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LOCAL HOMEOMORPHISMS
AND RELATED MAPPINGS
ON GRAPHS

JANUSZ J. CHARATONIK—STANISLAW MIKLOS

Let a class & of topological spaces and a class #{ of mappings be given. The
following problem is posed in [1], p. 26: characterize all spaces X € & having the
property that if f: X— f(X) is a mapping belonging to # with non-degenerate
f(X), then there exists a homeomorphism of X onto f(X). In other words, the -
question is to characterize all spaces in the class & such that their images under
mappings from # are homeomorphic. In the present paper we discuss the above
problem for the class & of graphs taking as /{ the classes of open mappings, of local
homeomorphisms and of local homeomorphisms in the large sense. Using these
and some other mappings we get a characterization of an arc and several
characterizations of a simple closed curve. Some unsolved problems also are stated.

By a (linear) graph we mean a one-dimensional connected polyhedron. All
mappings are assumed to be continuous. A mapping f: X— Y is called open if
images under f of open subsets of X are open in Y. We speak of a local
homeomorphism in the large sense if every point x in X has an open neighbour-
hood U such that the partial mapping f|U: U— f(U) is a homeomorphism (see
[9], p. 51). If, moreover, f(U) is an open subset of Y, then f is said to be a local
homeomorphism ([13], p. 199). Thus a mapping f is a local homeomorphism if and
only if it is a local homeomorphism in the large sense and simultaneously an open
mapping ([9], Theorem 1, p. 54). Further, it is known that a mapping f: X— Y of
X onto a continuum Y is a local homeomorphism if and only if f is open and there
is a natural number n such that card f~'(y)=n for each y € Y ([10], Proposition,
p. 64). If this last condition holds, we say that f is of the degree n (cf. [13], p. 199)
or, equivalently, that it is an n-to-one mapping (see [5]).

Proposition 1. The following are equivalent for a graph X:

(1) every non-degenerate image of X under an open mapping is hqzheomoxphic to
X )

(2) X is an arc.
Indeed, it is proved in Proposition 2 of [3] that an arbitrary arc A =X is the
image of the graph X under an open retraction. Thus, if (1) holds, then A is
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homeomorphic to X, i.e., X is an arc. On the other hand, every open image of an
arc is again an arc (see [13], (1.3), p. 184), thus (1) holds.

Note that the assumption of the considered space X being a graph is essential in
Proposition 1. Namely it is proved in [12], Theorem 1.3, p. 260, that the
pseudo-arc satisfies (1); and for the class of locally connected continua (even of
continua which are regular in the sense of theory of order, see [8], p. 275 and
Theorem 4, p. 301) the first author has found some (infinite) dendrites with the
same property ([2], Theorem 1, p. 490, and Theorem 3, p. 493). These examples
show that the class & of spaces X for which the equivalence (1)<>(2) holds cannot
be reasonably extended, and therefore the result of Proposition 1 is (in this sense)
the best possible.

Observe further that if we demand that the mapping under consideration is
a local homeomorphism instead of being open only, we can find many graphs
having the discussed property. For example, every local homeomorphism defined
on a graph which does not eontain any simple closed curve is a homeomorphism
itself (see [13], Corollary, p. 199 and note that an open image of a dendrite is again
a dendrite, [13], p. 185; cf. [10], Corollary, p. 67). It can be noted that the same
property holds for every graph which is the union of a finite dendrite D and of
finitely many simple closed curves C;, C,, ..., G, such that DN C is an end point
of D for every ie{1,2, ..., m} and if i#j, then either GNG =0 or GNC =
GNnD=CnD (this means that some end points of D have been replaced by
simply closed curves or by bundles of simple closed curves having exactly one point
in common). But the simple closed curve itself does not have the considered
property: the mapping z— z? is a local homeomorphism of the unit circumference
S! onto itself which is not a homeomorphism. Therefore the following two
problems seem to be natural.

Problem 1. Characterize the graphs X having the property that every local
homeomorphism on X is a homeomorphism.

Problem 2. Characterize the graphs X having the property that for every local
homeomorphism f defined on X the image f(X) is homeomorphic to X,

However, there is no point in replacement open mappings by local
homeomorphisms in the large sense in (1). It can be seen by.

Proposition 2. There is no graph X such that every image of X under a local
homeomorphism in the large sense is homeomorphic to X.

In fact, let an arbitrary graph X be given, and consider a mapping f on X which
identifies two different interior points p and q of an edge A in X. Thus f(X) is
again a graph, the image f(A) of A is the union of a simple closed curve (namely
f(pq), where pq is a subarc of A) and of two arcs emanating from the common
point f(p) = f(q). This point is a “new” ramification point of f(X) with respect to
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those of X, hence f(X) is not homeomorphic to X. It is evident that f is a local
homeomorphism in the large sense.

One can change the role of the domain and of the range space in Problem 1
investigating graphs Y for which
(3) every local homeomorphism from a continuum onto Y is a homeomorphism.

Recall ([4], Corollary 2) that a graph Y has the property (3) if and only if it is
acyclic (i.e., it contains no simple closed curve).

We return now to the investigation of some properties of the domain space,
proving

Proposition 3. The following are equivalent for a graph X: »

(4) there exists a two-to-one mapping defined on X, and every image of X under
such a mapping is homeomorphic to X,

(5) there exists a two-to-one mapping defined on X such that the image of X under
this mapping is homeomorphic to X,

(6) there is a natural number n>1 such that there exists an n-to-one mapping
defined on X, and every image of X under such a mapping is homeomorphic to
X,

(7) X is a simple closed curve.

Proof. The implication (4)=>(6) is obvious. We show the inverse. If (6) is
assumed, then n =2, because for every n>2 there are a graph X and a mapping f
defined on X which is exactly n-to-one and such that f(X) is not a graph even (see
[6], 3.2, p. 829). Thus (4) is equivalent to (6).

We show now the following circle of implications: (7)=>(4)=>(5)=>(7).

Indeed, assume (7), i.e., put X={ze R?: |z]=1}. Then z—z? is the needed
- mapping, and for every two-to-one mapping f on X the image f(X) is again
a simple closed curve (see[6], 4.5, p. 833). Thus (4) follows. The implication from
(4) to (5) is obvious. Now assume (5) and let f: X— f(X) be the two-to-one
mapping on the graph X for which f(X) and X are homeomorphic. Denote by
E(X) and E(f(X)) the set of all end points of X and f(X) respectively. Since for
every end point y € E(f(X)) the two-point set f~'(y) consists of end points of X
only ([6], 2.4, p. 825), we have

2-card E(f(X)) <card E(X),

and since X and f(X) are homeomorphic by assumption, we have card E(f(X)) =
card E(X), which leads to card E(X)=0, i.e., we conclude that X has no end
point. Further, suppose X contains a ramification point. Since f(X) is homeomor-
phic to X by hypothesis, f(X) has a ramification point, and — being a graph — it
contains a ramification point of a maximal order m. Denote by R(X) and R(f(X))
the set of all points of the (maximal) order m of X and f(X) respectively. Two
cases are possible. If, for every point y in R(f(X)), we have f~!(y) = R(X) (i.e., if
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the two-point set f~'(y) consists of points of order m only), then 2-card R(f(X))<
card R(X). Since card R(f(X))=card R(X) by the same argument as previously
for the set of end points, we conclude R(X) =, a contradiction. Hence, the other
case holds, i.e., there are a point y € R(f(X)) and a point x; € f~*(y) such that
ord,, X <m. Recall that for every point y in f(X) we have

2-ord,f(X)=ord,, X +ord,, X,

where {xi, x.} =f"'(y) (see [6], 4.4, p. 833). Therefore ord,, X =2m —ord,, X >
m, which contradicts the definition of m. The contradiction shows that X has no
ramification point. Hence X is composed of points of order 2 exclusively which
implies that it is a simple closed curve ([8], §51, V, Theorem 6, p. 294). Thus the
proof is complete.

The hypothesis that the space X under consideration is a graph is necessary in
the above proposition and it cannot be weakened in a reasonable way, as one can
see from the following example (due to W. J. Charatonik). In the polar coordinates
(r, @) in the plane let

@.€{2k+1)-2"n: ke{0,1,2, ..., 2"-1-1}}
and put

X={(1, 9): 0<@<2m}ulJ{(r, ¢): 1<r<1+2"and ge{q., g. +7}}.
n=1

Thus X is a curve which is regular in the sense of the theory of order, with
ord, X <3 for each point x € X, having countably many ramification points. Define
a mapping f from X into the plane putting f(r, ¢)=(r, 2¢). It can be easily
observed that f is of degree two and that f(X) is homeomorphic to X. This example
shows that the result obtained in Proposition 3 is the best possible in a sense.

Remark that condition (6) obviously implies the following one:

(8) there is a natural number n>1 such that there exists an n-to-one mapping
defined on X and having the property that the image of X under this mapping
is homeomorphic to X,

which is a weaker form of (6) and is felated to (6) exactly in the same way as (5) is

related to (4). By Proposition 3 a simple closed curve satisfies (8). The authors are

not able to answer the following

Problem 3. Is every graph X satisfying (8) a simple closed curve?

Note that taking n=2 in (8) we get (5), which is equivalent to (7) by
Proposition 3. Thus it is enough to discuss Problem 3 with n>2 in (8) instead of
n>1.

In the next proposition, well — known characterizations of the simple closed
curve via local homeomorphisms are presented. We recall these characterizations
in order to generalize them replacing local homeomorphisms by the ones in the
large sense (see Proposition 6 at the end of the paper). Concerning a proof of these

414



equivalences, one can show them applying covering space techniques (see [7],

6.5—6.8, p. 247—265), in particular using the following two known facts:

(a) A local homeomorphism f: X—Y from a graph X onto a graph Y is
a covering projection (cf. [13], Corollary, p. 199 and [7], p. 247);

(b) If f: X—>Y is a covering projection of the degree n, then x(X)=n-x(Y),
where x denotes the Euler-Poincaré characteristic (cf. [7], 6.8.6, p. 265).

We present here another proof, which seems to be much more geometrical and
which makes no use of concepts of algebraic topology.

Proposition 4. The following are equivalent for a graph X:
(9) for every natural number n there exists a local homeomorphism of the degree
n of X onto itself;
(10) there exists a local homeomorphism of the degree two of X onto itself;
(11) there is a natural number n>1 and a local homeomorphism of the degree n
of X onto itself;
(12) for every natural number m there exists a local homeomorphism of the degree
n>m of X onto itself;
(7) X is a simple closed curve.

Proof. (7)=>(9). Put X={z: |z| =1}. where z denotes a complex number, fix
an arbitrary natural n, and observe that the mapping f: X— X defined by f(z)=z"
is a local homeomorphism of the degree n.

The implications (9)=>(10) and (10)=>(11) are trivial.

(11)=>(12). Let no>1 be a natural number such that there exists a local
homeomorphism f of the degree no from X onto itself, and let m be an arbitrary
natural number. Then there is a natural k such that k-no>m. Put n=k-n, and
define g = f* as the k-th iteration of f. Thus g: X— X is a local homeomorphism
of the degree n of X onto itself.

(12)=>>(7). Let m be the cardinality of the set of all ramification points and of all
end points of X, and let n>m be such a natural number that there exists a local
homeomorphism f of the degree n of X onto itself. Consider an arbitrary point y of
X. Since n>m, there exists in f~'(y) a point x of order 2. Let U be an open
neighbourhood of x as in the definition of the local homeomorphism f. Since f| U is
a homeomorphism and since f(U) is a neighbourhood of y = f(x), we conclude that
y is of order 2 in X. Hence (see [8], §51, V, Theorem 6, p. 294) X is a simple
closed curve. The proof is finished.

Observe that the local homeomorphism f of the degree n considered in
conditions (9) through (12) of Proposition 4 is assumed to be from X onto itself,
i.e., the assumption f(X) = X is made on f in (9), (10), (11) and (12). One can note
that this condition is essential in the implication from (11) to (12) because of the
iteration f* considered in the corresponding part of the proof above. Really, one
can find two topologically different graph: X and Y and a local homeomorphism f
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of the degree n>1 from X onto Y such that X is not a simple closed curve (see e.g.
[13], Example, p. 189).

However, in some other implications the hypothesis f(X)= X can be dispensed
with. Namely one can modify Proposition 4 as follows.

Proposition 5. The following are equivalent for a graph X:
(13) for every natural number n there is a local homeomorphism of the degree n
‘ defined on X;
(14) for every natural number m there is a local homeomorphism of the degree
n>m defined on X; -
(7) X is a simple closed curve.

Really, the proofs of the two implications (7)=(13)=>(14) run exactly in the
same way as in the proof of Proposition 4. To show that (14) implies (7) note that
assuming (14) and repeating the arguments from the corresponding part of the
proof of the implication. (12)=>(7) of Proposition 4 we can show that Y = f(X) is
a simple closed curve. By Theorem (1.1) of [13], p. 182 the graph X contains
a simple closed curve, and by Corollary (7.31) of [13], p. 147, X has no end point.
Since no open neighbourhood of a ramification point can be homeomorphically
mapped into Y, we conclude that X contains no ramification point. Thus X is
either an arc or a simple closed curve ; since X contains a simple closed curve, it is
one.

We remark here that one can prove Proposition 5 using again covering space
techniques, in particular facts (a) and (b), as it could be done for Proposition 4.

Observe further that the assumption that the space X considered in Prop-
osition S is a graph is essential and it cannot be relaxed to the assumption that X is
a regular curve. It can be seen by the same example of a regular curve X which has
been used previously (defined just after the proof of Proposition 3) and by
a mapping f of X into the plane defined by f(r, ¢)=(r, n- @), where n is a natural
number. Then f is a local homeomorphism of the degree n, and f(X) is
homeomorphic to X, while X is not a simple closed curve.

It is natural to ask if one can neglect openness of the mappings under
consideration in Propositions 4 and 5, i.e., replace local homeomorphisms by local
homeomorphisms in the large sense. An answer to this question is affirmative.
Namely observe that — in contrast to local homeomorphisms — those in the large
sense need not be of a constant degree. Hence this last condition should be
additionally assumed. But under this assumption any local homeomorphism in the
large sense defined on a compact space becomes simply a local homeomorphism. In
fact, it is proved in [11], Theorem 2, that if a continuous surjection f: X—Y
defined on a compact metric space X is locally one-to-one (this means that each
point in X has an open neighbourhood U such that the restriction f|U is
one-to-one) and of a constant degree, then f is open, which implies by Theorem 1
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of [9], p. 54, that f is a local homeomorphism (cf. also [10], Proposition, p. 64).
Therefore we have the following

Proposition 6. The words “local homeomorphism” in conditions (9), (10), (11)
and (12) of Proposition 4, and in conditions (13) and (14) of Proposition 5 can be
replaced by “local homeomorphism in the large sense” or — equivalently — by
a “locally one-to-one mapping”. :
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JIOKAJIbHBIE TOMEOMOP®HU3Mbl 1 COOTBETECTBYIOUIME OTOBPAXEHHS
HA TPADAX ‘

Januss J. Charatonik—Stanislav Miklos
Pe3romMe

B pa6oTe paccMaTpHBarOTCA JIOKaJibHble roMeoMopdu3Mbl THHEHHBIX rpacos. Ilonyyaercs Hec-
KOJILKO XapaKTepH3alMi OyrH U NPOCTOil 3aMKHYTOH KpHMBOH B Kiiacce rpacoB, KOTOpbie c¢op-
MYJIHDOBaHbl Ha #3bIKE OTKPBITHIX OTOGpaXKe€HHMH, JIOKAJILHBIX TOMEOMOP(MU3MOB, JIOKAJbHbIX
romMeoMop@n3MoB B GoJiee IIMPOKOM CMBICIIE M OTOGPaXXeHHH C MOCTOSIHHOH MOLHOCTBIO Npo06pa3oB
TOYeK. 3TH pe3yJbTaThl NPOWUIIOCTPHPOBaHLI NPUMEPaMH, MOKa3bIBAIOIMMH, YTO B 3THX Xapak-
Tepu3anuax Kiacc rpagoB He MOXeT GbITh yBenuueH. Kpome 3toro pa6oTta COREpXHT OTKpPbIThbIE

BOIPOCHI.
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