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UNPATH NUMBER OF
A COMPLETE MULTIPARTITE GRAPH

BOHDAN ZELINKA

In [1] J. Akiyama, G. Exoo and F. Harary suggested the problem to
determine the unpath number of a complete multipartite graph. We shall solve this
problem.

The unpath number Y(G) of an undirected graph G is the maximum number of
edge-disjoint connected graphs into which G can be decomposed and none of
which is a path. (The authors of [1] call them non-paths.) This concept was
introduced in [2].

A complete multipartite graph is a graph G with the property that there exists
a partition ? of the vertex set V(G) of G such that two vertices of G are adjacent
if and only if they belong to distinct classes of . We call ? the defining partition of
G. If the number of classes of 2 is n, this graph is also called complete n-partite. If
P={M,, ..., M,} and [M;|=m, for i=1, ..., n, the graph G thus defined will be
denoted by K(my, ..., m,).

Theorem. If G is a finite complete multipartite graph, then
Y(G)=[|E(G)]], (1)

where E(G) is the edge set of G.

Proof. Any connected graph which is not a path has at least three edges. This
implies that Y(G)=[4|E(G)|] for an arbitrary graph G. Hence it remains to
construct the decomposition of G into [}|E(G)|] edge-disjoint connected
non-paths. In [1] the equality (1) was proved for complete bipartite graphs (i.e.
n-partite graphs for n=2). We start by proving it for K(1, 1, 1), K(1, 1, 2),
K(1,2,2) and K(2,2,2). For K(1,1,1) and K(1, 1, 2) this is trivial. For
G =K(1, 2, 2) we have [}|E(G)|]=2, for G=K(2,2,2) we have [{|E(G)|]=4.
The required decompositions are seen in Fig. 1.

Now consider a graph G=K(m,, ..., m,) such that n=3 and each of the
numbers m, ..., m, is equal to 1 or 2. By induction according to n we shall prove
that this graph can be decomposed into edge-disjoint connected non-paths whose
number is equal to [}|E(G)]. Moreover, we prove that at most two of these
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nonpaths have more than three edges and each of those exceptional non-paths is
isomorphic to some of the graphs in Fig. 2.

We have proved this for n = 3. Let n,= 4 and suppose that the assertion holds for
n=ny—1.Let n=n,; we have a graph G=K(m,, ..., m,), where n = n, and each
m; is equal to 1 or to 2. Let G' be the graph obtained from G by deleting the set
M, ; then G'=K(m,, ..., m, 1). Let V(G’'), E(G’) be the vertex set and the edge

K(2.2.2)

Fig 1

set of G’ respectively. Let a (or b) be the rest in dividing |V(G’)| (or |E(G’)|
respectively) by 3. Con ider the required decomposition of G'; it exists according
to the induction hypothesis. First let m, =1; denote the element of M, by x. The
degree of x in G is equal to |V(G')|. If a=0, this degree is divisible by 3. We
choose a partition of the set of edges incident with x into three-element classes and
form the corresponding stars with the centre x. The required decomposition of G
consists of the decomposition of G’ and of these stars. If b =0, then [}|E(G')|]=
}|E(G’)| and each non-path of the decomposition of G’ has three edges. We
construct the stars as in the preceding case; a of them will have four edges, the
remaining ones will have three edges each. Thus there remains to be considered the
case when both a and b are non-zero. If b =1, then one of the non-paths of the
decomposition of G’ has four edges, the remaining ones have three edges each. If
a=1, we proceed analogously to the preceding case. If a=2, we take the
exceptional non-path H in G’ and choose an edge e in it with the property that
after deleting e from H a graph is obtained which consists of a non-path H’ and
eventually of an isolated vertex (as H must be isomorphic to one of the graphs in
Fig. 2, such an edge e exists). We take all non-paths of the decomposition of G’
except H, further we take H’, the triangle induced by the end vertices of e and the
vertex x and the three-edge stars with the centre x and with edges not belonging to
this triangle ; thus the required decomposition of G is finished. If b =2, then the

294



decomposition of G’ contains either one non-path H with five edges, or two
non-paths Hi, H, with four edges each; the remaining non-paths have three edges
each. In the first case we choose two edges e,, e, of H such that after deleting then
from H a non-path H' and eventually an isolated vertex occurs. In the second case
we choose analogously an edge e, in H, and an edge e, in H, and define
analogously H; and H;. If e, and e, have a common end vertex z, we construct

T

a star with the centre z and with the edges e,, e;, xz. We take all non-paths of the
decomposition of G' except H or except H,, H,; further we take H' or H;, H;, the
mentioned star and the stars with the centre x constructed analogously to the
preceding case (if a =2, then one of them has four edges and the remaining ones
have three edges each; if a = 1, then each of them has three edges). If e,, e, have no
common end vertex, then with both of them we do the same as with e in the case
a=2, b=1. Now consider m, =2; let M,={x, y}. If a=0 or b =0, we proceed
analogously to the case m,=1. Let b=1 and a#0. We take an edge e of G’
analogously to the case m, =1, choose an end vertex z of e and form a star with the
centre z and with the edges e, xz, yz. If b =2 and a# 0, we take analogously the
edges e, e,. If a=2, we form two triangles, one induced by the end vertices of e,
and the vertex x, the other induced by the end vertices of e, and the vertex y. If
a =1, we form only one of them. The rest of the procedure is analogous to that in
the case m, = 1. Thus the assertion is proved for all graphs K(m,, ..., m,), where
each of the numbers m,, ..., m, is equal to 1 or to 2.

Now consider a complete multipartite graph G=K(m,, ..., m,) for arbitrary
values of m;. For each i =1, ..., m'we choose a subset M of M; whose cardinality is
equal to the rest in dividing m; by 3. If i, j are two distinct numbers from the
numbers 1, ..., m, by G; we denote the subgraph of G induced by the set M;UM; ;
this is a complete bipartite graph. Choose a partition of M; — M| into three-element
classes and construct all stars with a centre in M, and with the set of terminal
vertices equal to a class of this partition. Further choose a partition of M; — M| into
three-element classes and construct all stars with a centre in M| and with the set of
terminal vertices equal to a class of this partition. If we do this in each G;, then
either the required decomposition of G is done, or all edges of G not belonging to
these stars induce a subgraph G’ of G which is a complete multipartite graph in
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which the classes of the defining partition are exactly all sets M; which are
non-empty. Each of these classes has at most two vertices, therefore we may
decompose G’ as described above and the required decomposition of G is finished.
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AHTULENMHOE YHUCIIO IMOJIHOIO MHOI'OOOJIBHOI'O IT'PA®A
Bohdan Zelinka
Pe3ome
AntuuenHoe yucio Y(G) rpadpa G ectb MakcMMalibHOE 4YHCIO pebGepHO-HemepecekaroLuXcs
CBSI3HBIX rpacoB, B KOTOpbIe rpad G MOXHO Pa3IoXHUThb, IPHYEM HHKAKOH H3 HUX HE ABJISETCS LEMNbIO.
Eciu G ecTh KOHEYHBI MONHBIA MHOrofoapHblit rpad, To Y(G)=[|E(G))], rne E(G) ects

MHOXecTBO BepiiuH rpacda G. 3To sBasieTcs peileHHeM npo6iembl, KOTOPYIO 3afanu JIx. AkuaMma,
IOx. Okcy u ®. Xapapu.
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