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ar-SPACES AND SOME OF THEIR PROPERTIES

IGOR ZUZCAK

In [2] the author has introduced the notion of an r-space and has shown that
topological spaces are special cases of r-spaces. It is well known that if X is
a topological space, then
) the closure of the union of two subsets of X is the union of their closures.
In the present paper there are studied r-spaces satisfying properties analogous to
(1) for some subsets of X and some conditions of a decomposition of such r-spaces
into topological spaces are given.

We shall use the notation from [1] and 2* will denote the class of all subsets of X.
The notation A = B means that A is a subset of B and if A is a proper subset of B
we write A < B. Specific terms will be explained when used for the first time.

1. r-spaces

In [2] the notion of an r-space was introduced:
Let X be a non-empty set and g be a relation on 2* satisfying
R;) for each subset A of X there is a subset B of X such that ApB
Rz) ﬂQﬂ .
R;) if ApB, then AcB
R,) if AgB, then BgB
Rs) if A ¢ B and BgB, then there is a subset C of X such that AgC and Cc B
R¢) if ApB, then there is no subset C of X such that CoC and A c CcB.

Then g is called a relation of closure on 2. The pair (X, @) is called an r-space if X
is a nonempty set and g is a relation of closure on 2%, If (X, @) is an r-space and for
subsets A, B of X we have ApB, then we say that B is a closure of A. Aset A c X
satisfying ApA is called a closed set.

To simplify the notation we often refer to the r-space X instead of to the more
proper form (X, o).

Remark 1. If (X, @) is an r-space, then the class 5 ={A = X: ApA} of all
closed subsets of X has the following properties
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Q: 0, XeT
Q,: foreach A c X and each B € 7 such that A c B there is a minimal element C
of the class {(Me.7: AcMcB}.
Now let X be a nonempty set and 7 be a class of subsets of X satisfying €2, and
€,. Then, as shown in [2], the relation ¢ defined on 2* by

(4) ApB iff B is a minimal element of {Me7: AcMc B}

has the properties Ri—Rg, (X, @) is an r-space and 7 is precisely the class of all
closed subsets of (X, o).

Remark 2. From Example 1 of [2] it follows that a subset A of an r-space X
may have more than one closure.

At the beginning of this paper we considered the condition (1) in connection with
topological spaces. Our aim now is to generalize this condition to r-spaces.

Suppose first that (X, g) is an r-space. By definition of the r-space we know that
if A, B are subsets of X, then ApB means that B is a closure of A. Therefore the
condition (1) can be described in the following way:
@) if for the subsets A, B, C and D of X we have ApB and coD, then

(AuC)p(BuD).

Now we shall study r-spaces satisfying (2) for some subsets of X.

In b) of Theorem 9 of [2] it was shown that if (X, ) is an r-space, A, B and C
are subsets of X such that A € B < C and ApC holds, then also BoC holds. From
this we have the following statement

Corollary 1. If (X, @) is an r-space and for the subsets A, B, C and D of X the
relations ApB, CoD and B c D hold, then (AuC)o(BuD).

From this corollary it is clear that if (X, o) is an arbitrary r-space, then for some
subsets A, B, C and D of X the condition (2) is satisfied. Now we shall show that
in some r-spaces (X, o) the condition (2) cannot be satisfied for all subsets A, B,
C and D of X.

Lemma 1. Let (X, o) be an r-space. Let A, B, C and D be subsets of X satisfying
ApB and CoD. If (AuC)o(BuD) holds, then either A# C or B=D.

Proof. Suppose that the lemma is false, i.e., ApB, CoD, (AuC)o(BuD),
A=C and B#D hold. This means that Ap(BuD), since we have
(AuC)e(BuUD). By a) of Theorem 9 of [2] we have D¢ B, which means that
B = (BuD).But AgB, Ap(BuD) and B = (Bu D) contradicts the condition Re.

From this there follows immediately

Lemma 2. Let (X, o) be an r-space. If for the subsets A, B, C and D we have
ApB, CoD, A =C and B# D, then (AuC)o(BuD) does not hold.

By Lemma 1 we may consider if we want to study r-spaces, condition (2) only if
either A# C or B=D. But by Corollary 1 the condition (2) for B= D always
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holds. So it seems to be natural to study r-spaces (X, o) satisfying the following
condition

(2a) if AgB, CoD and A+ C, then (AuC)po(BuD).

It is easy to see that if an r-space is a topological space, then also the condition (2a)
is satisfied. Our next theorem will show that the converse of this statement is also
true.

Theorem 1. Let (X, o) be an r-space and let the relation of closure o of this
r-space satisfy the condition (2a). Then (X, @) is a topological space.

Proof. To prove that an r-space (X, @) is a topological space it suffices to show
that g is a closure operator on X (see [1]). Thus we must show that each subset of X
has only one closure and that o satisfies the Kuratowski closure axioms.

First we shall show that for each subset M of X there is only one subset N of X
such that MpN. Suppose that this is not true, i.e., there is A = X such that AgB,
ApD and B# D, which implies that Ag(BuD) does not hold. Since A has two
closures B and D such that B# D, then A cannot be closed. Therefore A # B.
Since ApB, then by R, there is BoB and by R; we have A c B, hence we have
ApB, BpB and A # B. Then by (2a) it follows that (A u B)p(BuD) which means
that Bo(BuD). From BgB and Bo(BuD) it follows that B=BuD by R. Since
AoB holds, B=BuD implies Ag(BuD), which contradicts the fact that
Ao (BuD) does not hold.

Now let ApB and CgD hold.

If A# C, then (AuC)e(BuD) follows from (2a).

If A=C, then B=D, since each subset of X has only one closure. By
Corollary 1 we have again (AuC)o(BuD).

This means that the condition (1) is satisfied. The remaining Kuratowski closure
axioms follow immediately from R;, R, R; and Rg.

Now let X be an r-space, J the class of all closed subsets of X and g is the
relation of closure of this r-space. The property (2) can be interpreted also in the
following wéy: for each B, D € J there holds that

(2b) if A, C are subsets of X satisfying ApgB and CgD, then (AuC)o(BuD).

But from Lemma 1 it follows that the condition (2b) can be considered for B, D,
where B# D only if B and D are not closures of the same set.

In the remaining parts of this paper there are studied r-spaces called ar-spaces,
satisfying for each B, D € T, where B, D are not closure of the same set, the
condition (2b).

For easy reference we introduce the following notation.

Definition 1. Let T be the class of all closed subsets of an r-space X and
wc T X T be a relation satisfying the following condition
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3) AwB iff A# B and there is no subset C of X such that CoA and CoB.

Then the relation w is called an r-relation of the r-space X.
We are now ready to define the notion of an ar-space.

Definition 2. Let (X, o) be an r-space and w the r-relation of (X, o). Suppose
that the following condition is fulfilled

R,) if ApB, CoD and BwD, then (AuC)p(BuD).

Then the r-space (X, o) is called an ar-space.

Remark 3. If (X, g) is an r-space and the condition (2a) is satisfied, then the
condition R is satisfied too. This follows from the fact that (X, o) satisfying the
condition (2a) is by Theorem 1 a topological space.

Now we give two examples illustrating relations between the above described
types of r-spaces. First we give an example of an ar-space.

Example 1. Let R, be a real Euclidean 2-space (see [1]) and let N be the set of
all positive integers. Define the following sets:

Ai={(x,)’):X=i,y€(0,°°)}, ieN
Bi={(x7 Y): xe(O, oo), y=j}’ ]GN

A=

—Cg

A, B={JB, and X=AUB.
1

Let us define a relation o on 2% as follows:

a) if Mc A, Ny={ieN: AinM#@} and A, = [ Ai then MpAx

ieN1
b) if McB, N;={jeN: BAM#0) and By = |J B; then MoBy

jeN2
c) if M& A and M¢& B, then MpoX
d) if M =@, then MoM.

It is easy to see that (X, o) is an ar-space. The class of closed subsets of X consists
of:

1) 9, X

2) all subsets of X of the form [J A;, where N'c N
ieN’

3) all subsets of X of the form U B;, where N"c N.
jeN”

r-spaces are not necesserily  ar-spaces as shown by the
following example.

Example 2. Let X={a, b, c} and let ¢ be the relation on 2% defined by:
{a}of{a, b}, {a,b}e{a, b}, {c}o{c}
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{a}o{a,c}, {a,c)o{a,c}, Do9
{b}o{a, b}, {b,c}oX, XoX.

It is clear that (X, @) is an r-space. The following sets are closed subsets of this
r-space: @, X, {c}, {a, b} and {a, c}. Next we see that

{a}o{a, b}, {c}o{c} and ({a, b}w{c}.
On the other hand

{a, c}o{a, b, c} doesnothold.

This means that the condition R; is not satisfied.

In the following two sections of this paper we assume that there is given an
ar-space X, the relation closure g, the r-relation w and the class I of closed
subsets of this ar-space.

2. Some properties of ar-spaces

First we give two statements proved in [2]:
K,;: Let A, B be closed subsets of X. Then A, B are closure of the same set iff A,
B are closures of AnB.
K,: Each closed subset of X has only one closure.

Lemma 3. Let A, B and C be subsets of X such that A < B, AgoC and BwC.

Then Cc B.

Proof. Since B is closed, then BoB. Thus we have BpoB, AgoC and BwC.
Therefore (AUB)p(BuUC) by R;. But A =B and so Bo(BuC). The relations
BB and Bo(BuC) imply B=BuC, hence Cc B.

We know that A is a closed subset of x iff ApA. Therefore if A and B are closed
subsets of X we have ApA and BpB. If we assume AwB, the by R; we have
(AuB)p(AuUB), which means that AUB is closed. We thus get the following
result

Theorem 2. If A and B are closed subsets of X such that AwB, then AUB is
closed.

Theorem 3. Let A and B closed subsets of X and A+ B. Then AN B is closed iff
AwB.

Proof. First we show that if AnB is closed, then AwB. Suppose ANB is
closed, A # B and AwB is not true, i.e., A and B are closures of the same set. Then
by K, the sets A and B are distinct closures of AnB, which is impossible, since
ANB is closed and has only one closure.

There remains to be shown that if A# B and AwB, then AnB is closed. If
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AwB, then at least one of the sets A and B is not a closure of AnB. We may
suppose that A is not a closure of AnB, i.e., (AnB)pA does not hold. Therefore
by Rs there is a closed set C such that (AnB)oC and C < B. From (AnB)oC it
follows that AnB = C by R;. From C = B we have BNnC = C and since AnB c C,
then (AnC)=An(BNnC)=(AnB)nC=AnB.

We thus have (AN C)pC, A is closed and AwC. By virtue of Lemma 3 we see
that C< A and therefore AnC = C, but this means that AnB is closed, since
ANB=AnNnC=C and C is closed.

3. Complete r-systems

Definition 3. A class  of closed subsets of X is called an r-system in X iff AwB
for each A, Be o, A+ B.

If A is an r-system in X, then by Theorems 2 and 3 for every A, B € & both the
sets AUB and AN B are closed. We may also wonder whether or not for A, B € o
we have AUB € o or AnB € &{. This question is answered in the following section
of the paper.

Let 11 be the class of all r-systems in X. The class 1l is partially ordered by the
relation of inclusion c. According to Hausdorff’s maximal principle there exists the
family @ of maximal chains in 11 such that each chain in 1l is contained in an
element or @. From the definition of r-systems it is not hard to see that if I, is
a chain in 11, then the union of all elements of 11 is itself an element of 1l. Therefore
if 11y is an element of @, then the union of all elements of 11, is a maximal element
of 1. Each maximal r-system we call a complete r-system in X. It is evident that to
every r-system &; in X there is in X at least one complete r-system &, such that
A1 A,.

Remark 4. If A is a closed subset of X, then by Corollary 1 it is clear that the
class {), A, X} is an r-system. From this it follows that for each closed subset A of
X there is a complete r-system & in X such that A € «.

Theorem 4. Let o be a complete r-system in X. If {A;}ses = & and S is a finite
set, then | JA, € of and also [ A, e A.
N S

Proof. It suffices to prove that for each A, B e A there is AnBe o and
AUBe 4.

First we show AnB e &. Suppose this is not true, i.e., AnB ¢ &f. Since o is
a complete r-system there is Ce &f such that (AnB)wC is not true. Hence
AnB# C and AnB and C are closures of the same set. This implies that AnB
and C are closures of (AnB)nC. Next it is clear that (ANB)NnCcAnCcC.
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Since A, Ce A it follows from Theorem 3 that AN C is closed. This means that
ANC=C and therefore Cc A. Analogously it is clear that C< B and hence
Cc(AnB). From the fact that AnB and C are closed sets, Cc AnB,
(AnNBNC)pC and (AnBnC)p(AnB) it follows that C=(AnNB) this is
a contradiction, since C+ AnB.

There remains to be proved that if A, Be &, then AuBe . Let C be an
arbitrary element of «. If AUB = C, the proof is completed, since AUB € .

Suppose now that AuB# C. We shall show that Cw(A uB). To prove this by
Theorem 3 it suffices to show that (AuB)nC is closed. However, A, B and C are
elements of &/ and hence ANnC and BN C are also elements of /. This follows
from the first part of this theorerp. Using the fact that (AuB)NC=
(AnC)u(BNC), we see that (AuB)NC is a closed set.

Hence Cw(AuUB) for each Ce & — {AUB} and A UB must belong to & by the
maximality of .

Theorem 5. Let X be an ar-space satistying the following condition:
(4) for each r-system {A.},cs in X the set [)A, is closed.
S

Then if o is a complete r-system in X, the intersection of any number of elements
of o belongs to 4A.

Proof. Let o be a complete r-system in X. Let {A;};es = & and let A =[] A,.
S
Analogously to the proof of the previous theorem it suffices to show that if C e o
and A#C, then ANC is closed. But AnC=[)A,nC and {A,};csU{C} is
N

a r-system in &. Therefore by (4) AnC is closed.
Remark 5. Let X be ar-space given in Example 1. Let

9'1={A - U As: N’gN}u{O, X}

ieN’
and
.072={B = U B; N’gN} u{d, X}
jeN’
be classes of closed subsets of X.

From definition of the sets A;, B;, i, j=1, 2, 3, ... it follows that J; and 7, are
complete r-systems in X and each r-system in X is either a part of- J; or a part of
T,. On the other hand it is clear that both pairs (X, 1) and (X, ) are topological
spaces, where J; and J, are their classes of closed sets. This means that the
ar-space X satisfies the condition (4).

Now consider an r-space X and let 7 be the class of closed subsets of X. If for
each closed subset A of X we denote
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-O/-A = {@, A, X}7
then it is clear that (X, J4) is a topological space.

Definition 4. The topological space (X, Ta) is called a trivial topological space
for the r-space X. A topological space (X, 7') such that 7' < 7 is said to be
a topological space for the r-space X and 9’ a topology for the r-space X.

From Remark S it follows that there is an r-space having the following property:

There is a class {7,}scs of topologies for the r-space X satisfying
a) for each s € S there is no topology 7’ for X such that 7, 7'

b) if 7' is a topology for X, then there is s € S such that 7' < 7.

Since for each A € 7 there is a trivial topology for X containing A, then | J.7, = 7.
S
It is also clear that for each s € S, (X, 7;) is a topological space.

Definition 5. Let X be an r-space and 7 be the class of all closed subsets of X. If
there is a class {7, }; s of topologies for X satisfying a) and b), then X is said to be
a topological r-space.

As an immediate consequence of Theorems 4 and S5 and Definition 5 we have
the following

Corollary 2. Each ar-space satisfying (4) is a topological r-space.
Finally we give an example to show that there is a topological ar-space which
does not satisfy the condition (4).

Example 3. Let X={0,1, 2, 3,4, 5, ...}. Consider the following subsets of X:

for i=1,3,5,7,... let A={0,i,i+1,i+3,i+5,..),
for i=2,4,6,8,... let Ai={0,i,i+1,i+2,i+3,...}
andAo=X.

In the following we shall show that there is an ar-space (X, o) such that
a) T ={0, Ao, A1, Az, As, ...} is the class of all closed subsets of (X, o)
b) (X, o) is a topological ar-space, but does not satisfy (4).

Let M c X and N be the set of all positive integers. Define a relation g on 2* as
follows
a) if there are at least two elements i, je {1,3,5,7, ...} suchthati#j, i, je M and
k=inf{p e N: pe M}, we put

MA«x-: if k is odd
MopA: if kis even

b) if there is only one odd positive integer i such that i € M, then if k =inf{p € N:
p € M}, we put

MQAk
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c) if M#{0} and M contains only elements of {0,2,4,6, ...}, then if k=
inf{ie N: ie M}, we put

MopA«
and MpA, for p<k, where p is odd
d) if M ={0}, then
MgA: for k=1,3,5,7,..
e) fod and XpoX.

Ap |As | As | Ac | A2 Ao
e _lal_
HE
———————————————— fT*—r—j
1 L]8]
——————————— T -1t
| | | |
AREBRE
———————————————— A
b RO RHEHI IR
A, I JAsl |Agl A¢l
_________________ Ol /I T O T W NS
Fig. 1

From the definition of ¢ and from Figure 1 it is clear that:

1) the conditions R;—Rg are satisfied;

2) if i, je{l1,3,5, ...}, then A; and A; are closures of the set {0} and therefore
AiwA| is not true;

3)if i, je{0,2,4,6,...} and i<j, then A;c A;; :

4) ifief{1,3,5,...} and je {0, 2, 4, 6, ...}, then either A; and A; are closures of
the same set, i.e., A;wA; is not true, or A;c A;.

From 2), 3) and 4) it is evident that for each closed subset A; and A; of X, where
i+ j, either AiwA, is not true or A; c A, resp., A; < A; holds. From this and from
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Corollary 1 it follows that the condition R; is satisfied too. Hence (X, o) is an
ar-space and 7 = {@, A, A1, Az, As, ...}.
Now let for each i€ {1,3,5,7,...}

E = {ﬂ, Ai’ Ai—l, Ai—37 Ai—s, ceey AO}'

It is easy to verify that
— for each i€ {1, 3,5, ...} the class 7; is a topology for X
— the family {J:}icq,3 5 ) satisfies the conditions a) and b) of Definition 5.
This means that (X, @) is a topological ar-space.
On the other hand the class {A;}ic~,, where N1 =0, 2, 4, ... is an r-system in X,

but [)A: = {0} is not closed. Therefore (4) is not satisfied.
N1
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ar-ITIPOCTPAHCTBA U HEKOTOPBIE UX CBOMCTBA
Igor Zuzcak
Pesiome

r-npoctpaicTBo (X, @) Ha3bIBaeTCst r-NMPOCTPAHCTBOM, €CIIH ISl BCIKMX MOAMHOXeCTB A, B, C,
D mHuoxectBa X Takux, 4to ApB, CoD u B, D He ABAsSitOTCS 3aMUKaHUSIMH TOTO CAMOT'O NMOJMHOXECT-
Ba X, UMEET MECTO COOTHOUIEHHE

(AuB)g(CuD).

ar-npoCTpaHCTBa TOXE SABIAKOTCA 0606111€HM6M TOMOJIOTHYECKUX MPOCTPAHCTB.
B HaCTOHmeﬁ paGOTe HM3y4aroTCAd HEKOTOPHbIE CBOWCTBa ar-nmpoCTpaHCTB U YCIIOBUA pa3sIOXUMOCTH
3TUX NMPOCTPAHCTB HA TOMOJIOTHYCCKUE MPOCTPAHCTBA.

264



		webmaster@dml.cz
	2012-08-01T00:49:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




