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ESTIMATION OF COVARIANCE COMPONENTS 
IN A REPEATED REGRESSION EXPERIMENT 

LUBOMfR KUBACEK 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

Introduction 

In the regression model Y = X/5 + e the covariance matrix of the error vector e is 
m 

considered in the form £ = ^Tj.-CJ! [3]; (nXs)-matrices J,, / = 1, ..., m are known. 
i = \ 

The elements of the unknown matrix C are called covariance components. When 
s = \ and J,J! is denoted V,-, / = 1, ..., m, the situation studied in [2] occurs. This 
paper completes paper [2], 

The aim is to determine the estimator of the covariance components on the basis 
of the matrix S, 

fcs=X(y/- w , - ?y (y=[i/(/c + i)] s'y,), 

which is generated from the (k + l)-tuple stochastically independent random 
vectors Yu ..., Yk + X with the same normal distribution N..(X/3, £ ) . Thus the matrix 
/cS has the Wishart distribution W^k , ! . ) [1]. 

1. Assumptions and auxiliary statements 

Let (5C, ( ' , • • ) ) be a Hilbert space of symmetric (nXn)-matrices, (•, ••) 
denotes the inner product given by (A, B) =Tr(AB), A, B e ^ „ [4]; Tr(AB) 
denotes the trace of the matrix AB. 

Let J,, i = l, ..., m be given (rzXs)-matrices and let the covariance matrix L of 
the random vector Y~N,.(X/3, L) be an element of the set 

E* = ÍE:E = |;jICJ;,Ce<gV 

where % (cz6^s) is a set of symmetric (sxS)-matrices which satisfies the following 
condition: 
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(*) 

If for Me ,f there exists Ae./„ such that for each 

matrix HeE* it is Tr(MC) = Tr(A.£) (=Tr ( . ^ J .AJ . c ) ) , 

1 then V J ; A J , =M. 

Further it is assumed that each element of E* is a positive definite matrix. 
()( ) denotes the function ()(): (£—• J?, (f(C) = Tr(MC), which is to be unbiased-

ly estimated on the basis of the realization of the matrix kS~ W„(k, L). (Procedure 
for estimating the function ()(•) based on the realization of the vector V see in [3].) 
The estimator of the function ()( ) is considered in the form Tr(AS), Ae.f,,. 

By the symbol .fX„.„ the set of (mXn)-matrices is denoted. 

Definition 1.1. The mappings 

vec(-): .tt,„. „-*.#'""; 
vech(-): 5/„-^/Г(" + , ) ľ ; 

(cR)[vec( )] : У„->.Ä , ,( , ,+ П 2 

.., t , „ . , ; /,.,, /2.,, ..., / „ , . , ; ...; t , . , , , / 2 . м , •• • л )'; 

.., t „ . , ; /2.2, /,.2, ..., / „ . 2 ; ...; t„ , .„ i, /„., . ; / , , „ ) ' 
. . . , 2 t „ . , ; /2 2, 2 / , . 2 , ..., 2 / „ . 2 ; ... ; /„ ..„ . , 2 / „ . „ , 

arc given by 

vec(T) = (/,.,, /2 

vech(T) = (/..,, /2 

(cR)[vec(T)] = (/,.„ 2/2.„ ..., 2 / „ , ; / 2 2 , 2/,2, ..., 2/„ 2 ; ...; /„ ,.„ ,, 2/„.„ , ; / „ „ ) . 

Here t, , = {T},., is the (/, ;)-/h element of the matrix T. 

Lemma 1.1. For arbitrary matrices A e . C „ , Xe.K,,.,,, Be .^,,.,, Ce.M,,,., it is true 
that AXB = C<^(B'(x)A)vec(X) = vec(C) ((x) denotes the tensor product). 

Proof is obvious. 

Definition 1.2. The mappings 

( c C ) ( - ) : { B ' ® A : A, B'€.«,, ,}-».«„ ' , ( 1 + l ) 2 ; 
(cR)(-): { B ' ® A : A. B'€.»„., } - . « „ ( „ + 1)_.,-

arc given by 

{(cC)[B'®A]}„,+(,+, ) (_ ,,_,= { B ' ® A } ( „ . 1 + I), / = (), 1 . . . , r - 1 ; 

{(cC)[B'®A]} ,„+1 + , ,(, + l)_, = {B '®A} ,„+ , + 1 ) +{B '®A} (1 + 1 1)r+1 + l. 
/ = (), 1, ..., r - 2 ; / = 2,3, ..., r-i 

and 
{(cR)[B'®A]}„„+(l+1)(_ „_, = {B '®A} ( , „ + ,+ „ , / = (), 1 p - 1 , 

{(cR)[B'®A]}„„+, + ( ,(, + 1)_, ={B '®A} ( , „+ 1 + I) + {B '®A} , ( , + , „ „ . , • „ . 
/ = 0, 1, ..., p — 2; 7 = 2, 3, ..., p — /. 

Here {M} , and {M}, denote the j-th column and the i-th row of the matrix M. 
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Corollary 1.1. For arbitrary matrices A, B'e.W,,.,, Xe.7;
M Ceffr it is true that 

AXB = C^(B'(x)A)vec(X) = vec(C)<->(cR)[vec(C)l = (cR)(cC)[B'®A]vech(X). 

Lemma 1.2. The estimator Tr(AS) of the function ()(C) = Tr(MC), C e ^ is 
•M 

unbiased iff ^ J ; A J , = M. 
/ i 

Proof. It is a consequence of the relation 

Ec[Tr(AS)] = Tr(A£) = Tr ( § J ; A J , c ) , 
\ i ' 

C e ^ and of the assumption (*). 

Lemma 1.3. The function <y(C) = Tr(MC), C G ^ is unbiasedly estimable iff 

(cR)[vec(M)]є M (cR)(cC) .£J5®J, 
i 1 

(.^(D) denotes the column space of the matrix D). 
Proof. It is a consequence of Lemma 1.2, Lemma 1.1 and Corollary 1.1. 

2. Natural estimation and y-estimation 

Let the error vector e be of the form e = J i | ( + . . . 4- J„,£„,, § , ~ N ( 0 , C), 
7 = 1, ..., m, where C is a positive definite matrix and vectors §,, / = 1, ..., m are 

k 

stochastically independent. As kS~ W„(k, £) , then feS=2Z«Z:„ Zt~N(0, L), 

a = 1, ..., k and Z«, a = 1, ..., k are stochastically independent [1]. Similarly as in 
[2] the vector Zu can be expressed in the form Z% = JI§«,I + •• •+ J».£«,m, « = 
1, ..., k, §,.., ~N S (0 , C) and £.,,-, a = 1, ..., k; / = 1, ..., m are stochastically inde­
pendent. 

The natural estimator C of the matrix C based on the realization of the vectors 
§,.,,, a = 1, ..., k, ; = 1, ..., m (see also the corollary 3.1) is 

C-[i/MliSUi 
« = l . = 1 

and the estimator of the function g(-) is then Tr(MC). The difference between the 
unbiased estimator r^(S) = Tr(AS) and the natural estimator Tr(MC) is 

Tr(AS)-Tr(Me) = (l/k)Tr{[(l/m)(l(x)M)-J'AJ] E£.§««}, 

where J = (J., J2, ..., J*,) and §« = (§<'<,., ..., §,',.„.). 

Definition 2.1. The estimator Tr(AS) of the function a(C) = Tr(MC), Ce % is 
the MINUE if 
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j ;AJ, + . . . + j ; A J m = M and Tr{[( l/ m ) ( l (x)M)-J 'AJ] 2 }=min. 

Theorem 2.1. The MINUE of the function g(C) = Tr(MC), Ce% is 

т„(S) = T r ( 2 V J,ЛJ,V 's) 

where V = J,J[ + ... + J,„J,,, and AefA is a matrix of Lagrange multipliers which 
satisfies the equation 

(cR)[vec(M)] = (cR)(cC) SE(JN 'j,)®(JN Ч) vech(A). 

Proof. As -2Tr{(l/m)(l(x)M)J'AJ} = - 2 ( l / m ) Tr ( M £ J ; A J , ) = - (2 

/m)Tr(M2), then Tr {[(l/m)(l(x)M) - J'AJ]2} = Tr(AVAV) - (1/m) Tr(M2). 
Thus it is sufficient to minimize Tr(AVAV) under the side condition JIAJi + ... + 
J/,.AJ„, = M. The method of Lagrange multipliers is used. The auxiliary function is 
0(A) = Tr(AVAV)-2Tr[x'(j ;AJ, + ...+J,:,AJ„l-M)], where x' is a matrix of 
Lagrange multipliers. 

( ^ ) = 4 V A V - 4 2 J , ( 1 / 2 ) ( * + X ' )J; 

f m . m 

-2diag V A V - ^ J ^ l ^ ^ + x^j ; =OoVAV = XJ,AJ'„ 

where A = (l/2)(x +x ' ) . For each matrix D e ff„ satisfying the condition JJDJi + 
...+J,',IDJ„I=0 there holds 

Tr(DVAV) = Tr ( § J ; D J , A ) = 0 

and thus 

Tr [(A + D) V(A + D)V] = Tr (A VAV) + Tr (D VDV) ^ Tr (AVA V) 

because of Tr(DVDV) = T r ( J ' D J J ' D J ) ^ 0 . Therefore the matrix 

m 

A = ^ V J.AJJV" 
/=1 

with A satisfying 
m m 

XSJ:v J,AJ;V J, = M 
/ - I / = ! 

(unbiasedness) minimizes the quantity Tr (AVAV) under the side condition JIAJ! + 
... + J/MAJ,fl = M. The rest of the proof is a consequence of Corollary 1.1. 
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In the following the elements of the matrix C are assumed to be approximately 
known. The corresponding matrix of approximate values is denoted by y and it is 
assumed to be positive definite; y = y' 2y' ' 2. The following denotation is used 

jh" = j , v
1 2 , ; = i „,; 

§!"", = y-" 2£. . , , / = 1 m ; « = 1 A 

(obviously ^i~N(0, y l/2Cy' " 2)) ; 

| (T ) '=(| (- )i,...,g!" ,»); 
M(Y) = y"2My" /2; 

C(Y) = y'-"2Cy "2; 
J(Y) = (J(,Y), ...,J!Y)). 

The natural estimator of the matrix C(Y) based on §!Y)„ /' = 1, ..., m ; a = 1, .... A, 

c<Y)=[i/(Am)]2 sra!"'; 
1 / I 

and the estimator of the function #(C) = Tr(MC) =Tr(M(Y)C(Y)) resulting from it is 

Tr(M(Y)C(Y)) = Tr f(l/m)(l(x)M(Y))(l/k)S§«Y)§!Y) 

« = i 

The difference between the unbiased estimator Tr(AS) and the natural y-estimator 
Tr(M(Y)C(Y)) is 

Tr(AS)-Tr(M(Y)C(Y)) = 

= Tr f [J(Y)'AJ(Y> - (1 /m)(l(x)M(Y))] £ £!,Y,i!,Y)'} . 

Definition 2.2. The estimator T„ (S) = Tr (AS) of the function #(C)=Tr(MC), 
Ce<€ is the MINUyE if 

j ;AJ, + ...+J,'„AJm=M and Tr{[J(Y) AJ (Y )-(l/m)(l®M (Y )]2} =min. 

Theorem 2.2. The MINUyE of the function y(C) = Tr(MC), Ce% is 

T„(S) = Tr ( Jy^ 'J^JJV^ 's ) , 

m 

where V(Y) = ^ J , Y J . . The matrix A(Y) e Sfs is a solution of the matrix equation 
. = i 

m m 

M=SSJ;V1""'JJAMJ;V ( V ) 'J,. 
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This equation can be expressed in the form 

I m m i 

X £(J ;V ( Y ) ' j , ) (x)( j ;V ( Y ) 'J,) vech(A(Y)). 
I - I / - I I 

The proof is analogous to the proof of Theorem 2.L 

3. Properties of the MINUyE 

Theorem 3.1. The MINUyE of the function q(C) = Tr (MC), 0e% is the locally 
best estimator in ye%. 

Proof. With respect to Lemma 1.4 [2] (the denotation V(Y) = 2. is used) we have 

cov JTr ( £ -£ 'J,A(Y)J;2: ' S ) , Tr(A ( ,S)} = (2 / * ) Tr (^J;A ( )J,A ( Y ) ) . 

The last expression is zero for each matrix A,,e:/,( satisfying the condition 

V{ye«}Ey[Tr(A„S)l = o(<>V{Y€«}Tr(§JJA,J/Y) = o ) . 

With respect to the assumption (*) this condition is equivalent with ^ j ;A„J , =0 . 
i i 

On the basis of the Lehmann—Scheffe theorem (see also Lemma 1.5 [2]) the 
statement is immediately proved. 

Remark 3.1. The matrix A from the MINUyE minimizes the quantity 
Tr(AV(Y)AV(Y)) under the side condition of the unbiasedness ]Tj;AJ;=M. If C=y, 

/ i 

then V(Y) is the covariance matrix of the vector Y and regarding Lemma 1.4 [2] 
(2/k)Tr(AV(Y)AV(Y) is dispersion of the statistic Tr(AS). 

Lemma 3.1. The Fisher information matrix of the distribution of the matrix 

ks~wn (k ,£=2 J< c j ; ) 

with respect to the parameter vech (C) is 
r m m i 

F(C) = (*/2)(cR)(cC)|2 2(j;.s 'J,)®(j;2: ' J , )J . 

Proof. The probability density function of the matrix S is 

f(S,C) = (k/2Y"2n"<" l )2{rj[(l/2)(/c + l -y)]} 'det(S)-

•exp | - ( * / 2 ) Tr(E rS)}[det(2;)] * \ 
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where £ = ^J.-CJI-- If in the following {C},., = c,., and the relations 
/ - I 

as-'/ac,-.,- = -i.-\dj:/dcl.i)i:-\ 
3Indet(E)/3c,-.,=Tr(i:- ,3.£/3c /.,) 

and 
m 

' 2{Jr},{JrV> ^ / = / , 
r=\ 

m 

2[{J,},{J r}' , + {Jr},{Jr}',] for / * / 

9S/3c,., = • 

are used, then 
3ln/ (S, C)/3c„,= 

»,. m 
(k/2)2{Jr}'X-'S^-'{Jr}i-(k/2)2{Jr}'X-'{Jr}i, / = / , 

, I r=\ 

I m m \ 
2((k/2)Z{Jr}'lX-'Si:->{Jr}i-(k/2)'Z{Jr}',-£-,{Jr} , ) , i*j. 

If in the same way the second derivatives are determined and E(S) = L is used, 
then 

E(-Ә2ln/(S,C)/Әc„Әcr.r) = ( Ш ) 2 ^({J,}'X ҶJ„} , ) 2 ; 
P = I , = i 

E(-Э 2 ln/(S, C)/Эc„,Эcr.„) = 

= 2 ( ( * / 2 ) 2 S{J,}'^"'{J'},{JP}'---'"'{J,}'), t-^g; 
\ p=\ t=\ I 

I m m 

E(-d2 In /(A, C)/3c,.,3cr.,) = 2 ( (*/2)2 S i W'2"'{J,>} r 
\ p=\ l=\ 

•{J„}',E-'{J,} „ + {J,}',2-'{J„} ,{J P }f ,£-{J ,} . , ] ) , / * / , r*s. 

The last three relations imply the statement. 

Theorem 3.2. The dispersion of the MINUyE of the function #(C) = Tr(MC), 
C G ^ , attains in C = y the Rao—Cramer lower bound. 

Proof. With respect to Lemma 1.4 [2] the dispersion of the MINUyE is 
SY[Tr(AS)] = 

( m m . 

2-r lJ ,A , y ) j ;£- '£2-r 'J-A < Y )J , -r ' - , ) = 
, = i , = i ' 

/ "> "• 
= (2/k) Tr ( 2 2J;2-"'J,NV)J;£- ,J /A

(y)) = 
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I , m m 

vec ( 2 ^'£ 'J.A^JIS 'J, 
\ i 1 / - l 

vec(Л < v ) ) 

r Г '" m 1 ì ' 

= (2/it) (CR)(CC) E S(J:s ' J , ) ® ( J : £ 'J,) vec(л™)| vec(лw). 

Regarding Lemma 3.1, the last expression can be rewritten as (2 
/k)2{vech(A(Y))}'F(Y)vech(A(Y)) and regarding (**) in Theorem 2.2 it can again be 
rewritten as {(cR)[vec(M)]}'F '(Y)(cR)vec(M). This is the Rao—Cramer lower 
bound of dispersions of unbiased estimators of the function cj(C) = 
{(cR)[vec(M)]}'vech(C) = Tr(MC), Ce<€ for the value y of the parameter C. 

Corollary 3.1. If m = l, J, = l and cj(C) = Tr(MC) = c,,, = {L}, ,, i, 7 = 1 , ..., t z , 
then regarding Theorem 2.2 the MINUyE is 

T(,(S) = Tr(V) (Y) 'A(Y)V(Y) 'S and M = V(Y) 'A(Y)V(Y) '. 

Thus Tfl(S) = {S},,y. This estimator does not depend on y and attains the 
Rao—Cramer lower bound in its dispersion. Thus it is uniformly best. 

Corollary 3.2. If 5 = 1, i.e. 2 = cV= c ^ J J ' , , where (J,, ..., J„) = V1 2 and 
i i 

.^/(c) = c, c e ( 0 , oo), then by Theorem 2.2 the MINUyE is T ( ,(S) =Tr[( l /n)V 'S] 
(the same result follows from Theorem 3.2 [2]). Its dispersion (see also Lemma 1.4 
[2]) is Q}(r(l(S)) = [2/(kn)]c2 and by Theorem 3.2 this is identical with the lower 
Rao—Cramer bound. As T,,(S) does not depend on y, this estimator is the 
uniformly best one. It is necessary to remark that the distribution of the estimator 
Tr[(l/rc)V !S] is identical with the distribution of the random variable cxlJ(kn), 
where xln has the chi-square distribution with (kn) degrees of freedom. 

R e m a r k 3.2. Similarly as in [2] the comparison of the estimator based on the 
realization of the vector Y~ Nn(Xfi, L) with the estimator based on the realization 
of the matrix kS~ Wn(k, L) (from a repeated regression experiment) can be done. 

Let F(/5, C) be the Fisher information matrix of the distribution of the vector V 
related to the parameter (/3\ [vech(C)]')'. Analogously to Lemma 3.1 we obtain 

(***) F(ß, C) = 
X'2Г'X, 0 1 

0, (l/fc)F(C)]' 

where F(C) is the matrix from Lemma 3.L The unbiased estimator based on the 
realization of the vector Y and respecting the approximate values of the elements 
of the matrix y is Y'A*Y. The matrix A* minimizes the quantity Tr(AV(Y)AV(Y)) 

m 

under the side condition X'AX = 0 and ^ J , A J , = M, respectively (see [3]). There is 
J = I 
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A* = 2V (Y)" ,JiA (Y)j;. (Y)-1-£v (Y) X(X'V(Y) X) X'V(Y) '• 

. j . A ( v ) j ; V ( v ) - . x ( x , V ( Y ) X ) X V
(v> ', 

where the matrix of the Lagrange multipliers A(Y) satisfies the matrix equation 
m 

M = XJ;A*J,. 
; l 

If the second term of the right-hand side, the expression (***), Theorem 3.2 and 
the expression (**) are taken into account then it can be seen that the dispersion of 
Y'A* Y cannot in general attain its Rao—Cramer lower bound. Therefore, if there 
exists a possibility to obtain the realization of the matrix S from results of 
a repeated regression experiment, then the estimator should be based on the matrix 
S instead the vector Y (see also Part 4 of [2]). 

E x a m p l e . Let Y~Nn(X/5, cV) (see corollary 3.2). Then the MINQUE (see [3]) 
of the parameter c is c= Y'[V ' -V X(X V X) X V ]Y/[ti - R(X)] and its 
dispersion is 3)(c) = 2c2/[n — R(X)]. Repeating this experiment (fc + l)-times we 
get 2>{[l/(fc + l)](c, + ... + cfc + i) = 2c7{(fc + l ) [ n - R ( X ) ] } , while <2{Tr[(l/ 
/ M ) V - 1 S ] } =2c2/(fcn)and this value is substantially smaller; e.g. for n = 5, R(X) = 
2, fc + l = 7 we have 3{[l/(fc + l)](c, + ... + ck + i)}/3){Tr[(l/n)V-lS]} = 1,43. 
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OЦEHKA KOBAPИAЦИOHHЫX KOMПOHEHT 

B ПOBTOPEHHOM PEГPECCИOHHOM ЭKCПEPИMEHTE 

Lubomír K u b á č e k 

P e з ю м e 

Пpeдлoжeнa нecмeщeннaя oцeнкa минимaльнoй нopмы (MINUE) элeмeнтoв мaтpицы C, 
кoтopыe нaзвaны кoвapиaциoнными кoмпoнeнтaми cлyчaйнoгo вeктopa 

Y~Nn (xß, Z = ]ГJ,CJ;), 

ocнoвaннaя нa peaлизaции мaтpицьғ 

s = (ì/k)k^(ү,-ү)(ү,-үy. 
I 1 

Иccлeдoвaны нeкoтopыe cтaтиcтичecкиe cвoйcтвa MINUE. 
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