classes of 9. We call SP the defining partition of 
G. If the number of classes of 0 is n, this graph is also called complete n -partite. If 
0 = {Mi, ..., Mn} and |M,| = m, for i = 1, ..., n, the graph G thus defined will be 
denoted by K(mu ..., mn). 

Theorem. If G is a finite complete multipartite graph, then 

Y(G) = m(G)\], (1) 

where E(G) is the edge set of G. 
Proof. Any connected graph which is not a path has at least three edges. This 

implies that Y(G)^[i\E(G)\] for an arbitrary graph G. Hence it remains to 
construct the decomposition of G into [ j | £ (G) | ] edge-disjoint connected 
non-paths. In [1] the equality (1) was proved for complete bipartite graphs (i.e. 
n-partite graphs for n = 2). We start by proving it for K(l, 1, 1), K(l, 1,2), 
K( l , 2, 2) and K(2, 2, 2). For K(l, 1, 1) and K(l, 1, 2) this is trivial For 
G = K(1, 2, 2) we have [\\E(G)\} = 2, for G = K(2, 2, 2) we have [±|E(G)|] = 4. 
The required decompositions are seen in Fig. 1. 

Now consider a graph G = X(wi, ..., mn) such that n=^3 and each of the 
numbers mu ..., mn is equal to 1 or 2. By induction according to n we shall prove 
that this graph can be decomposed into edge-disjoint connected non-paths whose 
number is equal to [j|JE(G)]. Moreover, we prove that at most two of these 
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nonpaths have more than three edges and each of those exceptional non-paths is 
isomorphic to some of the graphs in Fig. 2. 

We have proved this for n = 3. Let n0 = 4 and suppose that the assertion holds for 
n = n0— 1. Let n = n0; we have a graph G = K(mu ..., mn), where n = n0 and each 
m, is equal to 1 or to 2. Let G' be the graph obtained from G by deleting the set 
Mn; then G' = K(mu ..., mn x). Let V(G'), E(G') be the vertex set and the edge 

K(1,2,2) 

K( 2,2,2) 

Fig 1 

set of G' respectively. Let a (or b) be the rest in dividing | V(G')\ (or \E(G')\ 
respectively) by 3. Con ider the required decomposition of G ' ; it exists according 
to the induction hypothesis. First let m„ = l; denote the element of Mn by x. The 
degree of x in G is equal to |V(G') \ . If a=0, this degree is divisible by 3. We 
choose a partition of the set of edges incident with x into three-element classes and 
form the corresponding stars with the centre x. The required decomposition of G 
consists of the decomposition of G' and of these stars. If b = 0, then [3 |E(G') | ] = 
3 |E(G') | and each non-path of the decomposition of G' has three edges. We 
construct the stars as in the preceding case; a of them will have four edges, the 
remaining ones will have three edges each. Thus there remains to be considered the 
case when both a and b are non-zero. If 6 = 1, then one of the non-paths of the 
decomposition of G' has four edges, the remaining ones have three edges each. If 
0 = 1, we proceed analogously to the preceding case. If a =2, we take the 
exceptional non-path H in G' and choose an edge e in it with the property that 
after deleting e from H a graph is obtained which consists of a non-path H' and 
eventually of an isolated vertex (as H must be isomorphic to one of the graphs in 
Fig. 2, such an edge e exists). We take all non-paths of the decomposition of G' 
except H, further we take H', the triangle induced by the end vertices of e and the 
vertex x and the three-edge stars with the centre x and with edges not belonging to 
this triangle; thus the required decomposition of G is finished. If b = 2, then the 
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decomposition of G' contains either one non-path H with five edges, or two 
non-paths H'u H2 with four edges each; the remaining non-paths have three edges 
each. In the first case we choose two edges eu e2 of H such that after deleting then 
from H a non-path H' and eventually an isolated vertex occurs. In the second case 
we choose analogously an edge e, in Hx and an edge e2 in H2 and define 
analogously HI and H2. If ex and e2 have a common end vertex z, we construct 

Fig. 2 

a star with the centre z and with the edges eu e2, xz. We take all non-paths of the 
decomposition of G' except H or except Hi, H2; further we take H' or H(, H'2, the 
mentioned star and the stars with the centre x constructed analogously to the 
preceding case (if a = 2, then one of them has four edges and the remaining ones 
have three edges each; if a = 1, then each of them has three edges). If eu e2 have no 
common end vertex, then with both of them we do the same as with e in the case 
a = 2, 6 = 1. Now consider mn = 2; let Mn = {x9 y}. If a = 0 or 6 = 0, we proceed 
analogously to the case m„ = l. Let 6 = 1 and a=£0. We take an edge e of G' 
analogously to the case mn = 1, choose an end vertex z of e and form a star with the 
centre z and with the edges e, xz, yz. If 6 = 2 and a + 0, we take analogously the 
edges ei, e2. If a = 2, we form two triangles, one induced by the end vertices of ei 
and the vertex JC, the other induced by the end vertices of e2 and the vertex y. If 
a = 1, we form only one of them. The rest of the procedure is analogous to that in 
the case mn = 1. Thus the assertion is proved for all graphs K(mu ..., m„), where 
each of the numbers mi, ..., mn is equal to 1 or to 2. 

Now consider a complete multipartite graph G = K(mi, ..., m„) for arbitrary 
values of m,. For each i = 1, ..., m we choose a subset MJ of Mt whose cardinality is 
equal to the rest in dividing m, by 3. If i, j are two distinct numbers from the 
numbers 1, ..., m, by G0 we denote the subgraph of G induced by the set MiUMj; 
this is a complete bipartite graph. Choose a partition of M, — M] into three-element 
classes and construct all stars with a centre in Mt and with the set of terminal 
vertices equal to a class of this partition. Further choose a partition of Mt — M\ into 
three-element classes and construct all stars with a centre in M] and with the set of 
terminal vertices equal to a class of this partition. If we do this in each Gih then 
either the required decomposition of G is done, or all edges of G not belonging to 
these stars induce a subgraph G' of G which is a complete multipartite graph in 
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which the classes of the defining partition are exactly all sets M\ which are 

non-empty. Each of these classes has at most two vertices, therefore we may 

decompose G' as described above and the required decomposition of G is finished. 
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АНТИЦЕПНОЕ ЧИСЛО ПОЛНОГО МНОГОДОЛЬНОГО ГРАФА 

Вопа'ап ХеПпка 

Резюме 

Антицепное число У(С) графа С есть максимальное число реберно-непересекающихся 
связных графов, в которые граф С можно разложить, причем никакой из них не является цепью. 
Если О есть конечный полный многодольный граф, то У(С) = [\\Е(С))], где Е(О) есть 
множество вершин графа С. Это является решением проблемы, которую задали Дж. Акияма, 
Дж. Эксу и Ф. Харари. 
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