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RIGHT COMPOSITIONS OF SEMIGROUPS

STEFAN SCHWARZ

Let S be a semigroup containing a minimal left ideal. Then S contains a kernel K
which is a union of all the minimal left ideals of S. If a is any element of S, then
K - a is a left ideal of S but not necessarily a minimal left ideal of S.

In connection with some questions concerning random walks on semigroups
prof. L. Schmetterer asked me some years ago to characterize those semigroups for
which K - a is a minimal left ideal of S for all a € S.

In this paper we first show that such semigroups can be described as right
compositions of a special type of semigroups (denoted in this paper as U,-semigr-
oups).

The converse problem is the following : Given a family of U,-semigroups we have
to decide whether they admit at least one right composition (which is then
a semigroup of the desired type).

Though there is a general method how to proceed in concrete cases (see [3]), the
solution of this question in reasonably simple terms seems hopeless. Hence we
restrict our considerations to some special cases.

For convenience we define:

Definition. A semigroup S containing a minimal left ideal (hence a kernel K) is
called a W;-semigroup if for any a € S the product K - a is a minimal left ideal of S.

Example 1,1. A simple semigroup containing a minimal left ideal is
a W;-semigroup.

Example 1,2. The semigroup S ={a, b, c, d} with the multiplication table

|a b ¢ d
ala a ¢ c¢
bla a ¢ c
cla a ¢ ¢
dla a ¢ d



contains two minimal left ideals L, = {a}, L,={c}. The kernel is K={a, c},and §
1s a W-semigroup.

Example 1,3. If Sisa W,-semigroup and E is a right zero semigroup, then the
direct product S X E is again a W,-semigroup.

Example 1,4. Recall that a left ideal of S is called universally minimal if it
is contained in every left ideal of S. A semigroup containing a universally minimal
left ideal is a W,-semigroup.

Semigroups of the type mentioned in Example 1,4 will be of decisive importance
in the whole of this paper. We define therefore:

Definition. A semigroup containing a universally minimal left ideal will be
called a U;-semigroup.

Note that the minimal left ideal L of a U,-semigroup S is the kernel of S and L
itself is a left simple semigroup.

We first give some necessary conditions which a W,-semigroup must satisfy.

Let S be a W,-semigroup and K = JL,, where {L,},.unis the set of all minimal

left ideals of S. For a fixed @ e M denote S, ={x|x €S, Kx=L,}, hence KS, = L,.
Clearly S=J, cmS, and S,.nS; =@ for a# .

The set S, is a left ideal of S. For, K(SS.)=(K S)S.=K S.=L,, hence
S-S, S,. In particular, we have S$3S. < S. for any pair a, f3.

Clearly L, <= S, and L, is the unique minimal left ideal of S contained in S,. For
any a €S,., L.a is a minimal left ideal of S contained in S,, hence L.a=L,.

We finally show that L, is the universally minimal left ideal of S.. Suppose that
L. is any left ideal of S, and a’ € L. We then have: L,=L.a'c L,L,cS,L,c L.,
hence any left ideal of S, contains L,.

We have proved:
Lemma 1,1. If S is a W, semigroup, then S can be written as a union of disjoint

U,-semigroups: S= |J S., where S.Ss = S; for any pair a, f € M.

aeM

In Example 1,2 we have S=S,US,, where S,={a, b} and S,={c. d}.

Conversely :
Lemma 1,2. If a semigroup S can be written as a union of disjoint U,-semigr-

oups: S=|J T., and T,T; c Ty (for any pair a, B € M), then S is a W,-semigroup.
aeM .

Proof. Denote by L, the kernel of T,. We have T,L.=L, and SL,=

{U TV}TQLGC T.L.=L,. Therefore L, is a left ideal of S, hence a minimal left

ideal of S (since it is minimal even in T,).
The family {L,}, . is exactly the set of all minimal left ideals of S. For, if L is
a minimal left ideal of S, there exists some a € M such that T,nL+#@. Since LNT,
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is a left ideal of S (and the more a left ideal of T,) we have L,c LNT,,i.e. L,c L.
Since both L and L, are minimal left ideals of S, we conclude L,=L.
It follows that K= |J L, (the union of all minimal left ideals of S) is the kernel

veM

of S. For any b € S, say b € Ty, we have Kb =< U L)b = |J (L,b). Since (for any

veM veM
veM) L,b is a minimal left ideal of S contained in T;, we conclude Kb =L,.
Hence S is a W,-semigroup.
Yoshida [4] and Petrich [3] introduced the following notion:
Definition. Let {S,},.m be a family of pairwise disjoint semigroups. We shall
say that the family {S,} has a right composition if we can define on S= ] S, an

veM
associative multiplication (denoted by %) such that S,«Ss = Ss for a+ 3, while the
multiplication in each S, remains unaltered.

S is then called a right composition of the family {S,}. Given {S,} no right
composition need exist or several right compositions may exist.

In this terminology Lemma 1,1 and Lemma 1,2 imply:

Theorem 1,1. A semigroup S is a W,-semigroup if and only if S is a right
composition of U,-semigroups.

Remark. A U,-semigroup S with the kernel L is right indecomposable, i.e. it
cannot be written in the form of a union of two subsemigroups S=T,uT,,
T:nT,=0, where T, T, T,, T,T,c T,. Since ST,=(T\wT,)T,=T*uT,T,cT,,
and analogously ST, = T, both T, T; are left ideal of S. Since L is the minimal left
ideal of S we have L= T,, L = T, contrary to the assumption T,nT,=0.

The following follows directly from the proof of Lemma 1,2.

Lemma 1,3. Let {S,},m be a family of disjoint U,-semigroups and L, the kernel
of S,. If {S,} has a right composition S = | J S., then each L, is a minimal left ideal

veM

of S and K= |J L, is the kernel of S.

veM

Suppose, as a special case, that one of the kernels L, in Lemma 1,3 contains an
idempotent, hence L, is a left group. Then the kernel K of S, contains a minimal
left ideal and an idempotent, hence it is completely simple. This implies that all L,,
v eM, are left groups, and all are isomorphic one to each other.

We state this explicitly:

Corollary 1,1. If a family of U,-semigroups {S.},.m has a right composition and
one of the kernels L, is a left group, then all L, are left groups and all are isomorphic
one to the other.

It follows, e.g., that two left groups which are not isomorphic cannot have a right
composition.

The situation is quite different if we replace the words “left groups” by “left
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simple semigroups”. It is well known that there exist simple semigroups S
containing a minimal left ideal in which the minimal left ideals are not isomorphic.
(The first such example has been given by M. Teissier, see [1].) Any such
semigroup is, of course, a W,-semigroup.

2

The foregoing considerations lead in a natural way to the following problem.
Suppose that S,, S; are two disjoint semigroups (not necessarily U,-semigroups).
We have to find all right compositions of S, and S (if such exist). This problem has
been studied in [4] and in a modified presentation in [3]. The procedure roughly
described is the following.

Denote by A(S,) and A(Sg) the semigroup of left translations of S, and S,
respectively. Find a homomorphic mapping @ of S, into A(Ss) and a homomor-
phic mapping ¥ of S; into A(S.) (if such exist). For a € S,, b € Sg write explicitly
D:a—->@ e A(Ss) and W: b—>y® e A(S.). To obtain a right composition S =
S.USs put

axb=@*(b), bxa=vy"(a).

Unfortunately, owing to the necessary associativity of multiplication, @ and ¥
cannot be arbitrary. They have to satisfy two rather complicated conditions
concerning the (individual) elements ¢, ¥* (for any a, b). Any right composition
is obtained if @ and W are chosen in accordance with these conditions.

This is a very complicated procedure. The special case of S,, Sz being
U,-semigroups seems not to have much influence on simplifying the procedure just
described.

Hence we do not choose this approach. We prefer to consider some classes of
semigroups in which a construction in a reasonably simple manner is possible or the
non-existence of a right composition can be easily verified. Hereby we shall be
interested primarily in U;-semigroups.

The following Lemma is known. (See [3], p. 68.) We sketch the proof since the
notations introduced here will be used in the sequel.

Lemma 2,1. Let {S,},.m be a family of pairwise disjoint isomorphic semi-
groups. Then the family {S,} has at least one right composition.

Proof. Suppose that 1 € M. For every v e M let @, be a fixed chosen isomorph-
ism of S, onto S,. Define the mapping S.— Sg by @.s = @2 @s, i.e. for a € S., we
put a@.s =a@;'@s =[a@:']ps € Sg. Then @q is an isomorphism and for any a € S,
we have

AQasPpy = AP PoP5 ' Py = APZ' P, = AQuy .
(Hereby @ua is the identity mapping of S, onto S,.) The set of mappings {@.}
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satisfies Qas@Psy = Pay- With this set of functions {Pw} we now define for any a € S,,,
b € S, (including the case a =f)

axb=(ag.)b .
It is a routine matter to verify that this multiplication is associative. Hence with this

multiplication |J S, is a right composition of the given family {S,}.
veM

Remark 1. It is easy to see that |J S, is isomorphic with the direct product
veM

S, X E, where E is a right zero semigroup and card E =card M.
Remark 2. Suppose that in Lemma 2,1 the semigroups {S,} are (isomorphic)

left groups. Then the right composition S=|(JS, constructed in Lemma 2,1 is

a completely simple semigroup. This semigroup has a special property. If e, is an
idempotent of S,, then @,s(e,) is necessarily an idempotent of S;. If e, =e2€ S,,
es=e}e Sy, then e, xes = Qup(€a) - € = Qap(e.). (We have used the fact that any
idempotent of a left group L is a right identity of L.) Hence the product of two
idempotents in S is an idempotent. It is well known that this need not be true for
every completely simple semigroup. Hence the method used in Lemma 2,1 does
not give all right compositions (even if ¢, run over all possible isomorphisms
S;—S,). (This can be, of course, easily understood from the point of view of the
Rees-matrix description of a completely simple semigroup. We shall not enter into
a detailed description of this situation.)

Lemma 2,1 together with Corollary 1,1 implies:

Lemma 2,2. A family of left groups has at least one right composition if and only
if the members of the family are pairwise isomorphic.

Remark 3. It should be once more emphasized that Lemma 2,2 does not hold
if the words “left groups” are replaced by the words “left simple semigroups™. At
this writing I have no idea how to decide (in reasonably simple terms) under what
conditions two non-isomorphic left simple semigroups without idempotents have
a right composition.

Yoshida [4] has proved that a family of pairwise disjoint semigroups each with
a right zero has at least one right composition.

This may lead to the suspicion that two U,-semigroups with isomorphic kernels
have at least one right composition. Example 2,1 below shows that this is not true.

We show this in a larger context inspired by a reasoning of Lallement—Petrich in
[2].

Suppose that S,, Sg are two disjoint semigroups containing an identity element &,
and g respectively. (Hence S,, S are monoids.) Suppose that they have a right
composition S =S,USs.

If x €S., the mapping x> xgg is a homomorphism of S, into Ss. For, if x € S,,
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y € S.., then xeuyes = xyes. [ This follows from the fact that ye, € Sg, hence gye,; =
yep-|

Also if x€S,, the mapping x> xgs€, is a homomorphism of S, into S,. As
a matter of fact if x€S,, y€S,, we have Xx&st, Y€€, = XE4(EaY) EpEx = XERYEE, .
Since yes € Sg, we have yeg = ggy€s, SO that X€s€, * YEREL = XYERE,.

We have

Sugﬁga o= Sﬁgu < Su ’ ( l)

and the inclusions here may be proper.

We now introduce the following class of monoids.

Definition. (Petrich [3].) A monoid is called right unit-reductive if the identity
map is the only (inner) right translation which is also a homomorphism.

(In a monoid all right translations are inner. The kernel of such a semigroup
cannot be a group.)

Lemma 2,3. If S, and Sy are right unit-reductive monoids, then a right composi-
tion S,uSy exists if and only if S,, Sg are isomorphic monoids.

Proof. With respect to Lemma 2,1, it is sufficient to prove the necessity. For
a € S,, the mapping a— agg, is a homomorphism of S, into S.. By suppostition
£3€, = €. The relation (1) implies Sye, = S.. Analogously we obtain S.e5 = Sg. Let
a€S,, beS;. The homomorphism W.: S,—S; defined by arag and the
homomorphism y,: Sy — S, defined by b— be, are mutually inverse one-to-one
mappings since

Vg Vha
a — agg ©—> AEE, = A, =da .

Hence S., Sg are isomorphic semigroups.

Example 2,1. Consider the semigroups S,={e, a, b} and S,={E, A, B, C})
with the following multiplication tables:

b
b
a
b

A
A
A
B

AT >m

B

Both are U,-semigroups with a unit element and a kernel isomorphic to the
two-element left zero semigroup. S, is right unit-reductive since the right transla-
tions Q., O» are not homomorphisms. We have, e.g., ea - ba#(eb)a and eb -
ab# (ea)b - S, is right unit-reductive since the right translations g, gs, Oc are not
homomorphisms. We have EA-BA#(EB)A, EB- AB¥(EA)B and EC-
AC+(EA)C.
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Since S, and S; are not isomorphic, S, and S, cannot have a right composition.

Remark 4. Suppose that S, and S; are left simple semigroups without idem-
potents. Adjoin an identity element &,, & to S, and S; respectively. Then S}, S} are
right unit-reductive semigroups. The semigroups Ss, Sj have a right composition if
and only if S}, S} are isomorphic, hence if S., Sy are isomorphic.

Comparing with Remark 3 we see that a rather trivial modification (adjunction
of an identity element) substantially changes the situation.

Remark 5. In the general theory of right compositions as developed in [3] the
constructions simplify considerably if we suppose that the semigroups S,, ve M,
are right cancellative. For U,-semigroups this condition is rather uninteresting since
the following assertion holds:

Assertion. A right cancellative U,-semigroup is a left group.

Proof. Let S be a U,-semigroup with kernel L. The semigroup L is left simple
and right cancellative. It is well known (see [1]) that this implies that L is a left
group. Denote by e an idempotent of L. Then L = Se. Suppose for an indirect
proof that S— L+ and let xe S — L. Then xe € L and since e is a right unit of L
we have xe - e = xe. By supposition this implies xe =x, hence x € L, a contradic-
tion. Therefore S=L.

3

Let {S,}.embe a family of pairwise disjoint U,-semigroups. We denote by L, the
kernel of S, and we suppose that all L,, ve M, are isomorphic left groups.

In this section we give a “‘reasonably simple” sufficient condition under which
the family {S,} has at least one right composition. (See Theorem 3,1 below.)

If e, = e%€ L,, then the mapping S, — L, defined by a > ae, (a € S,) is a mapping
of S, onto L, which leaves the elements of L, fixed.

Letbe a€S,, beSs, a+f, e,=e2eL,, eg=eje Ly. The following is a natural
way how to try to define a product a «b. We first project a into L,, b into Lg (i.e.
we consider ae, € L,, beg € Lg). Next we introduce for the family of isomorphic
semigroups {L,}, cs the set of isomorphisms { ¢, } defined in Lemma 2,1. Hereaf-
ter we define

axb=(ae,) Qs " beg .

Since (ae.)@ap is contained in Ly, further Lg - b = Lg, and e; is a right unit of Ly,
this is equivalent to define

axb=(ae,)QPas ' b (2)

We have to check the associativity.



If ceS, and a# B, B#y, we have

(a *b)*c=[(ae,,)(Paa ’ b]*c=[(aeﬂ)(pﬂﬂ ’ b](pﬁy C=
= (a€a)@ay - (bes)@py " C;

a *(b *c)=a *[(beﬂ)(pﬂv ’ C]=(aea)(pﬂv ’ (beﬁ)(pﬂy tC.

Hence (axb)xc=ax(bxc).
The same is true if §=1y. In this case (with b’ € Sg) we have

a *(b *b')=(aea)q),,p - bb' ,
(a *b)* b' = [(aea)(paﬂbeﬁ] xb' = (aea)(pagbegb' . (3)

Since (ae.)@as * b € Ly we have (ae.)@asbes = (aea)@as - b, and the term on the right
hand of (3) is (ae.)@asbb’.

Unfortunately if a=f and a, a'€S,, we have (axa’)+b=(aa'e.)@us " b,
ax(a'xb) = ax[(a'e)@us bl = (a€.)@Pas (a'€)Pas b = (a€aa’e:)Pap - b
= (ae.a')@as - b. (The equality ae.a’e, =ae,a’ holds since ae,a’ € L,.)

Hence the associativity law for the multiplication holds if for any a, BeM

(aa’ea)@ap + b =(ae.a")pas - b

(a,a’'€S., beS).
In particular putting b = ¢ we must have (aa’e,)Qas = (a€,a") @as. Since Qg is an
isomorphism of L, onto L, this implies aa’e, =ae,a’ for any a, a’' € Sa, ea € L,.
Conversely, if aa'e, =ae.a’ holds, then (axa')xb=ax(a’'+b).
Clearly the mapping x — xe,(x € S, e, € L,) leaves the elements of L, fixed and it
is an endomorphism of S, if and only if xye, = xe,ye, = xe,y for any x, y€S,.
We have proved:
Lemma 3,1. Under the suppositions introduced above the multiplication on

U S, defined by (2) is associative if and only if for each v e M, the mapping

veM
x—xe,(x€S,, e,=e2eL,) is an endomorphism of S, onto L.

Lemma 3,2. If for some idempotent e € L, the mapping x> xe is an endomor-
phism, then the same is true for any idempotent e' € L,.

Proof. Let be x, y €S,. The equality xye = xey implies (putting y =e') xe'e =
xee'. Since e, e’ are right units of L,, we have xe =xe' for any x € S,. Hence
(xe")y =(xe)y =(xy)e=(xy)e'".

Definition. Let S be a U,-semigroup with the kernel L. An endomorphism h of
S onto L is called an L-endomorphism if h leaves the elements of L fixed.

Lemma 3,3. Let S be a U,-semigroup the kernel of which is a left group L. Any
L-endomorphism of S is of the form x> xe, x€S, e=e’e L.

Proof. Let there be x€ S, e=e?*€ L, and h an L-endomorphism. Then xe € L,
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hence h(xe)= xe. This implies h(x)h(e)=xe and since h(e)=e and h(x)eL, we
have h(x)h(e)=h(x), hence h(x)=x -e.

Example 3,1. The mapping x+~ xe need not be an endomorphism. Consider,
e.g., the U-semigroup S={e, a, b} with the multiplication table

b
b
a
b

None of the right translations @,, g, is an endomorphism. We have, e.g.,
0.(eb)=0.(b)=ba =b, while g.(e)o.(b)=ea - ba=a.

Lemma 3,1 may be formulated as follows:

Lemma 3,4. The multiplication on | S, defined by (2) is associative if and only

veM
if each S, has an L,-endomorphism.

This implies :

Theorem 3,1. Let {S,},.m be a family of U,-semigroups, whereby the kernels of
all S, are isomorphic left groups. Suppose that each S, has an L,-endomorphism.
Then there exists at least one right composition of this family.

As a special case consider the case of each L, being a group with the identity
element e,. Then (for x € S,) the mapping x+> xe, is an L,-homomorphism since
(for any x, y €S,) we have ye, =e,ye,, whence xye, = x(e,ye,) =(xe,)(ye,). This
implies :

Theorem 3,2. Let {S,},em be a family of U,-semigroups. Suppose that the
kernel of each S, is a group. Then there exists at least one right composition of this
family if and only if all the kernels are isomorphic groups.

Remark 1. The semigroups S, in Theorem 3,1 are exactly those semigroups
which are ideal extensions of a left group L determined by a partial
homomorphism.

The usefulness of Theorem 3,1 is underlined by the fact that there is a very
simple method to decide whether a U,-semigroup with a completely simple kernel
has an L-endomorphism.

Theorem 3,3. Let S be a U-semigroup the kernel of which is a left group L
Denote by E the set of all idempotents of L. Then S has an L-endomorphism iff for
every x € S we have card (xE)=1.

Proof. L can be written as a union of disjoint groups: L = | T.. Denote by &,
aeA

the identity element of T,, so that E={e,|a € A}.
a) Necessity. By the proof of Lemma 3,2 if x+> x€,(v € A) is an L-endomorphi-
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sm, and x € S, we have xg, =xg, for all ¢, a € A. Hence xE is a one-point set
(depending, of course, on x).

b) Sufficiency. Suppose that the condition is satisfied. Let x, y € S and & any
element of E. Consider the product xesye;. The element yes is contained in
a subgroup of L, say, yes € T,. Hence &,yes = yes. By supposition xgg = xg,. Hence
x€py€s = X€,y€s = xy€g. This shows that x—xg is an L-endomorphism of S.
Theorem 3,3 is proved.

Example 3,2. Consider the following two U,-semigroups S, and S,:

Here (in both cases) L =E ={a, b} - S, has an L-endomorphism since card (cE) =
1, S, has not an L-endomorphism since card (cE) =2.

Remark 2. If a U,-semigroup S contains a left (or two-sided) identity element,
then S does not have an L-endomorphism unless L is a group.

Remark 3. If S is, e.g., a regular semigroup to find card (xS) it is not necessary
to consider all x € S — L. It is sufficient to check only the idempotents contained in
S —L. For, any x € S has an idempotent right identity: x = xe,, and xE =x - (¢,E).
If card (e,L)=1, then card (xE)=1. If card (e.L)>1, an L-endomorphism does
not exist.

We conclude with one example using Theorem 3,1 and the multiplication (2).

Example 3,3. Consider the semigroups S, and S, given by the multiplication
tables:

Iabcd A B C
ala a a a AlA A A
blb b b b B|{B B B
cla a ¢ c ClA A C
dla a d d

Here L,={a, b}, L,={A, B}. Both semigroups have an L-endomorphism.
Choose the isomorphisms @2 and @21, as @2={a—>A, b—B} and ¢,;={A—a,
B—b}. Next put in (2) e;=a, e;=A. We then have, e.g.,
d*c=(d . a)q),z . C=a(p12 . C=AC=A ,
C*dz(C'A)¢21'd=A(p21' d=a ‘ d=a .
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In this manner we obtain a right composition S=S,US, described by the
multiplication table:

a b cd A B C
ala a a a A A A
blb b b b B B B
cla a ¢c ¢ A A A
dla a d d A A A
Ala a a a A A A
Blb b b b B B B
Cla a a a A A C
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IMPABBIE KOMITO3ULIMH TTOJIYTPYIII
Stefan Schwarz

Pesome

IMycte S — nonyrpynna, conepxaiasi MUHMMaJbHBIA JNEBbIA Haean, ciegoBatenbHo — saapo K.
H3yuaercs crpoeHue S B ciydae, KOraa a7s Kaxaoro a € S nesolif uaean K - @ — MUHUMalbHBIH JIeBbIHA
ugean S. B aToM cnyyae S — o6beUHEHHE HenepeceKarouIuxcs Nonyrpyni :

S=US.,, veM.
Ilpu 3ToM S.Sg = Sg rnst Besikux a, f € M M sapo nonyrpynnel S, €CThb MpocTasi CjieBa MoJyrpynna.

PaccmaTpHBalOTCS ToXe YacTHbIE CllydaH JOBOJIBHO CIOXHON 0OpaTHOM 3ajaud. 3agaHa cucTeMa
nonyrpynn {S.}, v €M, ¢ HEKOTOPBIMH €CTECTBEHHBIMH OTPaHHYEHUAMH. B MHOXeCTBe

Us.=s

veM

TpebyeTcs ONpene/uTh YMHOKEHHE (He MeHsIsl YMHOXKeHHE B S,) Tak, YToObI S SABAsUIaCh NONYrpyNmnon,
B KOTOpOH HMeeT MecTo S.Sp < Sp nnst Besikux a, f e M.
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