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HOMEOMORPHISM AND CONTINUITY
OF r-SPACES

IGOR ZUZCAK

In [2] the author has introduced and studied a new class of spaces, called
r-spaces, as a generalization of topological spaces and has shown several examples
of such spaces.

In the present paper we define homeomorphic, continuous and other types of
mappings from one r-space into another and we investigate some of their
properties and some relations between them.

1. Notations and remarks

Throughout this paper we shall use the notations from [1] and 2* will denote the
class of all subsets of X. The notation A c B means that A is a subset of B and if A
is a proper subset of B, we write A < B.

Let X be a nonempty set and o be a relation on 2* satlsfymg

R,) for each subset A of X there is a subset B of X such that AgB

R;) if AgB, then AcB

R,) if ApB, then BpB

Rs) if A = B and BgB, then there is a subset C of X such that AoC and Cc B

R¢) if ApB, then there is no subset C of X such that CoC and A c Cc<B.
Then g is called a relation of the closure on 2*. The pair (X, @) is called an r-space
if X is a nonempty set and @ is a relation of the closure on 2*. If (X, @) is an
r-space and for subsets A, B of X we have AgB, then we say that B is a closure of
A. A set A c X satisfying ApA is called a closed set. A subset A of X is said to be
open if X-A is closed. A subset of X of the form {x}UA, where x € X and A is
open, is said to be a preneighbourhood of x. By a neighbourhood of a point x € X
we mean any open subset of X containing x.

To simplify the notation we often refer to the r-space as X instead of the more
proper form (X, o).

We now mention some results of [2] became of their relationship with the
present work.
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L, From several equivalent formulations of the definition of an r-space we give

the following one:
If (X, o) is an r-space, then the class 7={A cX: ApA} of all closed
subsets of X has the following properties
Q:0,XeT
Q,: for each A c X and each B€J such that A c B there is a minimal
element C of the class {MeJ: AcMcB}.
Now let X be a nonempty set and J be a class of subsets of X satisfying €2,
and £,. Then, as shown in [2], the relation ¢ defined on 2* by
(1) ApB iff B is a minimal element of (M€ J: A c M}
has the properties R,—Rs, (X, ) is an r-space and 7 is the precise class of
all closed subsets of (X, o).

L, A subset A of an r-space X may have more than one closure.

L; Each closed subset A of an r-space X has only one closure, namely the set
A.

L, Let X be an r-space and J be an arbitrary class of subsets of X. In the case
of X being a finite set, J has always the property €,. This means that if T
contains @ and X, then determines uniquely an r-space (X, ¢) and 7 is the
class of all closed subsets of this r-space.

Ls Let X be an r-space and A c X. Then A is an open set iff for each x € A and
each preneighbourhood V of x such that V< A there is a neighbourhood
V, of x satisfying Vc V,c A.

2. Homeomorphism and continuity of r-spaces

Definition 1. Let (X, 0:) and (Y, @.) be r-spaces. A one-to-one mapping f of
X onto Y is said to be a homeomorphism of X onto Y if the following conditions are
satisfied :

(1)  if Mg;N, then f7'(M)o:f'(N)
(2) if Ao:B, then f(A)o.f(B).

Two r-spaces (X, 01) and (Y, 0;) are said to be homeomorphic provided there
exists a homeomorphism f of X onto Y.

It follows easily from the above definition that the identity map of an r-space
onto itself is always a homeomorphism and the inverse of a homeomorphism is
again a homeomorphism. It is also evident that the composition of two
homeomorphisms is a homeomorphism. Consequently the collection of r-spaces
can be divided into equivalence classes such that each r-space is homeomorphic to
every member of its equivalence class and to these r-spaces only.

Now we give a useful characterization of homeomorphicity of r-spaces.
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Theorem 1. Let (X, ¢1) and (Y, @,) be r-spaces. Then (X, ¢1) and (Y, 02) are
homeomorphic iff there is a one-to-one map f of X onto Y satisfying the following
conditions

()  if MM, then f™'(M)o.f~(M)
4)  if AgiA, then f(A)e:f(A).

Proof. If (X, 0,) and (Y, 02) are homeomorphic, then the conditions (3) and
(4) follow immediately from (1) and (2). To prove the converse suppose that (3)
and (4) hold. First we show that (2) is true. Let Ag;B. Then A c B by R; and Bg:B
by R.. Since A c B, then f(A) < f(B) and from Bg, B it follows f(B) o.f(B) by (4).
We want to prove that f(A) 0.f(B). Suppose this is not true. Then, by Rs and Re,
there is a subset M of Y such that Mp,M and f(A) c M = f(B). From this, using
the fact that f is a one-to-one mapping, we have f7'(f(A)c f~(M)c f~'(f(B)),
which means that A c f~'(M)c B. But this contradicts the condition Rs of the
definition of an r-space, since we know that f~'(M)o:f '(M) and Ag,B hold.
It remains to be shown that (1) holds. The proof of this statement is omitted, since
it is similar to that of (2).

Remark 1. If f is a mapping of X into Y, we shall write f: X—Y.

Definition 2. Let X and Y be r-spaces and I, and 7, be classes of all closed
subsets of X and Y respectively. Then a mapping f: X— Y is said to be continuous
iff f~'(B)e I, for each BeJ,.

Theorem 2. Let (X, 1) and (Y, ;) be r-spaces. Let 7, and I be classes of all
closed subsets of X and Y respectively and let f: X— Y be a one-to-one and onto
mapping. Then f is a homeomorphism of X onto Y iff f and f~' are continuous.

Proof. The proof of the theorem is an immediate consequence of L,, Definition
2 and Theorem 2. '

As stated above for a continuous mapping f: X— Y, where X and Y are
r-spaces, the inverse image of any closed set is a closed set again. An analogous
assertion for images of closed sets is not generally true even if X and Y are
topological spaces. Therefore it is natural to define the following notion.

Definition 3. Let X and Y be r-spaces and f: X— Y. Then f is said to be closed
iff the image of each closed set is closed. A

If we consider the fact that for each one-to-one mapping of X onto Y f=(f"")"
holds, then by Definition 3 and Theorem 2 we have the following immediate result

1

Corollary 1. Let X and Y be r-spaces and f: X— Y be a one-to-one and onto
mapping. Then f is a homeomorphism of X onto Y iff f is continuous and closed.

From the preceding corollary and Definition 1 we see that if f is a one-to-one
and onto mapping between two r-spaces, from continuity and closeness of f the
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properties (1) and (2) follow, and conversely. However, this equivalence is satisfied
only if the mapping is supposed to be one-to-one and onto. We now give
a discussion of those mappings which are not one-to-one.

Generally it is not true that a continuous and closed mapping satisfies the
condition (2). The following example illustrates this fact.

Example 1. Let A and B be any nonempty, disjoint and finite sets. Let xo be any
point such that x,¢& AUB and let

X =AuUBuU{x,}
Y= YU{Xo}.
Let
TJ1={0, AuB, Bu{x}, X}
and

g'2= {ﬂ’ {xo}’ Y}

be classes of subsets of X and Y respectively.
Finally define a mapping f of X onto Y by

_, x for xeA
f)=( xo for xe X— A =Bu{x,}.

It is clear that X and Y are finite sets and both 9, and 9, contain # and X resp. Y.
Let (X, 01) and (Y, @) be r-spaces such that 7, and 7, are classes of all closed
subsets of (X, o) and (Y, ;) respectively — see L,. The relations g, and p, are
given by the condition (1,) in L,.

By Definitions 2 and 3 it is evident that f is continuous and closed. On the other
hand, from the definition of g, it follows that for each nonempty subset M of B we
have Mg, (AuB). However f(M)={x}, f(AuB)=Y and therefore
f(M) p:f(AUB) does not hold.

Suppose now that (X, 0,) and (Y, g,) are r-spaces. By L, and Definition 3 it is
clear that a mapping f: X— Y is closed if it satisfies the condition (4). But if f
satisfies the condition (2), it satisfies also the condition (4). We thus get the

. following result.

Corollary 2. Each mapping satisfyig the condition (2) is closed.
Now we show that the mappings satisfying the condition (2) which are onto
mappings, are even continuous.

Theorem 3. Let (X, 0,) and (Y, 0:) be r-spaces. Let f: X— Y be an onto
mapping satisfying (2) i.e., there holds

if Ag,B, then f(A)o.f(B).

Then f is continuous.
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Proof. Suppose that B is closed in Y. We want to show that f~'(B) is closed in
X. Suppose this is not true, i.e., f~'(B) is not closed in X. Then by R; there is at
least one closure M of f~!(B) in X, i.e., f'(B)o:M holds. From the fact that
f~'(B) is not closed and from Rs we have f~'(B) = M. Hence there is xo € M such
that xo¢f'(B). Since f is an onto mapping, it follows that B c f(M),
f(x0) & f(f'(B))=B and f(xo) € f(M). Hence B c f(M). On the other hand we
know that f~'(B) .M. Therefore by (2) we have f(f"'(B))o.f(M) and hence
Bo,f(M). This means that f(M) is a closure of B. But this is impossible, since
B c f(M) and by L; the set B can have only one closure, namely the set B. This
completes the proof. _

Combining the results of Corollaries 1 and 2 and Theorem 3 we have the
following result

Theorem 4. Let (X, 0,) and (Y, 0.) be r-spaces and f be an one-to-one
mapping of X onto Y. Then f is a homeomorphism of X onto Y iff f satisfies the
condition (2).

From the last theorem we see that for defining the notion of homeomorphism it
is sufficient to consider besides the property to be one-to-one and onto only the
condition (2).

We close this section with some results concerning the mapping satisfying
condition (1).

Consider first the Example 1. We have seen that the mapping f described in this
example is continuous and closed. By the definition of f it is clear that Ap,Y,
f'(A)=A and f'(Y)=X hold. But Ag;X does not hold and thus we have:
continuous and closed mappings need not necessarily satisfy (1).

Suppose next f: X— Y, where X and Y are r-spaces and let f satisfy (1). Then f
satisfies (3) and by L, and Definition 2 it is evident that f is a continuous mapping.
Thus we have

Corollary 3. If X and Y are r-spaces, then each mapping f: X— Y satisfying
(1) is continuous.

On the other hand the mappings satisfying (1) are not necessarily closed, as
shown by the following example.

Example 2. Let X ={x,, X2, X3, Xs}, Y={)1, y2, y3} and let f: X— Y be given
by:
fx)=y1, f(x2)=y1, f(xs)=y: and f(xis)=ys.

Next define thé classes J; and 7, of subsets of X and Y respectively in the

following way
I = {ﬂ: {xs}, {x1, xZ}’ {x:, X'S}a X}

gz?{ﬂy {}’1}, {yZ}’ Y}‘

and
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Finally let (X, o) and (Y, @.) be r-spaces such that 7, and 7, are classes of all
closed subsets of (X, 0,) and (Y, g,) respectively. The existence of (X, 0,) and
(Y, o) is an immediete consequence of Ls and the fact that X, Y are finite sets and
{0, X} = T1, {0, Y} c 7. The relations ¢: and g, are defined by (1o) of L,. From
Figure 1 and condition (1) it is easy to see that f satisfies (1). It is also evident that
A ={x2, x5} is closed in X, but f(A)={y1, y2} is not closed in Y. Therefore f is
not a closed mapping although it satisfies (1).

Fig. 1

Remark 2. From the previous example it is also evident that (1) is not
a sufficient condition for (2). If we, e.g., put A ={x,} and B ={x,, x;}, then it is
clear that Ag,B holds, but f(A)g.f(B) is not true.

Now we shall prove that in the case of f being a one-to-one and onto mapping,
the condition (1) is sufficient for f to be closed.

Lemma 1. Let (X, 01) and (Y, ) be r-spaces and f: X— Y be a one-to-one and
onto mapping satisfying (1). Then f is closed.

Proof. Let B be a closed subset of X. Suppose on the contrary that f(B) is not
closed. Then by R, there is M c Y such that f(B) .M. From this by R; and Rg it
follows f(B) = M. Thus by (1) we have f~'(f(B)) o:.f (M) and f~'(f(B)) = f~'(M).
But since f is a one-to-one and onto mapping Bg,f~'(M) and B < f~'(M) hold,
which contradicts L;.

From this lemma and from the Corollaries 1 and 3 we have the following
statement
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Theorem 5. If X and Y are r-spaces and f: X— Y is an one-to-one and onto

mapping, then
— f is a homeomorphism of X onto Y iff f satisfies (1)

— the conditions (1) and (2) are equivalent.
Finally we give an example showing that generally condition (2) need not

necessarily imply (1).
Example 3. Let X = {x,, x2, X3, X4}, Y={y1, y2} and f: X— Y be given by:

fGx)=y1, f(x2)=y:, f(xs)=y and f(xs)=y,.
Next define the classes J; and J, of subsets of X and Y respectively by

gx={ﬂ, {X1, X2}, {X2, X3, x4}’ X}
and

.01—2= {ﬂ, Y}.

Fig. 2

From our assumptions and from L, it follows that there are r-spaces (x, 01) and
(Y, 02) such that 7, and 7, are classes of all closed subsets of (X, g,) and (Y, @,)
respectively.

Using (1,) it is not hard to verify that f satisfies (2). If we put M ={y.} and
N ={y1, 2}, then Mp,N. On the other hand f~'(M) g,f*(N) does not hold, which
means that (1) is not satisfied.
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3. Some local properties of the continuity

From the importance of the notion of the homeomorphism taking into account
Theorem 2 there follows the great importance of the continuity as well. Therefore
we shall deal with some questions related to local properties of continuity.

It is known that if X and Y are arbitrary and nonempty sets, A is a subset of X
and f: X— Y is a mapping, then

Y -A)=X~-f"(A).
As an immediate consequence of this fact and Definition 2 we have the following

Theorem 6. Let X and Y be r-spaces. Let 9, and %, be classes of all open
subsets of X and Y respectively and let f: X—Y. Then f is continuous iff
f(A)e D, for each AeD,.

As the continuity of a function in r-spaces (see Def. 2) can be defined in the
same way as in topological spaces (see [1] p. 85), the notion of the continuity at
a point can be introduced into the r-spaces in the way known in the theory of
topological spaces.

Definition 4. Let X and Y be r-spaces, xo€ X and f: X— Y. Then f is said to be
continuous at x, iff for each neighbourhood V of f(x,) there is a neighbourhood
U of x, such that f(U)c V.

Now we shall show by an example that in the r-spaces the continuity at each
point need not imply the continuity.

Example 4. Let X be an infinite set. Define the classes 9, and 9, of subsets of
X and Y as follows
9, consists of: — the empty set

— each subset of X having exactly 10.k elements,
where k=1,3,5,7, ...
— all infinite subsets of X.
9P, consists of: — the empty set
— each subset of X having exactly 10. k elements,
where k=1,2,4,6, ...
— all infinite subsets of X.
It is not hard to verify that both 9, and 9, satisfy the conditions Qi and €% of
theorem 5 of [2]. Therefore by Theorem 6 of [2] there are r-spaces (X, ;) and
(X, 02) such that &, and 9, are classes of all open subsets of (X, ¢,) and (X, 0.)
respectively.

Now let f be the identity mapping on X and let xo be any point of X. Since
f(x0) = xo, then for each V € 9, such that f(xo) = xo€ V there is at least one subset
U c V=f"'(V) having exactly 10 elements and such that xo,e U and U=f(U) <
V. Since Ue 9, it follows that f is continuous at Xo.
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On the other hand it is clear that if V is a subset of X containing exactly 20
elements, then Ve %, but (V)= V ¢%,. This means that f is not continuous
— see Theorem 6.

Definition 5. Let X and Y be r-spaces and let f: X— Y. If xo € X, then f is said
to be r-continuous at x, if
for each neighbourhood V of f(xo) and each preneighbourhood U of x, such
(5) that f(U)cV there is a neighbourhood U, of x, satisfying Uc U, and
f (U)ecV.

Theorem 7. Let X and Y be r-spaces. Let @, and 9, be classes of all open
subsets of X and Y respectively and let f: X— Y. Then f is continuous iff it is
r-continuous at each x,€ X.

Proof. Let first f be continuous. Suppose that x, € X and V is a neighbourhood
of f(xo), i.e., V€ P, such that f(xo) € V. Then it is clear that x,€ f~'(V) and by
Theorem 6 we have f~'(V)e @,. Let U be a preneighbourhood of x, such that
f(U)c V. Then Ucf}(V) and since f~(V) e D, the set f!(V) is a neighbout-
hood of x, satisfying U < f~'(V) and f(f"*(V)) c V. This proves half the theorem.

To prove the converse suppose A € %, and the condition (5) holds. We want to
prove f'(A)e @;. Let xo€ f~*(A). This means that f(x,) € f(f '(A))cA.If Uis
a preneighbourhood of x, such that U c f~'(A), then f(U) < A. But then according
to the assumptions there exists a neighbourhood U, of x, such that U< U, and
f(Ui) c A. This means that U c U, = f"'(A) and by Ls it follows that f~'(A) € 9;.

Now we are going to investigate the relation between the ‘continuity and
r-continuity at a point.

Theorem 8. Let X and Y be r-spaces, let f: X— Y be a mapping and let x, € X.
If f is r-continuous at x,, then it is also continuous at x,.

Proof. Since we know that for each x € X we have {x}u@={x}, then by the
definition of the preneighbourhood of a point it is clear that for each x € X the set
{x} is a preneighbourhood of x. Then by Definition 5 for each neighbourhood V of
f(x0) and for the preneighbourhood U = {x,} of x, there is a neighbourhood U, of
xo such that {x,} = Uc U, and f(U;) c V. But by Definition 4 this means that f is
continuous at xo.

Finally we show that in topological spaces the r-continuity at a point is
equivalent to the continuity at a point. But since topological spaces are special cases
of r-spaces, then the r-continuity at a point by the last theorem implies the
continuity at this point. Therefore it suffices to prove the converse statement.

Theorem 9. Let X and Y be topological spaces and let 9, and &, be classes of
all open subsets of X and Y respectively. Then f: X— Y is a continuous mapping at
xo€ X iff f is r-continuous at x,. '

Proof. Suppose that V is a neighbourhood of f(xo) and U; = {xo} U, where
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Ue 9, is a preneighbourhood of x, such that f(U;)c V. We want to find
a neighbourhood U of x, such that U, ¢ U, and f(U.) c V. Since f is continuous at
xo there is a neighbourhood U; of xo, such that f(U;)c V. Now if we put
U, = Uu U, then it is clear that xo€ U,, U;c U, and f(U,) c V. But we deal with
topological spaces and therefore U,=UuU, is in 9,. This means that U, is
a neighbourhood of x,, which completes the proof.
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