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ON SOME PROPERTIES OF THE SOLUTIONS
OF THE THIRD ORDER NONLINEAR DIFFERENTIAL
EQUATION WITH DELAY

AFRANTISEK SISOLAK

In the present paper we shall consider the differential equation

(a) x""(O)+pO)x'(0)+f(t, x(h(2))) =0,

where p(t), h(t)eC(I), I=[t, ®), h(t)=t for tel, !Lrg h(t)=x and

f(t,y)eC(D), D=IXR.

The motivation for the study of this equation comes from J. W. Heidl [3].
Heidel has investigated the behaviour of nonoscillatory solutions and the existence
of oscillatory solutions of the differential equation

y'""+p()y’ +q(t)y" =0,

where r was assumed to be the quotient of odd integers.

Other early results somewhat connected with [3] were obtained by M. Gregus$
[1], M. Hanan [2], A.C. Lazer [5], M. Svec [8], I. Li¢ko and M. Svec [6],
I. Kikuradze [4], I. G. Mikusinski [7].

In this paper some results of Heidel will be generalized.

We shall use the notation (A) for the following assumptions:

a) p(t)e C(I) and p(t)=0 for te I=[to, ®), t,>0

b) h(t)e C(I), h(t)=t for tel and lim h(f) =

c) f(t,y)e C(D), D=IxXR and f(t, y)y<O0 for y+0 and tel.

Theorem 1. Suppose that (A) holds. If x(t) is a nonoscillatory solution of (a)
defined_ on the interval I, then there exists a number t,=t, such that either
x(t)x'(t)>0 or x(t)x'(t)=0 for t=1t,.

Proof. Assume that x(¢) is a nonoscillatory solution of (a) such that x(h(t))>0
for t>t, = t,. The function x'(t) has not a finite limit of zero points. If x’(¢) has an
finite number of zeros, the Theorem is clear.

Suppose that {u,} is an increasing sequence of all zeros of the function x'(¢) and
t, = u,. Multiplying (a) by x'(¢t) and integrating between u, and u,., yields
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n=1,2,.... From (1) it follows that x'(t)<O0 for t € (4., Un+1), n=1,2, .... Then
x'"(t)=0 for all te[u,, »).
If x(¢)<O0, the proof is similar.

Lemma. Let y(t)e C*(I), I =[t,, ), t,=0. Suppose that y(t)>0 for teI and
!.iﬂ} y(t)y<o if y'(£)=0.

Then

lim inf [t*y"(t) — at* 'y'(t)|=0 for a=2.

The proof can be found in [3].

Remark 1. Under the assumptions y(t) e C*(I), y(t)<0 and !LT y(t) > —oo if
y'(t)=0 the conclusion of the Lemma is also valid.

Theorem 2. Suppose that (A) holds and —o<—-M=p(t)t* fortel, a=2. Let
the function f(t, y) be nonincreasing with respect to y and let

L f sf(s, L)ds =—o

for every L+ 0. If x(t) is a nonoscillatory solution of (a) defined on the interval
I such that x(t)x'(t)=0, then ,ILT x(t)=0.

Proof. Let x(t) be a solution of (a) such that x(h(t))>0 and x'(t)=0 for
t>t,Zt,=1. Suppose that !L'E x(t)=L>0. Clearly, !L'E x(h(t))=L. It follows

from the hypotheses of the Theorem that

0= rp(t)t"x’(t) dr=-M[L —x(1)],

0>J' t*2x'(t) dt> L — x(t)).

Multiplying (a) by t*, a =2, integrating from ¢, to ¢ and using the last two
inequalities, we obtain

) () — at™ ' x ' (1) Z K — f s*f(s, x(h(s))) ds,
where K is a finite constant. Then by the hypothesis of the Theorem
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lim [K—f s*f(s, x(h(s))) ds]élilg [K—J s*f(s, L) ds] =00,
However, by Lemma
lim inf [t°x"(t) — at*'x'(t)| =0.

This contradiction proves the Theorem.

In the case x(¢)<0 and x’'(t)=0 the proof of Theorem 2 is similar.
The proofs of the following three theorems will not be given here. They are
similar to those in [3].

Theorem 3. Suppose that (A) holds and let

J sp(s) ds>—oo,

If x(t) is a nonoscillatory solution of (a) defined on the interval I, then there is
a number t,=t, such that x(t)x'(t)>0 for all te[t,, »).

Theorem 4. Suppose that (A) holds and let
2
—t—zép(t)éo

for tel. If x(t) is a nonoscillatory solution of (a) defined on the interval I, then
there exists a number t,=t, such that x(t)x'(t)>0 for all t=1¢,.

Theorem 5. Suppose that (A) holds and the function f(t, y) is nonincreasing with
respect to y.

LetL f s*f(s, L) ds = —o for every L+ 0. If x(t) is a nonoscillatory solution of
(a) defined on the interval I such that x(t)x'(t)>0, then lim |x(t)| = .

Theorem 6. Suppose that (A) holds and the function f(t, y) is nonincreasing with
respect to y. Let

LJ f(s,L)ds=—w, for L#O.

If x(¢) is a nonoscillatory solution of (a) defined on the interval I such that

x()x'(1)Z0, then lim [x(2)] =lim |x’(6)| =1lim [x"(£)] = .

Proof. Assume that x(t)>0. It follows from the properties of the functions

x(t), x'(t) and h(t) that there exists a number ¢, = tosuch that x(h(t)) > x(t,))=L >
0.
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By integration (a) from #, to ¢ we obtain

(3) (0 =x0) = [ p(s)x'(s) ds = [ (5, x(h(s))) ds=

;x"(:l)—j'f(s, L) ds.

It follows from (3) that lim x"(t)= 0. Since x'"'(t)=0, lim x'(¢t) =lim x(t) = .

Remark 2. If we replace the hypothesis c¢) in (A) by ¢’') f(t, y)e C(D’),
D’'=IxR* and f(t, y) <O for every (¢, y) e D' then the conclusions of Theorems
1—6 are valid.

The proof of Remark 2 is the same as the proofs of Theorem 1—6. The function
f(t, y)=q(t)y*, where q(t)<0, y>O0 for teI and k € R* satisfies the hypothesis
¢'). Consequently Theorems 1—6 are valid for positive solutions of the differential
equation ‘

Y +p(t)y’ +q(t)y* =0.
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O HEKOTOPBIX CBOMCTBAX PEUIEHUN HEJIVMHEMHOI'O IU®PEPEHIIUAJILHOTO
YPABHEHHS TPETBEI'O ITOPAIOKA C 3AMA3IBIBAIOIIMM API'YMEHTOM

FrantiSek SiSoldk
Pe3omMme

B pa6ore paccMaTpMBalOTCS HEKOTOPble CBOHCTBA HEOCLJIAIUMOHHBIX pelleHuit puddepeHnmans-
HOTO YpaBHEHHs

x"'()+p()x'(8) +f(1, x(h(t)))=0
B MPOMEXYTKE [f,, ).
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