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Math. Slovaca 34,1984, No. 3, 255—264 

a r-SPACES AND SOME OF THEIR PROPERTIES 

IGOR ZUZCAK 

In [2] the author has introduced the notion of an r-space and has shown that 
topological spaces are special cases of r-spaces. It is well known that if X is 
a topological space, then 
..v the closure of the union of two subsets of X is the union of their closures. 

In the present paper there are studied r-spaces satisfying properties analogous to 
(1) for some subsets of X and some conditions of a decomposition of such r-spaces 
into topological spaces are given. 

We shall use the notation from [1] and 2X will denote the class of all subsets of X. 
The notation A cz B means that A is a subset of B and if A is a proper subset of B 
we write A czB. Specific terms will be explained when used for the first time. 

1. r-spaces 

In [2] the notion of an r-space was introduced: 
Let X be a non-empty set and g be a relation on 2X satisfying 

Ri) for each subset A of X there is a subset B of X such that AgB 
R2) 0g0 
R3) if AgB, then AczB 
R4) if AgB, then BgB 
R5) if A cz B and BgB, then there is a subset C of X such that AgC and C cz B 
R6) if AgB, then there is no subset C of X such that CgC and A cz CczB. 

Then g is called a relation of closure on 2X. The pair (X, g) is called an r-space if X 
is a nonempty set and g is a relation of closure on 2X . If (X, g) is an r-space and for 
subsets A, B of X we have AgB, then we say that B is a closure of A. A set A cz X 
satisfying AgA is called a closed set. 

To simplify the notation we often refer to the r-space X instead of to the more 
proper form (X, g). 

R e m a r k 1. If (X, g) is an r-space, then the class :T= {A czX: AgA} of all 
closed subsets of X has the following properties 
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Ql: 0, XeJ 
Q2: for each A c X and each B e J such that A c B there is a minimal element C 

of the class {Me .7: A c M c B ) . 
Now let X be a nonempty set and J be a class of subsets of X satisfying Oi and 

Q2. Then, as shown in [21, the relation p defined on 2X by 

(4) AgB iff B is a minimal element of {Me J: A c M c B ) 

has the properties Ri—R6, (X, p) is an r-space and J is precisely the class of all 
closed subsets of (X, p). 

R e m a r k 2. From Example 1 of [2] it follows that a subset A of an r-space X 
may have more than one closure. 

At the beginning of this paper we considered the condition (1) in connection with 
topological spaces. Our aim now is to generalize this condition to r-spaces. 

Suppose first that (X, p) is an r-space. By definition of the r-space we know that 
if A, B are subsets of X, then ApB means that B is a closure of A. Therefore the 
condition (1) can be described in the following way: 

( if for the subsets A, B, C and D of X .we have ApB and cpD, then 
( ' ( A u C ) p ( B u D ) . 

Now we shall study r-spaces satisfying (2) for some subsets of X. 
In b) of Theorem 9 of [2] it was shown that if (X, p) is an r-space, A, B and C 

are subsets of X such that A cz B cz C and ApC holds, then also BpC holds. From 
this we have the following statement 

Corollary 1. If (X, p) is an r-space and for the subsets A, B, C and D of X the 
relations AgB, CgD and B cz D hold, then ( A u C ) p ( B u D ) . 

From this corollary it is clear that if (X, p) is an arbitrary r-space, then for some 
subsets A, B, C and D of X the condition (2) is satisfied. Now we shall show that 
in some r-spaces (X, p) the condition (2) cannot be satisfied for all subsets A, B, 
C and D of X. 

Lemma 1. Let (X, p) be an r-space. Let A, B, C and D be subsets of X satisfying 
AgB and CgD. If ( A u C ) p ( B u D ) holds, then either A^C or B = D. 

Proof. Suppose that the lemma is false, i.e., ApB, CpD, ( A u C ) p ( B u D ) , 
A = C and B=fcD hold. This means that A p ( B u D ) , since we have 
( A u C ) p ( B u D ) . By a) of Theorem 9 of [2] we have Dc/zB, which means that 
B cz ( B u D ) . But ApB, Ag(BuD) and B cz ( B u D ) contradicts the condition R6. 

From this there follows immediately 

Lemma 2. Let (X, p) be an r-space. If for the subsets A, B, C and D we have 
AgB, CgD, A = C and B^D, then ( A u C ) p ( B u D ) does not hold. 

By Lemma 1 we may consider if we want to study r-spaces, condition (2) only if 
either A^C or B = D. But by Corollary 1 the condition (2) for B = D always 
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holds. So it seems to be natural to study r-spaces (X, p) satisfying the following 
condition 

(2a) if ApB, CgD and A±C, then ( A u C ) p ( B u D ) . 

It is easy to see that if an r-space is a topological space, then also the condition (2a) 
is satisfied. Our next theorem will show that the converse of this statement is also 
true. 

Theorem 1. Let (X, p) be an r-space and let the relation of closure g of this 
r-space satisfy the condition (2a). Then (X, g) is a topological space. 

Proof. To prove that an r-space (X, p) is a topological space it suffices to-show 
that p is a closure operator on X (see [1]). Thus we must show that each subset of X 
has only one closure and that p satisfies the Kuratowski closure axioms. 

First we shall show that for each subset M of X there is only one subset N of X 
such that MpN. Suppose that this is not true, i.e., there is A czX such that ApB, 
ApD and B±D, which implies that A p ( B u D ) does not hold. Since A has two 
closures B and D such that B=frD, then A cannot be closed. Therefore Aj=B. 
Since ApB, then by R4 there is BgB and by R3 we have A^B, hence we have 
ApB, BpB and A±B. Then by (2a) it follows that ( A u B ) p ( B u D ) which means 
that B p ( B u D ) . From BgB and B p ( B u D ) it follows that B = BuD by R6. Since 
ApB holds, B = B u D implies A p ( B u D ) , which contradicts the fact that 
A p ( B u D ) does not hold. 

Now let ApB and CgD hold. 
If A±C, then ( A u C ) p ( B u D ) follows from (2a). 
If A = C, then B = D, since each subset of X has only one closure. By 

Corollary 1 we have again ( A u C ) p ( B u D ) . 
This means that the condition (1) is satisfied. The remaining Kuratowski closure 

axioms follow immediately from Ri, R2, R3 and R4. 
Now let X be an r-space, ST the class of all closed subsets of X and p is the 

relation of closure of this r-space. The property (2) can be interpreted also in the 
following way: for each B, D e ST there holds that 

(2b) if A, C are subsets of X satisfying ApB and CpD, then ( A u C ) p ( B u D ) . 

But from Lemma 1 it follows that the condition (2b) can be considered for B, D, 
where B±D only if B and D are not closures of the same set. 

In the remaining parts of this paper there are studied r-spaces called a r-spaces, 
satisfying for each B, DeT, where B , D are not closure of the same set, the 
condition (2b). 

For easy reference we introduce the following notation. 

Definition 1. Let T be the class of all closed subsets of an r-space X and 
w <^TxT be a relation satisfying the following condition 
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. AwB iff A^B and there is no subset C of X such that CgA and CgB. 

Then the relation w is called an r-relation of the r-space X . 
We are now ready to define the notion of an a r-space. 

Definition 2. Let (X, g) be an r-space and w the r-relation of (X, g). Suppose 
that the following condition is fulfilled 

R7) if AgB, CgD and BwD, then (AuC)g(BuD). 

Then the r-space (X, g) is called an a r-space. 
R e m a r k 3. If (X, g) is an r-space and the condition (2a) is satisfied, then the 

condition R7 is satisfied too. This follows from the fact that (X, g) satisfying the 
condition (2a) is by Theorem 1 a topological space. 

Now we give two examples illustrating relations between the above described 
types of r-spaces. First we give an example of an a r-space. 

E x a m p l e 1. Let R2 be a real Euclidean 2-space (see [1]) and let N be the set of 
all positive integers. Define the following sets: 

At = {(x, y): x = i,ye(0, oo)}, ieN 
Bi = {(x,y):xe(0,™),y=j}, jeN 

A = U A „ B = \jBj and X = AuB. 
i i 

Let us define a relation g on 2X as follows: 

a) if MczA, Ni = {ieN: AtnM±0} and Am = U A, then MgAM 
ieNi 

b) if MczB, N2={jeN: BJHM^0} and BM= IJ A then MgBM 
jeN2 

c) if M£A and M£B, then MgX 
d) if M = 0, then MgM. 

It is easy to see that (X, g) is an a r-space. The class of closed subsets of X consists 
of: 
1) 0, X 
2) all subsets of X of the form (J A,, where N ' cz N 

ieN' 

3) all subsets of X of the form [J Bh where N" cz N. 
jeN" 

r-spaces are not necesserily ar-spaces as shown by the 

following example. 

E x a m p l e 2. Let X = {a, b, c} and let g be the relation on 2X defined by: 

{a}g{a, b}, {a,b}g{a,b}, {c}g{c} 
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{a}Q{a,c}, {a,c}Q{a,c}, 0Q0 
{b}Q{a,b}, {b,c}QX, XQX. 

It is clear that (X, Q) is an r-space. The following sets are closed subsets of this 
r-space: 0, X, {c}, {a, b} and {a, c}. Next we see that 

{a}Q{a, b}, {C}Q{C} and {a,b}w{c}. 

On the other hand 

{a, c}Q{a, b, c} doesnothold. 

This means that the condition R7 is not satisfied. 
In the following two sections of this paper we assume that there is given an 

a r-space X, the relation closure Q, the r-relation w and the class ST of closed 
subsets of this a r-space. 

2. Some properties of a r-spaces 

First we give two statements proved in [2]: 
Ki: Let A, B be closed subsets of X. Then A, B are closure of the same set iff A, 

B are closures of AnB. 
K2: Each closed subset of X has only one closure. 

Lemma 3. Let A, B and C be subsets of X such that AcB, AQC and BwC. 
Then C^B. 
Proof. Since B is closed, then BQB. Thus we have BQB, AQC and BwC. 

Therefore ( A u B ) p ( B u C ) by R7. But AcB and so BQ(BUC). The relations 
BQB and BQ(BUC) imply B = B u C , hence C^B. 

We know that A is a closed subset of x iff AQA. Therefore if A and B are closed 
subsets of X we have AQA and BQB. If we assume AwB, the by R7 we have 
( A u B ) p ( A u B ) , which means that A u B is closed. We thus get the following 
result 

Theorem 2. If A and B are closed subsets of X such that AwB, then AuB is 
closed. 

Theorem 3. Let A and B closed subsets of X and A±B. Then AnB is closed iff 
AwB. 

Proof. First we show that if AnB is closed, then AwB. Suppose AnB is 
closed, A±B and AwB is not true, i.e., A and B are closures of the same set. Then 
by K\ the sets A and B are distinct closures of AnB, which is impossible, since 
AnB is closed and has only one closure. 

There remains to be shown that if A±B and AwB, then AnB is closed. If 
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AwB, then at least one of the sets A and B is not a closure of AnB. We may 
suppose that A is not a closure of AnB, i.e., (AnB)gA does not hold. Therefore 
by R5 there is a closed set C such that ( A n B ) p C and CczB. From ( A n B ) p C it 
follows that AnB cz C by R3. From CczB we have BnC= C and since A n B cz C, 
then (AnC) = An(BnC) = (AnB)nC = AnB. 

We thus have (AnC)gC, A is closed and AwC. By virtue of Lemma 3 we see 
that CczA and therefore AnC=C, but this means that A n B is closed, since 
AnB = AnC=C and C is closed. 

3. Complete r-systems 

Definition 3. A class si of closed subsets of X is called an r-system in X iff AwB 
for each A, Be si, A±B. 

If A is an r-system in X, then by Theorems 2 and 3 for every A, B e si both the 
sets A u B and AnB are closed. We may also wonder whether or not for A, B e si 
we have AuB e si or AnB e si. This question is answered in the following section 
of the paper. 

Let II be the class of all r-systems in X. The class II is partially ordered by the 
relation of inclusion cz. According to Hausdorff's maximal principle there exists the 
family 0 of maximal chains in II such that each chain in II is contained in an 
element or &. From the definition of r-systems it is not hard to see that if Hi is 
a chain in It, then the union of all elements of Hi is itself an element of 11. Therefore 
if llo is an element of 0, then the union of all elements of 1I0 is a maximal element 
of II. Each maximal r-system we call a complete r-system in X. It is evident that to 
every r-system six in X there is in X at least one complete r-system si2 such that 
sdi cz sd2. 

R e m a r k 4. If A is a closed subset of X, then by Corollary 1 it is clear that the 
class {0, A, X} is an r-system. From this it follows that for each closed subset A of 
X there is a complete r-system si in X such that A e si. 

Theorem 4. Let si be a complete r-system in X. If {As}seS c si and S is a finite 

set, then [J As e si and also C\AS e si. 
s s 

Proof. It suffices to prove that for each A, Be si there is AnB e si and 
A u B e ^ . 

First we show AnB e si. Suppose this is not true, i.e., AnB £ si. Since si is 
a complete r-system there is Ce si such that (AnB)wC is not true. Hence 
AnB±C and AnB and C are closures of the same set. This implies that AnB 
and C are closures of (AnB)nC. Next it is clear that (AnB)nC^AnC^C. 
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Since A, Ce si it follows from Theorem 3 that A n C is closed. This means that 
AnC=C and therefore CgzA. Analogously it is clear that CczB and hence 
C c z ( A n B ) . From the fact that AnB and C are closed sets, C cz A n B , 
(AnBnC)gC and (AnBnC)g(AnB) it follows that C = (AnB) this is 
a contradiction, since C ^ A n B . 

There remains to be proved that if A, Be si, then A u B e i . Let C be an 
arbitrary element of si. If A u B = C, the proof is completed, since AuB e si. 

Suppose now that AuB=£ C. We shall show that Cw(AuB). To prove this by 
Theorem 3 it suffices to show that (AuB)nC is closed. However, A, B and C are 
elements of si and hence AnC and B n C are also elements of si. This follows 
from the first part of this theorem. Using the fact that (AuB)nC = 
(AnC)u(BnC), we see that (AuB)nC is a closed set. 

Hence Cvv(AuB) for each Cesi— { A u B } and A u B must belong to si by the 
maximality of si. 

Theorem 5. Let X be an ar-space satisfying the following condition: 

(4) for each r-system {As}seS in X the set f~)As is closed. 
s 

Then if si is a complete r-system in X, the intersection of any number of elements 
of si belongs to si. 

Proof. Let si be a complete r-system in X. Let {As}seSc:si and let A = P | A S . 
s 

Analogously to the proof of the previous theorem it suffices to show that if C e si 

and AJ=C, then AnC is closed. But AnC = (~)AsnC and {A s} s esu{C} is 
s 

a r-system in si. Therefore by (4) A n C is closed. 
R e m a r k 5. Let X be ar-space given in Example 1. Let 

and 

,T1 = ( A = U A I ^ C N I U I O J ) 
l leN' i 

0-2 = f B = U B,: N' sNÍ U{0, X} 

be classes of closed subsets of X. 
From definition of the sets A,, Bh i, j = 1, 2, 3, ... it follows that S'x and .T2 are 

complete r-systems in X and each r-system in X is either a part of &~\ or a part of 
,T2. On the other hand it is clear that both pairs (X, S'I) and (X, ¥T2) are topological 
spaces, where .9~i and 5"2 are their classes of closed sets. This means that the 
ar-space X satisfies the condition (4). 

Now consider an r-space X and let &~ be the class of closed subsets of X. If for 
each closed subset A of X we denote 
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2TA = {0, A,X}, 

then it is clear that (X, 2FA) is a topological space. 

Definition 4. The topological space (X, 2TA) is called a trivial topological space 
for the r-space X. A topological space (X, 2T') such that 2T' cz 2T is said to be 
a topological space for the r-space X and 2T' a topology for the r-space X. 

From Remark 5 it follows that there is an r-space having the following property: 
There is a class {2Ts}seS of topologies for the r-space X satisfying 

a) for each s eS there is no topology 2T' for X such that 2TS cz 2T' 
b) if 2T' is a topology for X, then there is s e S such that 2T' cz 2TS. 

Since for each A e 2T there is a trivial topology for X containing A, then LJ -Ts = J. 
s 

It is also clear that for each s e S,(X, 2TS) is a topological space. 

Definition S.LetX be an r-space and 2T be the class of all closed subsets of X. If 
there is a class {2Ts}seSof topologies for Xsatisfying a) and b), then X is said to be 
a topological r-space. 

As an immediate consequence of Theorems 4 and 5 and Definition 5 we have 
the following 

Corollary 2. Each a r-space satisfying (4) is a topological r-space. 
Finally we give an example to show that there is a topological a r-space which 

does not satisfy the condition (4). 
E x a m p l e 3. Let X = {0, 1, 2, 3, 4, 5, . . . } . Consider the following subsets of X: 

for i = l, 3, 5, 7, ... let A« = {0, i, i + 1 , i + 3, i + 5, . . . } , 
for i = 2, 4, 6, 8, ... let A, = {0, i, i + 1, i + 2, i + 3, ...} 

and A0 = X. 
In the following we shall show that there is an a r-space (X, g) such that 

a) 2T= {0, A0, Ai, A2, A3, ...} is the class of all closed subsets of (X, g) 
b) (X, g) is a topological a r-space, but does not satisfy (4). 

Let M cz X and N be the set of all positive integers. Define a relation g on 2X as 
follows 
a) if there are at least two elements i, j e {1, 3, 5, 7, ...} such that i=t j , i, j eM and 

k = inf {p e N: p e M}, we put 

MgAk-i if k is odd 
MgAk if k is even 

b) if there is only one odd positive integer i such that i e M, then if k = inf {p e N: 
p e M}, we put 

MgAk 
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c) if M-7-{0} and M contains only elements of {0,2,4,6, . . .}, then if k = 
inf{/eN: ieM}, we put 

and 

d) if M = { 0 } , then 

e) 0g0 and XgX. 

MgAk 

MgAp for p < k, where p is odd 

МдАк (от к = 1, 3, 5, 7, ... 

A0 A2 A0 
A4 

" 1 
5 ] 

A2 A0 A6 

1 

A4 

" 1 
5 ] 

A2 A0 
A« Aв A6 

1 

A4 

" 1 
5 ] 

A2 A0 

9j . 

A6 

1 

A4 

" 1 
5 ] 

A2 A0 
A4 

" 1 
5 ] 

A2 A0 

I_. __| 

"T 1 

_4 . 

A0 

Ô 10 ]б 
A 4 _ 

]б 
T~~ 

U 

A5I 

_____ 

1 

ì * 
_ Л l _ ; ! 

1 

Fig.l 

From the definition of g and from Figure 1 it is clear that: 
1) the conditions Ri—R 6 are satisfied; 
2) if 1, j e {1, 3, 5, ...}, then A, and A ; are closures of the set {0} and therefore 

A,wAy is not true; 
3) if / ,/e {0, 2, 4, 6, ...} and / < / , then Aye A,; 
4) if ie {1, 3, 5, ...} and j e {0, 2, 4, 6, ...}, then either A, and A7 are closures of 

the same set, i.e., A,nLA7 is not true, or A,c=A7. 

From 2), 3) and 4) it is evident that for each closed subset A, and A7 of X, where 
/-£/, either AiwAj is not true or A, cz A7, resp., A7 cz A, holds. From this and from 
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Corollary 1 it follows that the condition R7 is satisfied too. Hence (X, p) is an 
ar-space and :T= {0, A0, A-, A2, A3, ...}. 

Now let for each ie {1, 3, 5, 7, ...} 

T) = {0, A,-, A,-i, A,_3, A,-_5, ..., A 0}. 

It is easy to verify that 
— for each ie {1, 3, 5, ...} the class 51- is a topology for X 
— the family {^}IG {1,3,5, ...> satisfies the conditions a) and b) of Definition 5. 
This means that (X, p) is a topological ar-space. 

On the other hand the class {A,} I G N I, where Ni = 0, 2, 4, ... is an r-system in X, 

but f)Ai = {0} is not closed. Therefore (4) is not satisfied. 
Nl 
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аг-ПРОСТРАНСТВА И НЕКОТОРЫЕ ИХ СВОЙСТВА 

1§ог 2 и г с а к 

Р е з ю м е 

г-пространство (X, ^) называется аг-пространством, если для всяких подмножеств А, В, С, 

О множества X таких, что А^В, С^^ и В, ^ не являются замиканиями того самого подмножест­

ва X, имеет место соотношение 

(АиВ)^(Си^). 

аг-пространства тоже являются обобщением топологических пространств. 

В настоящей работе изучаются некоторые свойства а г-пространств и условия разложимости 

этих пространств на топологические пространства. 
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