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ON QUASIIDENTITIES
OF TRANSITIVE QUASIGROUPS

JAN DUPLAK

It is well known that a quasigroup (Q, ) is an isotope of an abelian group iff
(Q, -) satisfies the condition of Thomsen a-b=d-e and a-c=f e implies
d-c=f-b and (Q, -) is an isotope of a group iff (Q, -) satisfies the condition of
Reidemeistera-b=c-d,a-e=c-fand x-b =y-d implies x-e =y -f. Similar to
these conditions are the necessary and sufficient conditions we give for a quasig-
roup (Q, -) in order that the quasigroup be quasilinear. Such quasigroups are
generalizations of linear ones (and also T-quasigroups) that were studied by
J.Jezek and T. Kepka in [6] (P. Nemec and T. Kepka in [8, 10]).

This work was inspired by [4] where the author studied invariants of an isotopy
(a, B, 1) of a group, where at least one a or § is a quasiautomorphism of the group.

1. Notations and preliminaries

If (Q, -) (=Q if it does not lead to misunderstanding) is a quasigroup, then
define a\b =c iff a=c-b iff c\a=b. Then (Q, /), (Q, \) are called the inverse
quasigroups to (Q, -). For any a € Q, L., R., T, will be the translations by a, i.e.

Lx=a-x, Rx=x-a, T.x=x\a forall xin Q.
Then
L;'x=a\x, R:'x=x/a, T.'x=al/x.

We shall use the following notations for a quasigroup (Q, -):
J={L,R, T,L7', R}, T'}*;
QCX,'X, ...,"X)={"X,, ' X,,..."X,,: € Q,i€{0, 1, ..., n}}

for some fixed ‘Xe 7, ie{0, 1, ..., n} (thus ‘X,, is a translation of Q).

* The notations R., L., T., I etc. will be used only if the basic operation is written (-). We shall write
RS, LS, T3, J° etc. when another symbol (say o) is used.
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Let (Q, o) be a group and ¢(v) its automorphism (antiautomorphism). Then we
shall say that L@(LSy) is a quasiautomorphism (antiquasiautomorphism) of the
group (Q, o). In [1] it is shown that if y = L3¢ is a quasiautomorphism of (Q, ),
then there exists an automorphism & of (Q, o) such that y = R$&. Analogously, for
any antiautomorphism v there exists an antiautomorphism 7 such that LSy = Rn.

Theorem 1.1. Let (Q, o) be a group with the identity e. Let 8, n be fixed
permutations of Q and let y be an arbitrary element in Q. Then
(i) RS6=08R3, (dually L6 = 08L3y,) implies that n is an automorphism and 8 is
a quasiautomorphism of (Q, o) such that 5=L3%n ';
(i) RS6=0L;, implies that n is an antiautomorphism and & is an anti-
quasiautomorphism of (Q, o) such that 6 =R3.n""
Proof. By thc assumption, dxoy = 8(xony) for all x, y in Q. If x=¢ (e is the
identity of (Q, o)), then deoy = dny, i.e. L3, = én, whence § = L3.n '. Further, for
every x, y, z in Q we have

8(xon(y02))=08x0(yoz)=(8x0y)oz=08(xony)oz = 8(xonyonz).

If again x = e, then n(yoz)="nyonz, i.e. n is an automorphism of (Q, o). (ii) The
proof is similar.

Let a group (Q, o), with the identity e, be an isotope of a quasigroup (Q, -) by
the rule x-y=axo.fy. It is easy to verify that for every x, y, z€ Q,

(1.1) L,=L%B8, R,=R%}a, T.=p7'IL: 'a, IR,=L5 I,
where the map I: Q— Q is defined by xoIx=¢ and z '=1Iz.

Definition 1.1. Let (Q, o) be a group and let a, 8 be permutations of Q.
A quasigroup (Q, -), where

(1.2) . (-)= (o),

is called quasilinear if at least one of a, 3, o', a™'B is an quasiautomorphism or
antiquasiautomorphism of (Q, o). If a(f) is a quasiautomorphism of (Q, ), then
(Q, ) is called the left-hand (right-hand) linear. A quasigroup that is both, the
left-hand and the right-hand linear is called linear. If moreover (Q, o) is an abelian
group, then (Q, ) is called T-quasigroup.

2. Quasiidentities of transitive quasigroups

Definition 2.1. Let m =1 be any integer and let {8}, Ao, Ay, ..., A be sets of
mappings. We shall say that { = (Ao, A1, ..., A.) has the property 8(n) (or & is
8(n)) (1<n<m) if for an arbitrary integer t and for every @..o€ Ao,
@r1€ Arvty ooy Qran-1€ Arrny there exist Qsn € Ariny ..y Qram € Arrm (Operation +
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takes mod (m + 1)) such that Qo@;...@m=8. If {8}, Ao, Ay, ..., A,., are sets of the
mappings Q— Q, then we shall say that the set B=Q(A,, Ay, ..., An)=
{Qo@i1...Qm: @i€A;, O0<ism} has the property 8(n) (or B is 8(n)) if
(Ao, Ay, ..., An) has the property 6(n). If A (resp. B) is 6(n) and § is the identity
map, then we write s (or B, resp.) is id(n).

Lemma 2.1. If a set A is 6(n), then «f is 8(s) for any 1<s<n.
Proof. Obvious.

Definition 2.2. Let A be any (non-empty) index set and let {q;: ie A} be
a collection of mappings ¢:. The collection will be called disjoint if @:(a)= ¢;(a)
implies i =j.

Lemma 2.2. Let (Q, -) be a quasigroup, X, Y € 7 and let k be a fixed point in Q.
Then the following are equivalent

(i) Q(X,Y) is disjoint; ®
(i) O(X, Y, Y', X is id(3);
(iii) Q(X, V)={XiY.: reQ};
(iv) O(X, Y)={XY:: re Q}.

Proof. (i)— (ii)— (iii) and (ii) — (iv) are obvious. (iii)— (i). Let X, Y,r = X. Y.r.
There exist p, s € Q such that X, Y, = XiY, and X. Y, = XiY,. Then X,Y,r = X, Y.r,
whence p =s. The proof of (iv)— (i) is dual.

Lemma 2.3. Let 6 be a fixed permutation of a quasigroup (Q, -). Denote
A=0("°X,'X, ...,"X) for some ‘XeT,ie{0,1,2,...,n}, n=2. Then

(i) s is 6(n) implies that Q('X, ‘*'X) is disjoint forallie {0, 1,2, ..., n —1};
(ii) o is id(n) implies that Q('X,'"'X, ..., “*"X) is id(n) for every
te{0,1,...,n};
(iii) & is id(n) implies that Q('X, **'X) and Q(**'X ™', ‘X~")** are both disjoint
for allie {0, 1, ..., n} (the operation + in the above indices takes mod(n +

1)).
Proof. (i) Without loss of generality assume i = 0. Let k € Q be fixed. For any a,
b € Q there exist ¢, c3, ..., €., ¥ € Q such that

0X, 1X, 2X., ’X.,..."X., = 8 =X, 'X, X, *X.,..."X....

Thus °X, 'X, =°X, 'X, and according to Lemma 2.2 (iii)— (i), Q(°X, 'X) is
disjoint. (ii) The statement follows from the equivalency

X ' X "X, =1 iff X, XL, X, =1
(iii) Easily follows from (ii) and (i).

**If *'X =R, then *'X™! means R, etc.
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Lemma 2.4. Let (Q, -) be a quasigroup and let X, Y € 7. Then the following are
equivalent
(i) O(X,Y) is disjoint
(i) Q(Y™', X™) is disjoint;
(i) Q(X™", X)=Q(Y, Y™ are disjoint:

Proof. (i)—(ii). By Lemma 2.2, Q(X, Y, Y !, X™") is id(3) and by Lem-
ma 2.3(ii), Q(Y™!, X~ ") is disjoint. (ii)— (iii). Again by Lemma 2.2, Q(Y™', X',
X, Y) is id(3), hence Q(X™', X) and Q(Y, Y') are disjoint. For any a, b and
fixed k € Q there exists ¢ € Q such that Yi'X.'X,Y.=1. Whence X;'X, = Y. Y’
and according to Lemma 2.2(i)— (iii), Q(X~', X)=0Q(Y, Y™"). (iii)— (i). In the
equation X;'X, = Y. Y ' three of the indices can be arbitrary, therefore Q(X ', X,
Y, Y7') is id(3), thus Q(X, Y) is disjoint.

Corollary. If Q(X, Y) is disjoint, then Q(X™ ", X), Q(X, X™"), Q(Y, Y') and
Q(Y™, Y) are all disjoint.

Lemma 2.5. Let (Q, -) be a quasigroup. Then the fact that Q(X, Y) and
Q(Y™, Z) are disjoint implies that Q(X, Z) is disjoint.

Proof. By Lemma 2.4, Q(X™', X)=Q(Y, Y ) and Q(Y, Y )=0Q(Z,2Z7")
are disjoint, whence Q(X', X)=Q(Z,Z') are disjoint, therefore by
Lemma 2.4 (iii))— (i), Q(X, Z) is disjoint.

Corollary 1. Let (Q, -) be a quasigroup. If any two of the conditions

Q(X, Y) is disjoint; Q(X, Z) is disjoint; Q(Y ™', Z) is disjoint (or Q(X, Y) is
disjoint; Q(Z, Y) is disjoint; Q(X, Z™") is disjoint) are satisfied, then they all are
satisfied.

Corollary 2. Let (Q, -) be a quasigroup. If Q(X, X, Y™', X™") is id(3), then
Q(Y, X) is disjoint.

Proof. By Lemmas 2.3 and 2.4, Q(Y, X ') and Q(X, X) are disjoint, therefore
by Lemma 2.5, Q(Y, X) is disjoint.

Lemma 2.6. Let (Q, -) be a quasigroup. If O(X, Y, X ") is id(2) for X, Ye .7,
then Q(Y, Y) is disjoint.

Proof. By Lemma 2.3, Q(Y, X ') and Q(X, Y) are disjoint, hence Q(Y, Y) is
also disjoint.

Theorem 2.1. Let (Q, -) be a quasigroup. Then the following are equivalent
(i) Q is a transitive quasigroup;
(i) a-b=c-d,a-e=c-fand x-b=y-d implies x-e=y-f (i.e. the condition of
Reidmeister holds);
(iii) Q(X™Y, X) is disjoint for some Xe T ;
(iv) Q(X™Y, X) is disjoint for all xe J.
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Proof. (i)« (ii). See Theorem 11.3 in [1]. (ii)— (iii). Let R;'Rya=R;'R.a =rc,
i.e. ab=cd, ae = cf. For every x € Q there exists y € Q such that R;'R,x =y, i.e.
xb=yd. By the condition of Reidemeister xe=yf, i.e. R;'R.x=y, hence
R;j'R.x = R7;'R,x for all x € Q. (iii)— (ii) is obvious. (iii)— (iv). It is known that all
parastrophic quasigroups of a transitive quasigroup are also transitive. Now apply
(i)— (iii) of the theorem and Corollary of Lemma 2.4. (iv)— (iii) is obvious.

Theorem 2.2. Let a loop (Q, o) be an isotope of a quasigroup (Q, -) by (1.2).

Then the following are equivalent

(i) rbra=rd-cand x=x—xb-a=xd-c;

(il) Q(R, R) is disjoint;

(iii) Q(T, L) is disjoint;
(iv) (Q, o) is a group and « is its quasiautomorphism.

" Proof. (i)— (ii) is obvious. (ii)— (iv). By Lemma 2.4, (Q, -) is transitive, hence
(Q, ) is a group. Let b, r € Q be fixed. For every a, ¢ € Q there exists uniquely
determined d such that rb-a=rd:c. Since Q(R, R) is disjoint, R,R, = R.R, and
according to (1.1)

Rg.aRgsa = Rg.aRg,0,
whence
R‘;sc,aaa = aRgdulﬁb-

If we put Ifcofa=x and Bd.IBb =nx, then n is a permutation of Q. Thus for
every x, R%a = aR%: and according to Theorem 1.1 (i), a is an quasiautomorphism
of (Q,s). (iii)—(iv). The shortened proof: Q(T,L,L™, T™') is id(3), thus
according to (1.1),

B 'IL°al°’BB'L°a”'L°IB =1
(indices are omitted), whence
BIL°aL°L°a'L°If =1, IL°aL’a~'L°I=1,
Leal°a™'L°=1, L°al’a™'=1, L°a=al".
Now, apply Theorem 1.1(i). (iv)— (ii) and (iv)— (iii) are obvious.

Corollary. A quasigroup (Q, -) is left-hand linear iff the identity (xy-u)\zy =
(xs-u)\zs holds.
Similarly we prove the following Theorems 2.3—2.7.

Theorem 2.3. Let a loop (Q, ) be an isotope of a quasigroup (Q, -) by 1.2.
Then the following are equivalent

() xy=rt, xz=ru, ta=ud—>ya=1zd;
(ii) Q(R, T) is disjoint;
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(iii) Q(T, L™") is disjoint;
(iv) (Q, ) is a group and af™" is its quasiautomorphism.

Theorem 2.4. Let a loop (Q, o) be an isotope of a quasigroup (Q, -) by 1.2.
Then the following are equivalent

(i) ar-b=cr-dand x=x—>dx-b=cx-a;
(ii) Q(R, L) is disjoint;
(iii) Q(T, R) is disjoint;
(iv) (Q, o) is a group and a is its antiquasiautomorphism.

Theorem 2.5. Let a loop (Q, o) be an isotope of a quasigroup (Q, -) by 1.2.
Then the following are equivalent

(i) a-s=c-t,s'b=t-d,y-b=z-d—>a-y=c-z;
(ii)) Q(L, R™) is disjoint;
(i) Q(T, T) is disjoint;
(iv) (Q,\) is the left-hand linear quasigroup;
(v) (Q, ) is a group and af~" is its antiquasiautomorphism.

Theorem 2.6. Let a loop (Q, s) be an isotope of a quasigroup (Q, -) by 1.2.
Then the following are equivalent

(@) rs=x-y, rt=x-z,a-s=c-toa-y=d-z;
(i) Q(L,t) is disjoint;
(iii) Q(T, R™) is disjoint;
(iv) Q(L7%, R) is disjoint;
(v) (Q, o) is an abelian group i.e. aa™' =
(Q, ).

Summarizing results we get

BB ' =1 is the antiquasiautomorphism of

Theorem 2.7. A quasigroup (Q, -) is quasilinear iff Q(X, Y) is disjoint for some
X,YeT, X#+#Y' and (X,YV)¢{(R, T, (T,R™"), (L, T), (T',L™),
(R7, L), (L7', R)}.

Theorem 2.8. Let (Q, o) be a group isotopic to a linear quasigroup (Q, -). Then
the following are equivalent

(i) Q(L', R’) is disjoint for some i, je {1, —1};
(i) (Q, o) is an abelian group;
(iii) (Q, -) is a T-quasigroup.

Proof. (i)— (ii). Since (Q, -) is linear, according to Theorem 2.2 (iv) — (ii) and
its dual theorem, Q(R, R) and Q(L, L) are disjoint. Further, by Lemma 2.4 (i)—
(iii), Q(R™', R)=Q(R,R™) and Q(L™',L)=Q(L,L™). Since Q(L', R’) is
disjoint, Q(L~*, L")=Q(R’, R™). Thus Q(R™', R)=Q(L™',L). Now apply
Theorem 4 of [4]. (ii)— (i). By Theorem 2.6, Q(L, T) and Q(T, R™") are disjoint,
thus Q(L, R™") is disjoint.
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Corollary. Let (Q, -) be a quasigroup. Then (Q, -) is a T-quasigroup if and only
if Q(R, L), Q(L, R) and Q(L™', R) are all disjoint.
Proof. Use Lemma 2.5 and Theorem 2.8.

Theorem 2.9. A left-hand linear quasigroup is idempotent if and only if it is
right-hand distributive.

Proof. Let (Q, ‘) be a left-hand linear quasigroup. For arbitrary x, y, r, de Q
there exists ¢ such that ry-x =rd-c andso zy-x = zd - ¢ for all z in Q. In particular,
yy x=yd-c and if (Q, ) is idempotent, then yx-yx=yd-c and zx-yx=1zd-c,
therefore zy-x = zx-yx. The converse is obvious.

Corollary 1. A quasigroup is an idempotent left-hand linear quasigroup if and
only if it is a transitive right-hand distributive quasigroup.

Proof. Let (Q, -) be a transitive right-hand distributive quasigroup. Then for
everyx, y, z, xy-z=xz-yz,i.e. R;'R,, = R)R;", whence Q(R™', R)=Q(R, R™).
According to Theorem 2.1 (i)— (iv), Q(R™!, R) and Q(R, R™) are disjoint. Thus
by Lemma 2.4 (iii)— (i), Q(R, R) is disjoint.

Recall that a quasigroup is called medial if it satisfies the identity xy - zt = xz - yt.

Corollary 2. An idempotent quasigroup is linear iff it is medial.

Theorem 2.10. Let (Q, -) be a quasigroup. Then the following are equivalent
(i) (Q, *) is medial;
(ii) ar-b=c-rd and x=x—ax-b=c-xd;
(iii) there exist an abelian group (Q, +), its commuting automorphisms ¢, y and
f€ Q such that for all x, yeQ

2.1) X y=@x+yy+f.

Proof. (i)—(ii). Let ar-b=c-rd. There exists m such that b =md. Then
ar-md=c-rd i.e. am-rd=c-rd hence am=c. Thus ar-md=am-rd and also
ax-md=am-xd for all xeQ i.e. ax-b=c-xd. (ii)— (iii). Obviously, (ii) is
equivalent to the condition Q(R™', L', R, L) is id(3). By Lemma 2.3 (iii),
Q(L, R), Q(R, L) and Q(L%, R) are all disjoint. By Corollary of Theorem 2.8,
(Q, +) is a T-quasigroup, therefore there exist an abelian group (Q, +), its
automorphisms @, ¢ and f € Q such that (2.1) holds. If the equation ax-b =c- xd,
is rewritten with + operation, then

@*a+ @of + Yb + @yx = @c + Y*:d + Yf + Yox.

If we put x=e (e is the identity of +), then ¢@%a+ @f + ¥b = @c + Y*d + yf,
therefore @yx = yex. (iii)— (i) is easy. The proof is finished.

It is well known that (i) <> (iii) is Toyoda’s theorem. There are many other proofs
of the theorem, for example in [1], [3], [4]-
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Theorem 2.11. Let (Q, -) be a quasigroup. Then the following are equivalent

(i) ra-b=cr-dand x=x—xa-b=cx-d;
(ii) e-fr=g-rhand x=x—e-fx=g-xh;
(iii) ra-b=g-rhand x=x—>xa-b=g-xh;
(iv) e-fr=cr-dand x=x—e-fx=cx-d;
(v) (Q, -) is a commutative medial quasigroup.

Proof. (i)— (v). Obviously (i) is equivalent to the statement Q(R, R, L™', R ')
is id(3). By Corollary 2 of Lemma 2.5, Q(L, R) is disjoint. By Lemma 2.3,
Q(R, R), O(R, L") and Q(R, L) are all disjoint. If we now apply Corollary of
Theorem 2.8, we get, (Q, -) is a T-quasigroup. Thus (2.1) holds. Obviously
ra-b = cr-b implies xa = cx for all x € Q. If the last equality is rewriten with the +
operation, then @x + Ya = @c + Yx. Put x = e (the identity of +); then ya = gc,
hence @ = y. (v)— (i). Use the commutativity of (-) and Theorem 2.10 (i)— (ii).
(ii) <> (iii). The proof is dual to (i) « (iii). By analogy we do the rest of the proof.

3. Varietes of ty-quasigroups

Definition 3.1. Let M be a non-empty subset of the set {Q(X, Y, Z, U):
X,Y,Z, UeTJ}. A quasigroup (Q, -) is called ty-quasigroup if every s € M has
the property id (3).

Lemma 3.1. Let a quasigroup (P, o) be a homomorphic image of a quasigroup
(Q, ). If (Q, *) is a ty-quasigroup, then (P, o) is also t-quasigroup.

Proof. Let ¢ be a homomorphism of Q onto P. From @(x-y)= @xo.@y we have
X% =X, p ' forevery Xe 7. Let Q(X, Y, Z, U)be id(3). Then 1 = X,Y,Z.U,,
where three of the indices can be arbitrary. Obviously also

1= X0 @Yo ' 9Z.9 ' QUsp ' = X5 Y s Z 5 Uga,

where every three of the indices ., @», @., @4 can be arbitrary. Thus
P(X°, Y°, Z°, U®) is id(3). The proof is finished.

A condition Q(X, Y, Z, U) is id(3) can be expressed as the quasiidentity in
a quasigroup Q. For example Q(R, R, R™', R7™") is id(3) is equivalent (see
Lemma 2.2) to the following quasiidentity: ra-b =rc-d and x = x implies xa-b =
xc-d. Thus a class of all t-quasigroups is a quasivariety. It is known (see [9]) that
a class of an algebraic system R, that is quasivariety, is a variety if and only if every
homomorphic image of an R-system is an R-system. As an immediate consequ-
ence of this statement and Lemma 3.1 we have

Theorem 3.1. The class of all tw-quasigroups is a variety.

Theorem 3.2. The variety of all ty-quasigroups possesses a basic which consists
of a finite number of identities.
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Proof. It is known (see [9]) that every variety possessing a basis which consists
of a finite number of quasiidentities has a finite generating set of identities.

4. Some classes of quasilinear quasigroups

A quasigroup word is a formal expression consisting of variables and some of the
three binary operation symbols -, \, /.
Throughout this section we shall use the following notations

(Q, ) — quasigroup;

V={xi: ie A} is a set of variables x;, A is an index set;

Wi, W2, ... are quasigroup words;

V(w) is the set of all variables occurring in w;, V(w;)c V;

wi(x) is a word w; in which exactly one variable symbol x; is replaced by the
variable x, for example, if w;=x1/(x2-xsx1), then wi(x)e {x/(x2:x3x1), Xi-
/(x-x2%1), ...};

wi(x) ~ w;(y) means that if x in wi(x) is replaced by y, then we get w;(y).

Theorem 4.1. Let (Q, -) be a quasigroup that satisfies the following identity
wr (W2 x)=ws-(ws-x).

Let {iy, i, i3} ={1, 2, 3, 4}. If there exists a solution of simultaneous equations
w, =a,, re {1, 2, 3} for arbitrary a,, az, as€ Q, then (Q, -) is a right-hand linear
quasigroup.

Proof. Obviously Q(L, L) is disjoint.

A quasigroup (Q, -) is called B;-quasigroup (see [8]) if it satisfies the identity
x-yz=y-xz. The following theorem shows that the converse of Theorem 4.1 is
false.

Theorem 4.2. Let (Q, -) be a quasigroup. Then the following are equivalent
(i) (Q, -) is a By-quasigroup;
(ii) there exist an abelian group (Q, +) and a permutation a of Q such that for all

x,yeQ, x-y=oax+y.

Proof. See Theorem 13 of [7].

A quasigroup (Q, -) is called left-hand transitive if it satisfies the identity
xy-xz =yz (see [2]). The following theorem shows that there exists a right-hand
linear quasigroup satisfying an identity different from the one in Theorem 4.1.

Theorem 4.3. Let (Q, -) be a quasigroup. Then the following are equivalent
(i) (Q, -) is left transitive;
(ii) there exist a group (Q, o), its automorphism v and k € Q such that for all x, .
yeQ, x-y=Iyxoyyok, where Ix=x"" in the group.
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Proof. (i)— (ii). From the identity we have R..L,R;'=1 for all x, z € Q. Hence
Q(R,L,R™) is id(2). If we apply Lemmas 2.3, 2.6, the dual theorem of
Theorem 2.2, Theorem 2.4, we have x-y = gxoyyok for an antiautomorphism ¢
and an automorphism y of a group (Q, o). If the identity xy -xz = yz is rewritten
with - operation, then

P(@xopyok)op(@xopzok)ok =q@yoyzok,
Pko @Yy o @’ x o Yp@xoP’zo Yk = @yoyz;

if x=y=z=e (e is the identity of (Q, o)), then @koyk=e; if y=z=e, then
@ko@*xoY@x ok =e, whence @’xoP@x=e, @xoyYx=e i.e. @ =Iy. The con-
verse is easy.

Let us note that Theorem 4.2 can also be proved in a similar way.

Theorem 4.5. Let (Q, ) be an elastic quasigroup (such quasigroups satisfy the
identity x - yx = xy - x) in which the map x+~ x-x is Q onto Q. Then the following
are equivalent
(i) Q is a B,-quasigroup;

(ii) Q is left-hand transitive ;
Proof. Use Theorems 4.2 and 4.3.
Other properties of left-hand transitive quasigroups are in [5].

Definition 4.1. Let w;, i =1, 2, 3, 4 be quasigroup words and let A, Be {R, L}.
A quasigroup (Q, ) is called a t-quasigroup if it satisfies the identity

(1) Awi(2)- Byws(t) = Aws(t) - Bywa(z).

If wi(z)~ ws(t), wa(t)~wa(z), then Q is called a t,-quasigroup. If, moreover,
A=L, B=R (A=R, B=L, respectively) and

WI(Z) = Ansz---Axn-n(Z), W2(t) =B,B.,.,...B., z(t),

then Q is called an a, (a B., respectively)-quasigroup.
Thus t, t,-quasigroups are generalizations of a,, B.-quasigroups that were
studied by P. Nemec and T. Kepka in [8], [10].

Theorem 4.6. Let A, B, C, De {R, L} and let a quasigroup (Q, -) satisfy the
identity
(1) Awi(z)- Bywa(t) = Cows(t) - Dywa(2).

Then Q is a T-quasigroup. If A#C or B# D, then Q is a commutative
t-quasigroup.

Proof. Letin (i) all variables, besides x, y, z, t, be replaced by fixed elements of
Q. Then

(i) Aa(z)-B,B(t) = Cy(1)- D,6(z)
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for all x, y, z, te Q and certain permutations a, 3, v, 8 of Q. If (ii) is rewritten
with translations of Q, then

RByﬂ(l)A 1,1(2) = RD,&(:)C;f(l)y
La.a@Ban = Leyw: D,
Rp0Axa = LeynD,o,
Laa@ByB = Rop,s(:Cev,

for all x, y, z, te Q where A’ is the dual symbol of A, etc. These equations are
equivalent, respectively, with the following ones

(iii) (Cx0) 'Rop@ResnAin=1,
(iv) (Diw)'LehoLaawmBin=1,
(v) D;'L&lywRe,0Ax = 607,
(vi) C:'RbpswLaawB, =y

Obviously, every three of the four indices in each of the above equations can be
arbitrary, therefore we can use Lemma 2.3. Then from (iii) and (vi) it follows,
respectively, that Q((C’)™, R™), Q(C™', R™") are disjoint. Since R e {C’, C},
both Q(R™', R™") and Q(R, R) are disjoint. Similarly, from (iv) and (v) we get
that Q(L, L) is disjoint, hence Q is a linear quasigroup. From (v) it follows that
Q(L™', R) is disjoint, therefore by Theorem 2.8, (Q, ‘) is a T-quasigroup. Thus
there exist an abelian group (Q, +), its automorphism @, ¥ such that for all x,
y and some ke Q

4.1) x-y=@x+yy+k.

Now let A=L, C=R. If in (i) all variables, besides x, are replaced by e — the
identity of (Q, +) and then (i) rewritten with + operation we get

o(px+ypa+k)+yb+k=@(pc+yx+k)+ypd+k
for some a, b, c, d. Put x =e, then
oya+ ok + yb+ k=q@’c+ ok +yd + k,
therefore @2x = @yx for all x, hence @ = .
Corollary. Every ti-quasigroup is a T-quasigroup.

Theorem 4.7. Let (Q, *) be a quasigroup. Then the following identities are
equivalent
(i) Awwi(z)- Bywa(t) = Aiwi(t)- B,ws(z), where wi(z)~ wi(t), wa(t)~wa(z) and
V(wi) = V(w2)={x:};
(ii) A.wi(z): Bywa(t) = A,ws(t)- Bywas(z), where wi(z), wa(t), wi(t) and wa(z) are
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such words that if all their variables, besides t, z, are replaced by x,, then we
get wi(z), wa(t), wi(t) and w,(z), respectively, and ws(z)~ ws(t), wa(t)~
W4(Z)-

Proof. A quasigroup (Q, -) that satisfies (i) or (ii) is a T;-quasigroup, hence Q
is a T-quasigroup. (i)— (ii). If (i), rewritten with + operation (see 4.1), then all
variables, besides ¢, z, will be absent. Thus these variables can be replaced in the
same position in words w,(z) and w(¢), etc. by arbitrary variables from V. The
converse is obvious.

Theorem 4.8. Let (Q, +) be a loop isotopic to a quasigroup (Q, -). Then the
following are equivalent
(i) (Q, -) is t,-quasigroup;
(ii) (Q, +) is an abelian group and there exist its automorphisms @, y and a, 3 in
the group generated by the set {I, @, Y} such that a =y and (4.1) holds.

Proof. (i)— (ii). Obviously, (Q, ‘) is a T-quasigroup, hence (4.1) holds. If in
the identity (#;) of Definition 4.1 all variables, besides t, z, are replaced by
elements of Q, then we get

(iii) Aw X, *Xego.. "X (2)* Boo ' Yo, 2 Yo, Yo (£) =
= Auw "Xy 2Xoy... "X, (1) Byy ' Yo 2 Yo,...' Yoo (2)

for appropriate aq, bo, ..., a,, b€ Q,'X, 'Y, ..,’X,'Ye T andforall t, ze Q. Itis
an easy task to show that L.y =yL;. According to (1.1)

Agp ' X 2 X’ Xo,=L2a, By 'Ys, ’Y,...'Ys, =Li
where a, B are products of @, vy, I. Thus from (iii) we have
Lia(z)-L{p(t)=Lia(t)-LsB(z).
If we rewrite this equation with + operation, then

@a + pa(z)+ b+ Yp(t) + k = @a + pa(t) + Yb + Yp(z) + k,
@a(z) + yp(1) = @a(t) + yB(2),

and if z = e (the identity of +), then @a =yg. (ii)— (i). If
a =@yt @yl =@y gy g(e 7 yl),
then we put
S« =R.R}7'L}...RirL’» 'R, T..
Similarly we get Sg. It is not difficult to show that
Sa(z)- Sp(t) = Sa(1)- Ss(2),
for all z, t, hence (Q, ) is a t.-quasigroup.
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Corollary 1. Let (Q, +) be an abelian group. If ¢, y are its automorphisms of
finite orders, then a quasigroup (Q, ), defined by (4.1), is a t,-quasigroup.
Proof. If m, n are the orders of @, ¥ respectively, then o™ '=yyp " '=1.

Corollary 2. Every finite T-quasigroup is a t,-quasigroup.

Example 4.1. Let (C, +) be the group of complex numbers and let px = —x,
yx =ix. Then @*>=y*=1. The quasigroup (C, -), defined by (4.1), satisfies the
identity

zx-y(u-ut)=tx-y(u-uz)
that is equivalent to the identity

zx-y(u-vt)=tx-y(u-vz).

REFERENCES

[1] BEJIOYCOB, B. II.: OcHOBbI Teopux KBa3urpynm u Jyn. Mocksa 1967.

[2] BEJIOYCOB, B. I.: Cuctemsl kBasurpynn ¢ o606meHssiMu Toxaectsamu. YMH, 20, I (121),
1965, 75—146.

[3] DAS, P.: Isotopy of abelian quasigroups. Proc. Amer. Math. Soc. 63, 1977, 317—324.

[4] DUPLAK, J.: O niektorych vlastnostiach tranzitivnych kvazigrip. Zbor. PdF UPJS, 15, 1976,
29—35.

[5] ®JIOPS, U. A.: CBs3b 1eBOTPaH3UTHBHBIX KBa3urpynn ¢ ksasurpynnamu Bona. Cetu u kBa3ur-
pynnsl. Kumuses, 1976, 203—215.

[6] JEZEK, J., KEPKA, T.: Quasigroups, isotopic to a group. Comment. Math. Univ. Carolinae, 16,
1975, 59—76.

[7] KEPKA, T.: Regular Mappings of Groupoids. Acta Univ. Carol. Math. Phys. 12,1971, 25—37.

[8] KEPKA, T.,NEMEC, P.: T-quasigroups II. Acta Univ. Carol. Math. Phys. 12/2. 1971, 31—49.

[9] MAJILLIEB, A. U.: Anre6panyeckue cucreMsl. M3g. Hayka 1970.

[10] NEMEC, P., KEPKA, T.: T-quasigroups I. Acta Univ. Carol. Math. Phys. 12/1, 1971, 39—49.

Received December 14, 1981
Katedra matematiky
Pedagogickej fakulty
Leninovo nam. 6
080 01 Presov

293



O KBA3UTOXIECTBAX TPAH3UTUBHBIX KBA3UI'PYIIII
Jan Duplédk
Pe3ome
B pa6oTe faHa XxapaKTepUCTHKA HEKOTOPbIX MHOr006pa3uii TpPaH3UTHBHBIX KBa3UTPYIN C MOMOLILIO

kBasuroxaecTs. [TonydyeHHbIe pe3yNbTaThl HCMONB30BAHbI I U3YyYEHUS] HEKOTOPbIX CBOWCTB JIMHEH-
HbIX KBa3WTpyMIL.
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