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Math. Slovaca 33,1983, No. 4, 335—339 

ON SOME PROPERTIES OF THE SOLUTIONS 
OF THE THIRD ORDER NONLINEAR DIFFERENTIAL 

EQUATION WITH DELAY 

FRANTISEK SISOLAK 

In the present paper we shall consider the differential equation 

(a) x"'(t) + p(t)x'(t) + f(t,x(h(t))) = 0, 

where p(t), h(t)eC(I), I = [t0,*>), h(t) = t for tel, limh(t) = °o and 

f(t,y)eC(D),D = IxR. 
The motivation for the study of this equation comes from J. W. Heidi [3]. 

Heidel has investigated the behaviour of nonoscillatory solutions and the existence 
of oscillatory solutions of the differential equation 

y"' + p(t)y' + q(t)yr = 0, 

where r was assumed to be the quotient of odd integers. 
Other early results somewhat connected with [3] were obtained by M. Gregus 

[1], M. Hanan [2], A. C. Lazer [5], M. Svec [8], I. Licko and M. Svec [6], 
I. Kikuradze [4], I. G. Mikusinski [7]. 

In this paper some results of Heidel will be generalized. 
We shall use the notation (A) for the following assumptions: 
a) p(t)eC(I) and p(0 = 0 for tel = [t0, oo), t0>0 
b) h(t)eC(I), h(t) = t tor tel and lim h(t) = °° 

c) f(t,y)eC(D), D = IxR and f(t, y)y<0 for y-£0 and tel. 

Theorem 1. Suppose that (A) holds. If x(t) is a nonoscillatory solution of (a) 
defined on the interval I, then there exists a number tx^t0 such that either 
x(t)x'(t)>0 orx(t)x'(t)*=0 fort^h. 

Proof. Assume that x(t) is a nonoscillatory solution of (a) such that x(h(t))>0 
for t>t2 = t0. The function x'(t) has not a finite limit of zero points. If x'(t) has an 
finite number of zeros, the Theorem is clear. 

Suppose that {u„} is an increasing sequence of all zeros of the function x'(t) and 
t2 = Ui. Multiplying (a) by x'(t) and integrating between un and Un+i yields 
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(i) - PV(t)]2dr+ r*'P(oi>'(t)]2dt+ r^x'(t)f(t,x(ti(t)))dt=o. 
Jun J un Jun 

n = \,2, .... From (1) it follows that x'(t)<0 for te(un, un+l), n = \,2, .... Then 
x'(0 = 0 for all te[uu oo). 

If x(t)<0, the proof is similar. 

Lemma. Let y(t)eC2(I), I = [t{), oo), t0^0. Suppose that y ( r ) > 0 for tel and 

l imy( t)<oo i7y'(t) = 0. 
, - > o o 

Then 
liminf | t ( l y"(t)- at" ly'(t)\ = 0 for a ^ 2 . 

/—»oo 

The proof can be found in [3]. 

R e m a r k 1. Under the assumptions y(t)e C2(I), y ( f ) < 0 and lim y ( t ) > - o o if 

y'(t)^0 the conclusion of the Lemma is also valid. 

Theorem 2. Suppose that (A) holds and -oo < - M ^ p ( f ) f a for tel, a ^ 2 . Let 
the function f(t, y) be nonincreasing with respect to y and let 

Гsаf(s, L) 
Jt„ 

ds = -oo 

for every L±0. If x(t) is a nonoscillatory solution of (a) defined on the interval 

I such that x(t)x'(t)^0, then limjc(0 = 0. 
t—»oo 

Proof. Let Jt(f) be a solution of (a) such that jc(ri(f))>0 and x'(t)^0 for 

t>t]^t0=l. Suppose that lim Jt(t) = L > 0 . Clearly, lim x(h(t)) = L. It follows 

from the hypotheses of the Theorem that 

0=i(" p(f)f a x ' (0 dt^-M[L -jc(r,)], 

0 > f r - 2 j c ' ( 0 d r > L - j c ( f 1 ) . 
Jt\ 

Multiplying (a) by tn, a^2, integrating from tx to t and using the last two 
inequalities, we obtain 

(2) tax"(t)-ataXx'(t)^K- f snf(s,x(h(s)))ds, 
Jt\ 

where K is a finite constant. Then by the hypothesis of the Theorem 
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Jim \K- J saf(s, x(h(s))) d s l ^ l i m [ .K- P saf(s, L) dsl = oo. 

However, by Lemma 

liminf \tax,f(t)- a f a _ 1 jc ' (0 | = 0 . 
t—•<» 

This contradiction proves the Theorem. 
In the case jc(f)<0 and JC'(0 = 0 the proof of Theorem 2 is similar. 
The proofs of the following three theorems will not be given here. They are 

similar to those in [3]. 

Theorem 3. Suppose that (A) ho\ds and \et 

d s > - o o . sp(s)i 
Jto 

If x(t) is a nonosciUatory solution of (a) defined on the interval I, then there is 
a number U^t0 such that J C ( 0 * ' ( 0 > 0 for a\\ te[tu °°). 

Theorem 4. Suppose that (A) ho\ds and \et 

2 
Ѓ - ^ M O á o 

for tel. If x(t) is a nonosciUatory soiution of (a) defined on the intervai I, then 
there exists a number t^t0 such that J C ( 0 J C ' ( 0 > 0 f°r a ^ t = ti-

Theorem 5. Suppose that (A) ho\ds and the function f(t, y) is nonincreasing with 
respect to y. 

LetL s2f(s, L) ds = -co for every L^O. Ifx(t) is a nonosciUatory soiution of 
J t0 

(a) defined on the intervai I such that J C ( 0 * ' ( 0 > 0 , then lim | JC(0 | = °°. 
r-*oo 

Theorem 6. Suppose that (A) ho\ds and the function f(t, y) is nonincreasing with 
respect to y. Let 

L [ / ( s , L ) d s = -oo, for L±0. 
J t0 

If x(t) is a nonosciUatory solution of (a) defined on the intervai I such that 

J C ( 0 * ' ( 0 = 0 , then lim |jc(0l=lim |jc'(0l = -im |JC"(0| = °° . 
t—*oo r—»oo t—»oo 

Proof. Assume that x(t)>0. It follows from the properties of the functions 
x(t), x'(t) and h(t) that there exists a number ti^t0 such that x(h(t))> x(t0) = L> 
0. 
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By integration (a) from ti to t we obtain 

(3) x"(t) = x"(tl)- I' p(s)x'(s)ds- f'f(s,x(h(s)))ds* 
Jti Jti 

*x»(u)-l'f(s,L)ds. 
Jti 

It follows from (3) that lim x''(f) = oo. Since JC '"(0 = 0, lim x'(t) = \im x(t) = oo, 
f—>oo f_>oo f—>oo 

Remark 2. If we replace the hypothesis c) in (A) by c') f(t, y)e C(D'), 
D' = IxR+ and f(t, y)<0 for every (t, y)eD' then the conclusions of Theorems 
1—6 are valid. 

The proof of Remark 2 is the same as the proofs of Theorem 1—6. The function 
f(t, y) = q(t)yk, where q(t)<0, y>0 for tel and keR+ satisfies the hypothesis 
c'). Consequently Theorems 1—6 are valid for positive solutions of the differential 
equation 

y"' + p(t)y' + q(t)yk = 0. 
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О НЕКОТОРЫХ СВОЙСТВАХ РЕШЕНИЙ НЕЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО 
УРАВНЕНИЯ ТРЕТЬЕГО ПОРЯДКА С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ 

Ргапггёек §1$о1ак 

Резюме 

В работе рассматриваются некоторые свойства неосцилляционных решений дифференциаль­
ного уравнения 

х"'(.) + Р(.)*'(.) + /(..х(Л(.))) = 0 

в промежутке [1о, »). 
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