
Mathematica Slovaca

Janusz Jerzy Charatonik; Stanisław Miklos
Local homeomorphisms and related mappings on graphs

Mathematica Slovaca, Vol. 34 (1984), No. 4, 411--418

Persistent URL: http://dml.cz/dmlcz/136367

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136367
http://project.dml.cz


Mcrth. Slovaca 34,1984, No. 4,411—418 

LOCAL HOMEOMORPHISMS 
AND RELATED MAPPINGS 

ON GRAPHS 

JANUSZ J. CHARATONIK--STANISLAW MIKLOS 

Let a class &> of topological spaces and a class M of mappings be given. The 
following problem is posed in [1], p. 26: characterize all spaces Xeif having the 
property that if / : X—»/(X) is a mapping belonging to M with non-degenerate 
/(X), then there exists a homeomorphism of X onto /(X). In other words, the * 
question is to characterize all spaces in the class if such that their images under 
mappings from M are homeomorphic. In the present paper we discuss the above 
problem for the class if of graphs taking as M the classes of open mappings, of local 
homeomorphisms and of local homeomorphisms in the large sense. Using these 
and some other mappings we get a characterization of an arc and several 
characterizations of a simple closed curve. Some unsolved problems also are stated. 

By a (linear) graph we mean a one-dimensional connected polyhedron. All 
mappings are assumed to be continuous. A mapping /: X-> Y is called open if 
images under / of open subsets of X are open in Y. We speak of a local 
homeomorphism in the large sense if every point x in X has an open neighbour­
hood U such that the partial mapping f\U: L7~->/(l7) is a homeomorphism (see 
[9], p. 51). If, moreover, f(U) is an open subset of Y, then / is said to be a local 
homeomorphism ([13], p. 199). Thus a mapping / is a local homeomorphism if and 
qnly if it is a local homeomorphism in the large sense and simultaneously an open 
mapping ([9], Theorem 1, p. 54). Further, it is known that a mapping /: X—> Y of 
X onto a continuum Y is a local homeomorphism if and only if / is open and there 
is a natural number n such that card /~*(y) = n for each yeY ([10], Proposition, 
p. 64). If this last condition holds, we say that / is of the degree n (cf. [13], p. 199) 
or, equivalently, that it is an n-to-one mapping (see [5]). 

Proposition 1. The following are equivalent for a graph X: 
(1) every non-degenerate image of X under an open mapping is hqmeomorphic to 

X, 
(2) X is an arc. 

Indeed, it is proved in Proposition 2 of [3] that an arbitrary arc A c X is the 
image of the graph X under an open retraction. Thus, if (1) holds, then A is 
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homeomorphic to X, i.e., X is an arc. On the other hand, every open image of an 
arc is again an arc (see [13], (1.3), p. 184), thus (1) holds. 

Note that the assumption of the considered space X being a graph is essential in 
Proposition 1. Namely it is proved in [12], Theorem 1.3, p. 260, that the 
pseudo-arc satisfies (1); and for the class of locally connected continua (even of 
continua which are regular in the sense of theory of order, see [8], p. 275 and 
Theorem 4, p. 301) the first author has found some (infinite) dendrites with the 
same property ([2], Theorem 1, p. 490, and Theorem 3, p. 493). These examples 
show that the class Sf of spaces X for which the equivalence ( l ) o ( 2 ) holds cannot 
be reasonably extended, and therefore the result of Proposition 1 is (in this sense) 
the best possible. 

Observe further that if we demand that the mapping under consideration is 
a local homeomorphism instead of being open only, we can find many graphs 
having the discussed property. For example, every local homeomorphism defined 
on a graph which does not contain any simple closed curve is a homeomorphism 
itself (see [13], Corollary, p. 199 and note that an open image of a dendrite is again 
a dendrite, [13], p. 185; cf. [10], Corollary, p. 67). It can be noted that the same 
property holds for every graph which is the union of a finite dendrite D and of 
finitely many simple closed curves G , C2, ..., On such that DnQ is an end point 
of D for every / e { l , 2 , ..., m) and if /-£/, then either QnQ = 0 or QnQ = 
QnD = QnD (this means that some end points of D have been replaced by 
simply closed curves or by bundles of simple closed curves having exactly one point 
in common). But the simple closed curve itself does not have the considered 
property: the mapping z—>z2 is a local homeomorphism of the unit circumference 
S1 onto itself which is not a homeomorphism. Therefore the following two 
problems seem to be natural. 

Problem 1. Characterize the graphs X having the property that every local 
homeomorphism on X is a homeomorphism. 

Problem 2. Characterize the graphs X having the property that for every local 
homeomorphism / defined on X the image f(X) is homeomorphic to X, 

However, there is no point in replacement open mappings by local 
homeomorphisms in the large sense in (1). It can be seen by. 

Proposition 2. TTiere is no graph X such that every image of X under a local 
homeomorphism in the large sense is homeomorphic to X. 

In fact, let an arbitrary graph X be given, and consider a mapping / on X which 
identifies two different interior points p and q of an edge A in X. Thus f(X) is 
again a graph, the image /(A) of A is the union of a simple closed curve (namely 
f(p<l\ where pq is a subarc of A) and of two arcs emanating from the common 
point /(p)=/(<?). This point is a "new" ramification point of f(X) with respect to 
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those of X, hence f(X) is not homeomorphic to X. It is evident that / is a local 
homeomorphism in the large sense. 

One can change the role of the domain and of the range space in Problem 1 
investigating graphs Y for which 
(3) every local homeomorphism from a continuum onto Y is a homeomorphism. 

Recall ([4], Corollary 2) that a graph Y has the property (3) if and only if it is 
acyclic (i.e., it contains no simple closed curve). 

We return now to the investigation of some properties of the domain space, 
proving 

Proposition 3. The following are equivalent for a graph X: 
(4) there exists a two-to-one mapping defined on X, and every image of X under 

such a mapping is homeomorphic to X, 
(5) there exists a two-to-one mapping defined on Xsuch that the image of X under 

this mapping is homeomorphic to X, 
(6) there is a natural number n>\ such that there exists an n-to-one mapping 

defined on X, and every image ofX under such a mapping is homeomorphic to 
X, 

(7) X is a simple closed curve. 
Proof. The implication (4)-^>(6) is obvious. We show the inverse. If (6) is 

assumed, then n = 2, because for every n>2 there are a graph X and a mapping / 
defined on X which is exactly n -to-one and such that f(X) is not a graph even (see 
[6], 3.2, p. 829). Thus (4) is equivalent to (6). 

We show now the following circle of implications: (7)=>(4)-4>(5)-^>(7). 
Indeed, assume (7), i.e., put X = { z e K 2 : |z| = l} . Then z-»z2 is the needed 

mapping, and for every two-to-one mapping / on X the image f(X) is again 
a simple closed curve (see[6], 4.5, p. 833). Thus (4) follows. The implication from 
(4) to (5) is obvious. Now assume (5) and let /: X-»/(X) be the two-to-one 
mapping on the graph X for which f(X) and X are homeomorphic. Denote by 
E(X) and E(f(X)) the set of all end points of X and f(X) respectively. Since for 
every end point y e E(f(X)) the two-point set f~x(y) consists of end points of X 
only ([6], 2.4, p. 825), we have 

2-card E(/(X))^card E(X), 

and since X and f(X) are homeomorphic by assumption, we have card E(f(X)) = 
card E(X\ which leads to card E(X) = 0, i.e., we conclude that X has no end 
point. Further, suppose X contains a ramification point. Since f(X) is homeomor­
phic to X by hypothesis, f(X) has a ramification point, and — being a graph — it 
contains a ramification point of a maximal order m. Denote by i?(X) and R(f(X)) 
the set of all points of the (maximal) order m of X and /(X) respectively. Two 
cases are possible. If, for every point y in R(/(X)), we have f"1(y)czR(X) (i.e., if 
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the two-point set f~l(y) consists of points of order m only), then 2 card R(f(X)) ^ 
card R(X). Since card R(/(X)) = card R(X) by the same argument as previously 
for the set of end points, we conclude R(X) = 0, a contradiction. Hence, the other 
case holds, i.e., there are a point yeR(f(X)) and a point Xtef'^y) such that 
ordxl X<m. Recall that for every point y in f(X) we have 

2 • ordy/(X) = ordxlX + ordX2X, 

where {xi9 x2}=f~1(y) (see [6], 4.4, p. 833). Therefore ordX2X = 2m-o rd x l X> 
m, which contradicts the definition of m. The contradiction shows that X has no 
ramification point. Hence X is composed of points of order 2 exclusively which 
implies that it is a simple closed curve ([8], §51, V, Theorem 6, p. 294). Thus the 
proof is complete. 

The hypothesis that the space X under consideration is a graph is necessary in 
the above proposition and it cannot be weakened in a reasonable way, as one can 
see from the following example (due to W. J. Charatonik). In the polar coordinates 
(r, <p) in the plane let 

(pne{(2fc + l)-2-".jr: ke {0,1, 2, ..., 2""1-1}} 
and put 

X={(1 , (p): 0^(p^2x}u\J{(r,(p): l ^ r ^ l + 2"nand cpe {cp„, cpn +jt}}. 
n-=l 

Thus X is a curve which is regular in the sense of the theory of order, with 
ordxX^3 for each point xeX, having countably many ramification points. Define 
a mapping / from X into the plane putting /(r, (p) = (r, 2cp). It can be easily 
observed that / is of degree two and that f(X) is homeomorphic to X. This example 
shows that the result obtained in Proposition 3 is the best possible in a sense. 

Remark that condition (6) obviously implies the following one: 
(8) there is a natural number n > l such that there exists an n -to-one mapping 

defined on X and having the property that the image of X under this mapping 
is homeomorphic to X, 

which is a weaker form of (6) and is related to (6) exactly in the same way as (5) is 
related to (4). By Proposition 3 a simple closed curve satisfies (8). The authors are 
not able to answer the following 

Problem 3. Is every graph X satisfying (8) a simple closed curve? 
Note that taking n=2 in (8) we get (5), which is equivalent to (7) by 

Proposition 3. Thus it is enough to discuss Problem 3 with n >2 in (8) instead of 
n>\. 

In the next proposition, well — known characterizations of the simple closed 
curve via local homeomorphisms are presented. We recall these characterizations 
in order to generalize them replacing local homeomorphisms by the ones in the 
large sense (see Proposition 6 at the end of the paper). Concerning a proof of these 
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equivalences, one can show them applying covering space techniques (see [7], 
6.5—6.8, p. 247—265), in particular using the following two known facts: 
(a) A local homeomorphism /: X-*Y from a graph X onto a graph Y is 

a covering projection (cf. [13], Corollary, p. 199 and [7], p. 247); 
(b) If / : X—> Y is a covering projection of the degree n, then x(X) = nx (Y) , 

where x denotes the Euler-Poincare characteristic (cf. [7], 6.8.6, p. 265). 
We present here another proof, which seems to be much more geometrical and 

which makes no use of concepts of algebraic topology. 

Proposition 4. The following are equivalent for a graph X: 
(9) for every natural number n there exists a local homeomorphism of the degree 

n of X onto itself; 
(10) there exists a local homeomorphism of the degree two of X onto itself; 
(11) there is a natural number n > 1 and a local homeomorphism of the degree n 

of X onto itself; 
(12) for every natural number m there exists a local homeomorphism of the degree 

n>m of Xonto itself; 
(7) X is a simple closed curve. 

Proof. (7)-->(9). Put X={z : | z |=1} . where z denotes a complex number, fix 
an arbitrary natural n, and observe that the mapping /: X—> X defined by f(z) = zn 

is a local homeomorphism of the degree n. 
The implications (9)=>(10) and (10)-^>(11) are trivial. 
(11)=>(12). Let n 0 > l be a natural number such that there exists a local 

homeomorphism / of the degree n0 from X onto itself, and let m be an arbitrary 
natural number. Then there is a natural k such that k-n0>m. Put n = k-n0 and 
define g =/* as the fc-th iteration of /. Thus g: X-»X is a local homeomorphism 
of the degree n of X onto itself. 

(12)=>(7). Let m be the cardinality of the set of all ramification points and of all 
end points of X, and let n > m be such a natural number that there exists a local 
homeomorphism / of the degree n of X onto itself. Consider an arbitrary point y of 
X. Since n>ra , there exists in f~\y) a point x of order 2. Let U be an open 
neighbourhood of x as in the definition of the local homeomorphism /. Since / | U is 
a homeomorphism and since /( U) is a neighbourhood of y = /(JC), we conclude that 
y is of order 2 in X. Hence (see [8], §51, V, Theorem 6, p. 294) X is a simple 
closed curve. The proof is finished. 

Observe that the local homeomorphism / of the degree n considered in 
conditions (9) through (12) of Proposition 4 is assumed to be from X onto itself, 
i.e., the assumption /(X) = X is made on / in (9), (10), (11) and (12). One can note 
that this condition is essential in the implication from (11) to (12) because of the 
iteration fk considered in the corresponding part of the proof above. Really, one 
can find two topologically different graph X &nd Y and a local homeomorphism / 
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of the degree n > 1 from X onto Y such that X is not a simple closed curve (see e.g. 
[13], Example, p. 189). 

However, in some other implications the hypothesis /(X) = X can be dispensed 
with. Namely one can modify Proposition 4 as follows. 

Proposition 5. The following are equivalent for a graph X: 
(13) for every natural number n there is a local homeomorphism of the degree n 

defined on X; 
(14) for every natural number m there is a local homeomorphism of the degree 

n>m defined on X; 
(7) X is a simple closed curve. 
Really, the proofs of the two implications (7)-->(13)-^>(14) run exactly in the 

same way as in the proof of Proposition 4. To show that (14) implies (7) note that 
assuming (14) and repeating the arguments from the corresponding part of the 
proof of the implication. (12) --> (7) of Proposition 4 we can show that Y = /(X) is 
a simple closed curve. By Theorem (1.1) of [13], p. 182 the graph X contains 
a simple closed curve, and by Corollary (7.31) of [13], p. 147, X has no end point. 
Since no open neighbourhood of a ramification point can be homeomorphically 
mapped into Y, we conclude that X contains no ramification point. Thus X is 
either an arc or a simple closed curve; since X contains a simple closed curve, it is 
one. 

We remark here that one can prove Proposition 5 using again covering space 
techniques, in particular facts (a) and (b), as it could be done for Proposition 4. 

Observe further that the assumption that the space X considered in Prop­
osition 5 is a graph is essential and it cannot be relaxed to the assumption that X is 
a regular curve. It can be seen by the same example of a regular curve X which has 
been used previously (defined just after the proof of Proposition 3) and by 
a mapping / of X into the plane defined by /(r, <p) = (r, n • <p), where n is a natural 
number. Then / is a local homeomorphism of the degree n, and /(X) is 
homeomorphic to X, while X is not a simple closed curve. 

It is natural to ask if one can neglect openness of the mappings under 
consideration in Propositions 4 and 5, i.e., replace local homeomorphisms by local 
homeomorphisms in the large sense. An answer to this question is affirmative. 
Namely observe that — in contrast to local homeomorphisms — those in the large 
sense need not be of a constant degree. Hence this last condition should be 
additionally assumed. But under this assumption any local homeomorphism in the 
large sense defined on a compact space becomes simply a local homeomorphism. In 
fact, it is proved in [11], Theorem 2, that if a continuous surjection /: X—>Y 
defined on a compact metric space X is locally one-to-one (this means that each 
point in X has an open neighbourhood U such that the restriction f\U is 
one-to-one) and of a constant degree, then / is open, which implies by Theorem 1 
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of [9], p, 54, that / is a local homeomorphism (cf. also [10], Proposition, p. 64). 
Therefore we have the following 

Proposition 6. The words "localhomeomorphism"in conditions (9), (10), (11) 
and (12) of Proposition 4, and in conditions (13) and (14) of Proposition 5 can be 
replaced by "local homeomorphism in the large sense" or — equivalently — by 
a "locally one-to-one mapping". 
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ЛОКАЛЬНЫЕ ГОМЕОМОРФИЗМЫ И СООТВЕТЕСТВУЮЩИЕ ОТОБРАЖЕНИЯ 
НА ГРАФАХ 

1агш881. СЬагасотк—${аш$1ау М1к1о§ 

Резюме 

В работе рассматриваются локальные гомеоморфизмы линейных графов. Получается нес­
колько характеризаций дуги и простой замкнутой кривой в классе графов, которые сфор­
мулированы на языке открытых отображений, локальных гомеоморфизмов, локальных 
гомеоморфизмов в более широком смысле и отображений с постоянной мощностью прообразов 
точек. Эти результаты проиллюстрированы примерами, показывающими, что в этих харак-
теризациях класс графов не может быть увеличен. Кроме этого работа содержит открытые 
вопросы. 
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