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MAXIMAL ERGODIC THEOREM ON A LOGIC
BLAHOSLAV HARMAN

Introduction

The aim of the present paper is to prove and formulate the maximal ergodic
theorem (MET) on a logic analogical to the classical one. The classical MET is
studied in a space (X, &, u, T), where X is a nonempty set, & is o-algebra on X, nu
is a measure on & and T: X— X is a measure pu preserving transformation. For our
purposes the most suitable formulation is the following:

Let f: X— R be an p-integrable function. Let us denote

E.={xeX;3k=n: f(x)+ f(Tx) +...+ f(T*'x) Z0).

Then [ f e, du=0.

This theorem plays the most important role in proving the classical individual
ergodic theorem. In the case of logics the variants of the individual ergodic
theorems have been studied (see [1], [2]), but no formulations of a MET have
appeared.

1. Notations and preliminary results

Let £ be a logic, that is a o-latice with the first element 0 and the last element 1,
with an orthocomplementation L : £— £. The following conditions on £ must be
fulfilled :

i) if ae ¥ then (a*)*=a
ii) if a<b then b*<a*

iii) if a<b then b=av(baat)

iv) avat=1 for all ae &.

Two elements a, b € £ are orthogonal (a.Lb) iff a<b*, compatible (a < b) iff
there are three pairwise orthogonal elements a;, bi, ¢ such that a=a;vc and
b=bivec.

By the symbol B(R') there is denoted the set of all Borel sets on R'. An
observable x: B(R')— £ is the map which satisfies the conditions:

i) x(@)=0
381.



i) if E, Fe B(R"), EAF=4 then x(E)Lx(F)
iii) if E;e B(R") for ie N, E.nE = for i#] then x (O E) =V/x(E).
i1 =1

Let f: R'—> R' be a Borel measurable function. It is easy to see that xf ':
B(R"Y— ¥, E~x(f'(E)) is an observable. Two observables x and y are
compatible (x & y) iff x(E)< y(F) for all E, Fe B(R").

If x1, x2, ..., x. are pairwise compatible observables, then it is possible to define
the sum of them in the following way (see [3], theorem 6.17):

Let mi: R"—> R, (u1, uz, ..., u,)>w (i=1,2, ..., n) be projections, h be the
map h: R"—> R, (uy, Uz, ..., U,) — U+ uzs+ ...+ u,.

Let x: B(R")— £ be a o-hom ymorphism such that x; =, ' fori=1,2, ..., n.
Then we define

Xxi+x2+ ... +x,=nh"l.

The state on £ is the map m: ¥£—(0,1) which satisfied the following
conditions:

i) m(1)=1

i) if a€ % for i€ N, aLa for i#], then m (V)= m(a).

i=1 =1

If x is an observable associated with a logic %, then the map m.: B(R')—
{0, 1), Ev> m(x(E)) is a probability measure on B(R"). A o-homomorphism t of
a logic is the map t: ¥— £ which has satisfied the following conditions:

i) ©1(0)=0
ii) t(aY)=(t(a))* for all ae &

iii) if a;e £ for ie N, then t (Va,)=Vr(ai).
i=1 i=1

Let x be an observable associated with a logic £, m be a state on ¥. T is said to
be an x-measurable o-homomorphism iff T(x(B(R"))) = x(B(R")). It is said to be
an invariant o-homomorphism iff m(t(a)) = m(a) for all a € . If moreover from
t(a) = a it follows that a € {0, 1}, then T is said to be an ergodic homomorphism.

If T is a o-homomorphism of a logic &, x an observable associated with %, it is
evident that tx: B(R')— ¥, E—1t(x(E)) is an observable associated with £.

If t; is a o-homomorphism of a logic £ fori=1, 2, ..., n and x is an observable,
then if T.x are pairwise compatible observables, we shall write the sum of them in
the shortened form as follows: Tix+Tex + ...+ T.x=(t1+ 1.+ ... + T.)x. By the
symbol 1 we shall denote an identical o-homomorphism on <.

2. Maximal ergodic theorem on a logic

The two first assertions of this part are proved in [1]. The Theorem 8 and
Theorem 9 are the main assertions.
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Lemma 1. Let x be an observable. A homomorphism t: £— & is x-measurable
iff there is a Borel measurable transformation T: R'— R' such that tx=xT™".

Lemma 2. Let x be an observable. If a homomorphism t: ¥— ¥ is x-measura-
ble, then for the above transformation T we have t"x=xT", neN. If 1 is an
ergodic homomorphism in a state m, then T is an m.-measure preserving
transformation from R' into itself.

From the proof of Lemma 2 it follows that if T is an invariant homomorphism,
then T is a measure m,-preserving transformation.

In order to prove certain assertions we need in addition a part of Lemma 6.7,
from [3]. Let us present it as Lemma 3.

Lemma 3. Let a,be ¥, & being any logic. The following statement are
equivalent:

a) aeb

b) there exist an observable x and two Borel sets A and B of the real line such
that x(A)=a and x(B)=b.

Lemma 4. Let x be an observable associated with a logic &£, let m be a state on %,
feLi(m.). Let E, Fe B(R") such that x(E)=x(F). Then

I f xedm. = [ f xedm,.

Proof:Let E, Fe B(R"). Since x(F) Lx(F°) and x(F)v x(F°) =1 it follows that
x(E-F)=x(EnF°)=x(E)Ax(F)=x(E)Ax(F)*=x(E)Ax(E)*=0 and then
m.(E — F)=0. Analogically m.(F — E)=0, which implies m,(EAF)=0. Func-
tions fxe and fyr are equal almost evrywhere, which proves the lemma.

Lemma 5. Let X be a nonempty set, & be a o-algebra of subsets of the set X. Let
fit X>R', i=1,2, ..., n be $-measurable functions. Let F: X— R", uw (fi(u),
f2(u), ..., fo(u)). Let h: R"—> R’, (uy, uz, ..., Un)—>(ur+ u2+ ...+ u.). Then

i) F':  BR"Y->Y, E->{ueX; (fi(u), fu),...,f.(w)eE} is
a o-homomorphism

ii) ff'=F'n;' fori=1,2,...,n

iii) F*h'=(fi+fo+...+f)""

Proof: Straightforward

q.e.d.

Let & be a o-algebra of subsets of a set X. Let E€ ¥, E; € ¥ for i € N. If we put
E*=E°, \7E,~ = CJ E;, then & is a logic with the first element @ and the last element

i=1 i=1
X.If f: X— R' is a $-measurable function, then f~': B(R')— & is an observable
associated with a logic &. For the sum of observables of this type the following
assertion is valid.
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Lemma 6. Let ¥ be a o-algebra of subsets of a set X. Let fi: X—> R,
i=1,2,..., n be $-measurable functions. Then

D =(h e )T

Proof: The assertion of Lemma 6 is a straightforward consequence of the
preceding lemma and of the definition of the sum of the compatible observables.
q.e.d.

Lemma 7. Let x be an observable associated with a logic ¥. Let f;: R'—> R,
i=1, 2, ..., n be Borel measurable functions. Then

xff‘+xfz_l+...+“Xf;1=x(fl_l+f2_1+---+f;1)'

Proof: Because of xfi'(E)ex(®B(R') for i=1,2,...,n and for any
E € B(R"), the observables xfi', xf;', ..., xf.' are mutually compatible (see
Lemma 3). Let us denote x=F~!, where F, F~" are the maps from Lemma 5. Due
to Lemma 5, fi'=xn;' for i=1,2, ..., n and then fi'+ f5'+ ...+ fi'=xh"1.

Let us denote x*=xx. Evidently x*: B(R")— ¥ is a o-homomorphism.
Moreover the following is valid

wi =xww  =xf i=1,2, ..., n.
From the definition of the sum of compatible observables we have

xfit+xfil L xft =wh T = x (U L ).
q.e.d.
Theorem 8. (Maximal ergodic theorem.)
Let ¥ be a logic, x an observable associated with a logic £. Let m be a state on %,
T an x-measurable o-homomorphism on ¥ which is invariant in a state m. Let
feLi(m.). Let us denote

Q= \"/(1+1:+ T X0, + ).
k=1

Then there is E € B(R") such that x(E)=Q, and [ f yedm, Z0.

Proof: Firstly we proof that xf™', ©xf™?, ..., t©*"'xf™' are pairwise compatible
observables associated with a logic £. Due to the x-measurability of the T we get
consequently  t“(x(AB(R"))) =1 "'(2(x(B(RY)))) = ' (x(B(R))) = x(B(RY)).
Hence t* is an x-measurable o-homomorphism on ¥.

Evidently t*xf (B(R")) = t“x(B(R")) and then due to the x-measurability of t*

vxf(E) € x(B(R"))
and

vxf'(F) e x(B(R"))
for 0Si=k=n and for all E, Fe B(R"). From Lemma 3 we have t“xf '(E) &
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txf~!(F), which implies t“xf~' <> ¥'xf'. Let T: R'— R" be a transformation from
Lemma 1. Let us denote
Ex={xeR'; f(x)+f(Tx)+ ...+ f(T*'x)=20}.
By application of Lemmas 1, 6 and 7 it follows consequently
x(E)=x(f+fT+...+fT* ") (0, +») =
=x(f'+ (D) +...+ (T) )0, + o) =
=x(f 4 T 4 o+ TH)(0, +@) =
= (xf M4+ xTf " + o+ XT-6DF1)(0, +0) =
=(Of " +axf 4T )0, + o) =
=1+t+...+7 )xf (0, +»).
Let E={xeR"; 3k=n: f(x)+ f(Tx)+...+ f(T*'x)=0}. It is easy to see that
E= L"J Ei and then

x(E)=x ('QEk) = k\Zx(Ek) = k\i/—l(l +T+ ..+ )xf (0, + ),

that is x(E) = Q.
Due to Lemma 2 the transformation T is measure m.-preserving. By application
of the classical maximal ergodic theorem we have

| f xedm. 0.
q.e.d.

The direct consequence of Theorem 8 is the following assertion:

Theorem 9. Let &, x, m, © be as in the preceding theorem. Let a € R'. Let us
denote

QW= \/ (L +1+ ...+ )xf(a, +).
k=1

Let E € B(R") be such that x(E) =Q®@, Then | f xedm, = am (Q).
Proof: It is easy to see that f™'(a, +»)=(f—a) (0, «). Hence

QW=\V@+t+.. .+ )x(f—a) (0, +).

k=1

Due to theorem 8 it follows | (f — a) yedm, =0. After a short arrangement we have

[ f xedm. = ajxadm, = am(x(E)) = am (Q®).
q.e.d.
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