Mathematica Slovaca

Lubomir Kubacéek

Estimation of covariance components in a repeated regression experiment

Mathematica Slovaca, Vol. 34 (1984), No. 2, 155--164

Persistent URL: http://dml.cz/dmlcz/136355

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136355
http://project.dml.cz

Math. Slovaca 34, 1984, No. 2, 155—164
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Introduction

In the regression model Y = Xf3 + ¢ the covariance matrix of the error vector € is
considered in the form £= > J,CJ/ [3]; (nXs)-matrices J;, i = 1, ..., m are known.
i=1

The elements of the unknown matrix C are called covariance components. When
s=1 and J,J;} is denoted V,, i =1, ..., m, the situation studied in [2] occurs. This
paper completes paper [2].

The aim is to determine the estimator of the covariance components on the basis
of the matrix S,

k+1 k+1

kS=3(Y, - V)(¥,— V) (Y=[1(k+ D] 3 Y,)

which is generated from the (k+ 1)-tuple stochastically independent random
vectors Yy, ..., Yi., with the same normal distribution N, (X, ). Thus the matrix
kS has the Wishart distribution W, (k, X) [1].

1. Assumptions and auxiliary statements

Let (4., (-, --)) be a Hilbert space of symmetric (nXn)-matrices, (-, --)
denotes the inner product given by (A, B) =Tr(AB), A, Be %, [4]; Tr(AB)
denotes the trace of the matrix AB.

LetJ,, i=1, ..., m be given (nXs)-matrices and let the covariance matrix X of
the random vector Y~ N, (X, X) be an element of the set

>:*={z:>:=2.1,c.1;, Ce <g} ,
i=1

where € (= &) is a set of symmetric (s Xs)-matrices which satisfies the following
condition:
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If for Me Y, there exists A€/, such that for cach

(+){ matrix Z€Xx it is Tr(MC)=Tr(AE) (=Tr (EJ:AJ,C)) ,

m

then M J/AJ, =M.

[
Further it is assumed that each element of X« is a positive definite matrix.
() denotes the function g(-): €— R, g(C)=Tr(MC), which is to be unbiased-
ly estimated on the basis of the realization of the matrix kS~ W, (k, X). (Procedure
for estimating the function g(-) based on the realization of the vector Y see in [3].)
The estimator of the function ¢(-) is considered in the form Tr(AS), A€ .f,.
By the symbol .1, ., the set of (mXn)-matrices is denoted.

Definition 1.1. The mappings

vee(H): M —> R
VCCh( . ): .(ﬂ'_) .)/l)n(ln 1) 3;
(CR)[VCC( . )] . '(/>” s Pt 12
are given by

vec(T)=(t s oy vy bty Bioy sy ooy b2 e By By ooy b )5

vech(T)=(t 1y oty e bty ooy taay ooy byay o3 b i t bun 15 i)
(cR)vee(M]=(ti.i, 2620y s 20005 ta2, 2802y ooy 20025 i3 bt 10 2w 15 bin)-

Here t, ,={T}.; is the (i, j)-th element of the matrix T.

Lemma 1.1. For arbitrary matrices Ae ., .., Xe ., ,,Be.ll,,,Ce.ll, , itistruc
that AXB=C < (B'XA)vec(X)=vec(C) (X denotes the tensor product).
Proof is obvious.

Definition 1.2. The mappings

(cO)(-): (B QA A.B €., } =M, 012
(cR)(:): (B'RA:A.B e.ll,,} > Mpp.1-,

are given by
{(CC)[B'®A]} lr +(1 02 1) 3|:{B,®A} v =001, 00, r—1;

{(CC)[B,®A]} lr+dj a(i+1) 2] = {B’®A} (H+'H)+{B,®A} U+ Dr+atls
i=0,1,..,r=2; j=2,3, ..., r—i
and
{(cR)[B'"®AlL}iw:tene n2 ={B" @A} psisny, 1=0,1,...p—1,

{(CR)[B’@A])WHH’ Wivn 2| :{B'®A}('I'H+!) +(BI®A}|"” RUMARI I
i=0,1,..,p=2; j=2,3,....p—i.

Here {M} ,and {M}, denote the j-th column and the i-th row of the matrix M.
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Corollary 1.1. For arbitrary matrices A, B'e .U, ,, Xe ., Ce ¥, it is truc that
AXB = C <> (B’ ®A)vec(X) = vec(C) < (cR)[vec(C)] = (cR)(cC)[B’ ® A]vech(X).

Lemma 1.2. The estimator Tr(AS) of the function g(C)=Tr(MC), Ce € is

unbiased iff > J'AJd; =M.
[
Proof. It is a consequence of the relation

n

Ec[Tr(AS)] =Tr(AE) =Tr (SJ/AJC).

Ce € and of the assumption ().
Lemma 1.3. The function g(C)=Tr(MC), Ce€ € is unbiasedly estimable iff

m

(cR)[vec(M)] e . {(cR)(cc) |IEIJ:®J, l}

(A (D) denotes the column space of the matrix D).
Proof. It is a consequence of Lemma 1.2, Lemma 1.1 and Corollary 1.1.

2. Natural estimation and y-estimation

Let the error vector £ be of the form £=J,& +...+J..5.., §~N.(0,C),
j=1, ..., m, where C is a positive definite matrix and vectors §, j=1, ..., m are

k
stochastically independent. As kS~ W, (k, £), then kS= > Z.Z!, Z,~N(0, X),
a=|

a=1,..,kand Z,, a=1, ..., k are stochastically independent [1]. Similarly as in
[2] the vector Z, can be expressed in the form Z,=J\&.  +...+J.& .., a=
1,..,k, 5 ,~N(0,C)and &, ,, a=1, ..., k; j=1, ..., m are stochastically inde-
pendent.

The natural estimator € of the matrix C based on the realization of the vectors
E.,a=1,..,k, j=1,..., m (see also the corollary 3.1) is

m

C= [1/(mk)] i Egu.igtlu.i

a=1i=1

and the estimator of the function g(-) is then Tr(M€). The difference between the
unbiased estimator 7,(S)=Tr(AS) and the natural estimator Tr(MC) is

Tr(AS) — Tr(ME&) = (1/k) Tr {[(1/m)(l®M)—J'AJ] Zgg} ,

where J=J, Js, ..., Jn) and E.=(EL ., ..., Elm).

Definition 2.1. The estimator Tr(AS) of the function g(C)=Tr(MC), Ce € is
the MINUE if
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o JIAL LA =M and  Tr{[(1/m)(IQM) —J'AJ]’} = min.
Theorem 2.1. The MINUE of the function g(C)=Tr(MC), Ce € is

m

,(S)="Tr (ZV YAV 'S),

where V=J\Ji +...+J,J,, and Ae ¥, is a matrix of Lagrange multipliers which
satisfies the equation

mom

(cR)[vec(M)] = (cR)(cC) [ Z

[ B

WV '3 RWV 'J,)]vcch(A).
Proof. As =2Tr{(1/m)(IX@M)J'AJ} = —2(1/m) Tr (MiJ;AJ,) = —(2

/m) Tr(M?), then Tr{[(1/m)A@M)—J’'AJ]’} = Tr(AVAV)—(1/m) Tr(M>).
Thus it is sufficient to minimize Tr(AVAV) under the side condition J;AJ, + ... +
J..AJd,, =M. The method of Lagrange multipliers is used. The auxiliary function is
¢(A)=Tr(AVAV) —2Tr[»'(JIAJ, + ... +J,Ad,, —M)], where »’ is a matrix of
Lagrange multipliers.

(200 4VAv-4§J,(1/z)(u+u’)J;

m

—2diag- {VAV— EJ,(l/z)(x+x')J;}=o¢>VAV= S A
[ )

where A=(1/2)(x+='). For each matrix D € ¥, satisfying the condition J;DJ, +
...+dJ,DJ,, =0 there holds

m

Tr(DVAV) =Tr (ZJ’,DJ,A)zO

and thus
Tr[(A+D)V(A+D)V]=Tr(AVAV) +Tr(DVDV)=Tr(AVAV)
because of Tr(DVDV)=Tr(J'DJJ’'DJ)=0. Therefore the matrix

A=YV IJ AV
=1

with A satisfying
JIV YAV 4 =M

=1 =1

(unbiasedness) minimizes the quantity Tr (AVAV) under the side condition J{AJ, +
...+J,Ad,, =M. The rest of the proof is a consequence of Corollary 1.1.
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In the following the elements of the matrix C are assumed to be approximately
known. The corresponding matrix of approximate values is denoted by y and it is

assumed to be positive definite; y=v'"y"'*. The following denotation is used
JP'=Jdy', i=1,....m;
M=y "2k, j=1,...m; a=1,...,k

(obviously EY,~N.(0,y '"*Cy’ '7));
EV'=(EM, ..., ED.);
M(vlzyl/zm 1172,
c(y)zy,—l/zcy |/z;
JO =0, LI,

The natural estimator of the matrix C” based on 7, j=1, ... m; a=1, ... k,
is
m

Er= [1/(km)]2 S EMED,

@ 1

and the estimator of the function g(C) =Tr(MC) =Tr(M™C") resulting from it is

Tr(M(Y)C(?)) Tr (1/m)(l®M"")(l/k)2 g(v) (¥)

The difference between the unbiased estimator Tr (AS) and the natural y-estimator
Tr(MY€Y) is

Tr(AS) — Tr(M®€™) =

=Tr {[J(v) AJY — (1 /m)(I®M(”)] Z E(Y)E(Y) }

a=1

Definition 2.2. The estimator 1,(S)=Tr(AS) of the function 4(C)=Tr(MC),
Ce € is the MINU¥YE if

JAJ +...+J,AJ,, =M and Tr{[JVAJY - (1/m)(IQ@M™]?} = min.
Theorem 2.2. The MINU¥YE of the function g(C)=Tr(MC), Ce %, is

w(®) =Tr SV g Amgvs),
=1
where V= J,yJ/. The matrix AV € ¥, is a solution of the matrix equation
i=1

i‘j V(v) ! A(‘Y)J;V(Y) 'J,-,

i=1

Ms

It
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This cquation can be expressed in the form

(%) (cR)[vec(M)]=(cR)(cC) ’2 i(JZV“” "3)RQWVT J,) [ vech(A™).

i—1j=1

The proof is analogous to the proof of Theorem 2.1.

3. Properties of the MINUYE

Theorem 3.1. The MINUYE of the function g(C)=Tr(MC), C € € is the locally

best estimator in y€ 6.
Proof. With respect to Lemma 1.4 [2] (the denotation V™ =X is used) we have

m

cov {Tr (E): "JAYSE 'S ), Tr(AS) } = (/) Tr (SJ/A,AY).
I/ [

The last expression is zero for each matrix A, €, satisfying the condition

Viye €} E[Tr(AS)=0(=V(ye €} Tr (iJ;A(,J,y)z()) .
1|

With respect to the assumption (x) this condition is equivalent with > J;A.J, =0.
ol
On the basis of the Lehmann—Scheffé theorem (see also Lemma 1.5 [2]) the

statement is immediately proved.
Remark 3.1. The matrix A from the MINUyYE minimizes the quantity

Tr(AV®AV®™) under the side condition of the unbiasedness Y J/AJ, =M. If C=v,
il

then V" is the covariance matrix of the vector Y and regarding Lemma 1.4 [2]
(2/k)Tr(AVPAV® is dispersion of the statistic Tr(AS).

Lemma 3.1. The Fisher information matrix of the distribution of the matrix

m

kS~W, (k.E=34.CJ)
il

with respect to the parameter vech(C) is

F(C) = (k/2)(cR)(cC) [ S SWE U)W 'J,)’.

i=1 j=1

Proof. The probability density function of the matrix S is
k |
£(S, C) = (k/2)* 2 "on 2 {H [(1/2)(k+1—j)]} det(S)-
i=1

cexp {—(k/2) Tr (X 'S)}[det(X)] *°,
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m

where X = ZJ,CJ;. If in the following {C},; =c,; and the relations
i—1

az_l/ac,‘_,‘ = —Z_I(az/aci‘,-)z_',
dln det(z)/ac,, =Tr(r_]aZ/aC,'_,')
and

Z{J’}"{Jr}-’i for i=j,
9%/3c,, =

m

;[{J,}-i{J,}f,-+{J,}.,-{J,}f,-] for i#j

are used, then

dInf(S, C)/ac,.; =

" m

(k/2)2{J,},.27'ST7'(J,) ,--(k/2)§::{J,}.’,E"{J,} Woi=],

m m

2 <(k/2)Z{J,}.’,-2"SZ"{J,}.,—(k/2)§{J,}Y,E“{J,} > i+].

If in the same way the second derivatives are determined and E(S)=ZX is used,
then

m m

E(=3’Inf(S, C)/3c..3¢...)=(k/2) >, D {{J.} X '{J,,}-‘.'>2;

p=11=1

E(-3>Inf(S, C)/3c..9¢, )=

=2 (KD F SEVEW)AGVEWY), rta

p=1i=1

mom

E(—az ]nf(A, c)/aCi.jaCr.q) =2 <(k/2)2 2[{‘1'}-"2_'{"/»} i

p=1i1=1

AP EH {32 i{Jp}-’,-E"{J,}«,]>, i#j, r#s.
The last three relations imply the statement.

Theorem 3.2. The dispersion of the MINUYE of the function g(C)=Tr(MC),
Ce €, attains in C=vy the Rao—Cramér lower bound.

Proof. With respect to Lemma 1.4 [2] the dispersion of the MINU¥YE is
B[ Tr(AS)] =

m m

=(2/k) Tr ( SEACHEEYE JACSEE) =
=1 =1

m m

=Q/K) Tr (3 SUELACIEYA) =

=1 j=1
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<n| mJZ IJA(Y)JZ |J> VCC(A(Y))=

m m

=(z/k){cR)(cc)[2 WE 9)RWE 'J,)]vec(m’)}'vcc(m’).

' =1

Regarding Lemma 3.1, the last expression can be rewritten as (2
/k)?{vech(A™)} ' F(y) vech (A™) and regarding («+) in Theorem 2.2 it can again be
rewritten as {(cR)[vec(M)]}'F '(y)(cR)vec(M). This is the Rao—Cramér lower
bound of dispersions of unbiased estimators of the function ¢(C)=
{(cR)[vec(M)]}'vech(C)=Tr(MC), Ce € for the value y of the parameter C.

Corollary 3.1. If m=1, J,=1 and g(C)=Tr(MC)=c¢,,={X},,, i, j=1, ...,
then regarding Theorem 2.2 the MINUYE is

t,,(S)=Tr(V)“” 'AYYY 'S apnd M=V Ay

Thus t,(S) = {S}.;. This estimator does not depend on ¥ and attains the
Rao—Cramér lower bound in its dispersion. Thus it is uniformly best.

Corollary 3.2. If s=1, ie. £=cV=c>JJ|, where (J,,...,d.)=V'" and
1

g(c)=c, ce(0, ®), then by Theorem 2.2 the MINUYE is 7,(S)=Tr[(1/n)V 'S]
(the same result follows from Theorem 3.2 [2]). Its dispersion (see also Lemma 1.4
[2]) is D(z,(S))=[2/(kn)]c* and by Theorem 3.2 this is identical with the lower
Rao—Cramér bound. As 1,(S) does not depend on ¥, this estimator is the
uniformly best one. It is necessary to remark that the distribution of the estimator
Tr[(1/n)V 'S] is identical with the distribution of the random variable cy:./(kn),
where yxi. has the chi-square distribution with (kn) degrees of freedom.
Remark 3.2. Similarly as in [2] the comparison of the estimator based on the
realization of the vector Y ~ N, (X, X) with the estimator based on the realization
of the matrix kS ~ W, (k, X) (from a repeated regression experiment) can be done.
Let F(B, C) be the Fisher information matrix of the distribution of the vector Y
related to the parameter (f8', [vech(C)]’)’. Analogously to Lemma 3.1 we obtain

X'z 'X, 0

Crxs) F(B, c)z[ 0, (1/k)F(C)

where F(C) is the matrix from Lemma 3.1. The unbiased estimator based on the
realization of the vector Y and respecting the approximate values of the elements
of the matrix y is Y'AxY. The matrix Ax minimizes the quantity Tr (AVYAV®)

under the side condition X’AX =0 and > J;AJ; = M, respectively (see [3]). There is
=1
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m m

Asx = Zv(y)—lJi A(‘I)J;(‘I)—l _ Ev(y) lx(x,v(y)—lx)—xlv(y) '
=1 j=1

'J,’A(Y)J’,-V(Y)_IX(X'VW) ‘x)—xrv(y) "

where the matrix of the Lagrange multipliers A™ satisfies the matrix equation

m

M= SJ/Axd,.
/!

If the second term of the right-hand side, the expression (x#x), Theorem 3.2 and
the expression (xx) are taken into account then it can be seen that the dispersion of
Y'A+Y cannot in general attain its Rao—Cramér lower bound. Therefore, if there
exists a possibility to obtain the realization of the matrix S from results of
a repeated regression experiment, then the estimator should be based on the matrix
S instead the vector Y (see also Part 4 of [2]). '

Example. Let Y~ N,(XB, cV) (see corollary 3.2). Then the MINQUE (see [3])
of the parameter ¢ is é=Y'[V'=V'X(X'V'X)" X'V 'Y/[n — R(X)] and its
dispersion is @(¢) =2c*/[n — R(X)]. Repeating this experiment (k + 1)-times we
get D{[1/(k+ D] +...+ &) = 2¢3/{(k+1)[n—R(X)]}, while D{Tr[(1/
/n)V~'S]} =2c?*/(kn) and this value is substantially smaller; e.g. for n =5, R(X) =
2, k+1=7 we have D{[1/(k + D](é + ... + & )}/D{Tr[(1/n)V~'S]} =1,43.
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OLEHKA KOBAPUMALUMOHHBIX KOMITOHEHT
B MOBTOPEHHOM PETPECCHOHHOM 3KCITEPUMEHTE

Lubomir Kubdcek
Pe3iome

IMpennoxeHa HecMelleHHass oueHka MUHMMaiabHOW HopMmbl (MINUE) anementoB matpuust C.
KOTOpbIE Ha3BaHbl KOBAPUALMOHHBIMM KOMIIOHEHTAMM CJIY4alHOTO BEKTOpPa

Y~N, (Xp,2=31C8),
o1
OCHOBAaHHasg Ha pCajv3alui MaTpULbl
k+1

$=(1/k) 3 (Y, - Y)(Y, - Y)".

HccnenoBanbl HekoTopble cTatucTuyeckue coiictea MINUE.

164



		webmaster@dml.cz
	2012-08-01T00:43:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




