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A CONJECTURE ON LIE ALGEBRAS
ADMITTING A REGULAR AUTOMORPHISM
OF FINITE ORDER

EUGEN RUZICKY—JOZEF TVAROZEK

Let &£ be a Lie algebra over a field F of characteristic p =0 admitting a regular
automorphism') A: £— £ of order n, n=2. According to V. A. Kreknin, [2],
the Lie algebra % is solvable and the length [({ £®}) of the derived series { £} of
&£ is bounded from above by the integer 2"*. This estimate is rather rough, it seems
to be possible to improve it. O. Kowalski in 1981 proposed the following

Conjecture. [({£P))<n-1.

The purpose of this paper is to prove the Conjecture for n=2, ..., 7.

First we recall some basic notions and facts. Without loss of generality the field F
can be supposed to be algebraicly closed. Further, if p >0 (a prime number), we
can suppose that (n, p)=1, i.e. n, p are relatively prime. In, fact, let r be the
greatest number such that p”|n. Then A”": $— £ is a regular automorphism of
order n'=n/p” and (n’, p)=1 (see [2]). Since (n, p) =1, all roots of the minimal
polynomial of the automorphism A are different.

Choose some primitive®) nth root of 1€ F and denote it by a. Let % be the
characteristic subspace corresponding to the root a; = a’ of the minimal polynomial

n-1
of the automorphism A, i=1,...,n—1. Then = 2 & and A(x;) = aix; for all
i=1
xie%,i=1,..,n-1.Since A is an automorphism of the Lie algebra £, we have
(&, Ll L, (D

foralli, je{l, ..., n — 1}, see [1]. As usually, the index i + j is taken modulo n and
%5=0 in the formula (1).

Let =%P>5FP5... o0 ¥%>... be the derived series of the Lie algebra £.
Every £ is a vector subspace of the vector space £. Let 0= 0~ i=0,1,

') Automorphism without non zero fixed vectors.
%) An element a of the field F is a primitive nth rootof 1€ Fif a" =1 and g*+# 1 forall k, 0< k <n.
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..., n—1, ke N. The subspace ¥ is generated by the set {[x, y]; xe £ ",
yeFE Y i=p+q), shortly

FP= 3 [LE, L), )

i=p+q

where the indices i, p and g are taken modulo n.
Further, for all h, ke N, h<k, and for every i€{0,1, ..., n—1} we have

P PP, (3)

Let re{l, ..., n—1} be a given number for which (r, n)=1. Denote G. the
multiplicative group of nth roots of 1€ F, i.e. G.={a';i=0,1, ..., n—1}. The
map f,: G.— G,, f,(a;)=a} is a group isomorphism. The isomorphism f, rep-
resented on the aditive group Z, of cosets modulo n (under the identification
a'=1) will be denoted by F,.

Let the symbol ¥} denotes some subspace £ in the case when it is not
necessary to specify k, i=0, 1, ..., n—1. Since « is a primitive nth root of 1 and
since f, is a isomorphism of G., f,(a) is a primitive nth root of 1 too. Making use of
this fact and (1), we get the following

Proposition 1. Let Q be any inclusion or equality, derived from (2) using (1),
(3) and Jacobi’s identity, containing sums of vector subspaces £i, [£], Zi] for
some i,j, ke{0, ..., n—1}. Then Q is preserved if all terms %1, ..., £, .

contained in  are replaced by the terms ZLry, -5 Lhin-1).

Corollary. Let £%=0 for some ie(l,...,n—1}. Then £ =0 for all
je{1, ..., n—1} such that (i, n)=(j, n).

Proof. Since (i, n)=(j, n), there is an integer re {1, ..., n—1} such that
(r, n)=1and f,(a) = a;. Applying Proposition 1 we get that Z§1,=0,i.e. £ =0.

The next proposition is useful for the practical computation.

Proposition 2. Let i, j, ke {1, ..., n—1}. Then

a) i+j=n>[[%, L], £]=0
b) i+j=n=>[[%, L], [£, £]]=0
¢) i+k=n, j+2k=0(mod n) > [[%, £], [%, £]]=0.

Proof. We prove only part a) because the rest of the proof is similar. Taking use
of Jacobi’s identity and (1) we get: [[£, £], L]l <[[%, L], Ll<[%, £]=0.
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Proof of the Conjecture forn =2, ..., 7.

The case n=2 is trivial because =% and L =[%, £]=0.
In order to simplify our next formulae we shal introduce the following notation:

i=%
i’ = gl(p)
ij=[%, 4]
ipia — [gl(p)’ ff,(q)],

where i, je{l,..., n—1}, p, qeN, p>0, ¢g>0.

n =3. The Lie algebra & decomposes in a direct sum of the subspaces 1 and 2.
Using (2) we get 1'=22 and 2'=11. Then 1>°=2'2'=2'(11) =0 according to
Proposition 2. Applying Corollary of Proposition1 we get 2*=0. Hence
1({£P})<2.

n=4. Asin the case n =3 we get 1' =23, 2'=11+233, 3' =12, Then 1>=2'3!=
=(11+33)(12<c(11)3 + (33)(12)=0,2>=1"1"+3'3" and 3*=0 by Corollary of
Proposition 1. Further 2°=1%1+323>=0 and [({£?})<3.

n=>5. By the direct computation using (2), Jacobi’s identity and Proposition 1 it
can be shown that

11'c34, 1'2' 44, 1'3'c22. (4)

From (2) (4) and Proposition 1 we get 22c11 and 3°c 44, 12, i.e. 3°c44 and
32c12.Then 1® = 224* + 3%3? c (11)4* + (44)(12)=0.Hence 2°=3*=4’=0Dby
Corollary of Proposition 1, thus [({£?”})<3. We see that in this case the
Conjecture holds in the stronger form [({£®})<n —2.

n=6. After some computation we get from (2) that 1> =25, 2°c 11+ 35, 11 + 44,
35+44, 3°c12, 45. Proposition 1 for r=5 implies that 4°c55+13, 55+ 22,
13+22, 5°c14. Then 35> < (12)(14) < 11 and 4°4*> = (13+22)(22+55) c
c (13)(22) + (22)(22) + (13)(55) + (22)(55)c11.

We have just proved that

2°c11 5)
and by Proposition 1 also

4’585, (6)

Using (5) and (6) we get 1°4*=1°(55)=0 and 2°3°c (11)(45)=0. Then 2°5° =
=3%4*=0 and

14=5*=0. 7)
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From (2) and (7) we have

1°=3°=5°=0, 2°=4%4*, 4°=2*2* (8)
Making use of 2%(44) =23(3°5) =0 we prove
22¢=0. 9)

In fact, 22* = (PP)(I’T’) < ((2°5* + 34H)1)(11) < ((11+44)55)1)(11) +
+ (((45)4)1)(11) < ((45)5*)(11) + ((55)4(11) + ((45)5)(11) =0 using Jacobi’s
identity and Proposition 2.

Applying Proposition 1 for r=5 we get from (9) that
4'4*=0. (10)
Results (8) — (10) imply I({£®})<5.

n=7. By the standard computation using (2), Proposition 1 and Proposition 2 one
can obtain the following inclusions:

226> 35, 3’5226, 4°4* 26, 35. (11)
Then
1°c26, 35. (12)
Computing 3’6 = 11 and 4’5’11 we get
211, (13)
Taking use of the equalities 1°(2°6%) = (3°5%)(4°4%) = (3°5%)(3°5%) = (44)(4°4*) =0
we prove that
1'1°=0. (14)
In fact, we have 1‘1* = (2°6* + 3°5° + 4°4°)(2°6*>+3°5° +4°4°) c 1°(2°6°) +
+(3°5°)(3°5%) + (44)(4°4°) + (3°5%)(4°4%) =0. Further, from (12) and (13) using
Proposition 1 and Proposition 2 one can get

142* < (44)(36) = 0, 1'3‘c (44)3=0. (15)

From (14), (15) and Proposition 1 it follows that a*h* =0 for everya, be {1, ..., 6}.

Thus [({£®})<5. As in the case n =35 the Conjecture holds in the stronger form
({9} <n-2.
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TUIIOTE3A O AJITEBPAX JIM,
IOMYCKAIOMUX PETYJISIPHBII ABTOMOP®HU3M KOHEYHOTO IEPHOJA

Eugen RuzZicky—Jozef Tvarozek
Pe3ome
IMycts £-anre6pa JIu Hag noneM xapaktepucTuku p = 0, onyckaroowas perysipHblii aBToMopdu3m
A: £— ¥ xoHeuHoro nepuona n, n=2. B. A. Kpeknun goxasan, uro anuna [({ £”}) npoussogHoro

pana { £} anre6pbi ¥ ne npesocxomuT 2"”'. B Hactosmeil 3ametke rumotesa [({£LV))<n-—1
nposepeHa s n=2,3, ..., 7.
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