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COMPACTTFICATIONS 
OF PARTIALLY ORDERED SETS 

JUDITA LIHOVA 

In [1], the notions of a compact set and a compactification of a partially ordered 
set were introduced. It was proved that the ordinal sum of any two-element chain 
and (P, ^) is a compactification of (P, ^) provided that (P, ^) is a partially 
ordered set without the least element. Further, a necessary condition for the 
existence of a compactification of a partially ordered set with the least element was 
given. In this paper it is shown that this condition is also sufficient for the existence 
of a compactification. 

Terminology left undefined here may be found in [2]. 
We suppose that (P, ^) is a partially ordered set (a poset for short) with the 

least element 0, which is called the zero. 
1. Definition. We say that a subset S of (P, ^ ) has the finite lower bound 

property (the f.l.b.p. for short) if every finite subset of S has a nonzero lower bound 
in P (i.e. a lower bound different from the zero of P). The poset (P, ^ ) is said to be 
compact provided that every its subset with the finite lower bound property has 
a nonzero lower bound. 

Remark. It is evident from the foregoing definition that the subset having the 
f.l.b.p. does not contain the zero. 

2. Definition. By a compactification of (P, ^ ) , we mean a couple 
((O*, ^ * ) , (p), where (Q*, ^*) is a compact partially ordered set and cp is 
a mapping P—>0* with the following properties: 

(1) If a, beP, then a^bocp(a)^*(p(b). 
(2) (p(0) is the zero of Q*. 
(3) (p preserves all existing suprema and infima of subsets of P, except the zero 

infima of infinite subsets of P with the finite lower bound property. If S is an infinite 
subset of P with the f.l.b.p. and inf S = 0, then q)(S) has in Q* a nonzero infimum. 

Remark. The infimum of a subset S of a poset (R, ^) is mostly denoted by 
infRS. But the denotation inf S is also used when no confusion is likely to arise. 

Every finite poset is evidently compact, hence solving the problem of the 
existence of the compactification of (P, ^ ) , we can confine to the case of P being 
infinite. 
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If S is a subset of P with the f.l.b.p., then by Zorn's Lemma there exists a subset 
of P maximal with respect to the f.l.b.p. and containing S. The following statement 
is proved in [1]. 

3. Theorem. If Mis a subset of P maximal with respect to the finite lower bound 
property, then inf M exists. If inf M = pJ=0, then p is an atom in (P, ^ ) and 
M={xeP:x^p}. 

Denote by M the system of all subsets of P maximal with respect to the finite 
lower bound property with zero infima. With respect to our object we can suppose 
that Mi=0. In the opposite case P would be compact. Let M = {Mh: heH}. Set 
S?(H) = {H^H:HX±Q, inf (n{Mh: h eHx}) = 0}. 

4. Definition. A set H, from $f(H) is called saturated if Hx contains all hxeH 
such that Mhl^n{Mh: heHi}. 

Obviously the set {h} belongs to £f(H) and it is saturated for every h eH. If 
H,e£f(H), then H\ = {h'eH: n{Mh: h eH,} c A ^ X ^ H , ) is the unique satu­
rated set from £f(H) with the property n{Mh: heH[} = n{Mh: heH{}. 

Let <f'(H) = {H' e£f(H): H' is saturated}. Denote by Q the disjoint join of 
P and £f'(H) and define a relation ^ in Q as follows: 

^ is the extension of the partial order given in P and of the set-inclusion in 

ifxeP, H'e£f'(H), thenx^H' if and only if x = 0, and H' ^x if and only if 
xen{Mh: heH'}. 

5. Theorem. The above defined relation ^ in Q is a partial order. If 
((Q*, ^ * ) , cp) is a compactification of (P, ^ ) , then the mapping cp has an 
extension cp*: Q-+Q* such that a ^b (a, b eQ) if and only if cp*(a) ^*cp*(b). 

Proof. The first part of the statement is evident. Let ((Q*, ^ * ) , cp) be 
a compactification of (P, ^ ) . Let cp* be an extension of cp such that cp*(H') = 
inf0. cp(n{Mh: heH'}) for H' e£f'(H). The property (3) of cp ensures that the 
last infimum exists and it is nonzero. We prove that a^b (a, b e Q) if and only if 
cp*(a) ^*<p*(b). If a, be P, the statement is evident. Suppose that a = H'e £f'(H), 
beP.We have to show that H'^bii and only if infQ. cp(n{Mh: h e H'})^*cp(b). 
The implication H ' ^ b =>inf0. q)(n{Mh: heH'})^*cp(b) is evident. Now, sup­
pose that inf0* cp(n{Mh: heH'})^*cp(b) and H ' ^ f c . Then there exists h0eH' 
such that b £ M^. The maximality of M^ implies the existence of a finite subset K 
of M^ with infp (Ku{b}) = 0. Thus, infQ. cp(Ku{b}) = 0. On the other hand 
i n f o - q ^ M O ^ * MQ.cp(n{Mh: heH'})^*cp(b) and M0.cp(Mh<))^*(p(k) for 
every k e K, hence intQ*q)(Mho) is a nonzero lower bound of cp(Ku{b}) in Q*. We 
have a contradiction. 

Let now aeP, b=H'e£f'(H). If a ^ H ' , then a = 0, hence evidently cp*(a)^* 
cp*(b). Assume <p(a)^*inf0.<p(n{M,.: heH'}). Then a is a lower bound of the 
set n{Mh: heH'} in P. Since infP(n{Mh: rieH'}) = 0, it must be a=0, which 
follows a^H'. 
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Finally, let a = HleS?,(H), b=H2eST(H). Suppose that cp*(a)^*(p*(b), i.e. 
iniQ.cp(n{Mh: heHx})^*infQ.(p(n{Mh: heH2}). Take xen{Mh: h eH2}. 
Then infQ.q>(n{Mh: heHl})^*q)(x), which follows, with respect to the above 
proved, Ht^x, i.e. xen{Mh: h eHx}. We proved n{Mh: h eH2} cz 
n{Mh: heHi}. Considering that H2 is saturated, we have HicH 2 . 

The proof of the following Theorem resembles that of the compactness of the 
]3-cover of a completely regular topological space (cf. [3]). 

6. Theorem. The above defined poset (Q, ^ ) is compact. 
Proof. Let S cz Q have the f.l.b.p. If S czP, then S has the f.l.b.p. in P. Suppose 

infPS = 0. Then there exists h0eH with S cz M^. Evidently {h0} is a nonzero lower 
bound of S in Q. 

Let Sn^(H) = {Hi'.ieI}, li=0. Set T = (SnP)u(u{n{Mh: heHi}: iel}). 
To show that T has the f.l.b.p. in Q, let K be a finite subset of T. If K cz SnP, then 
K has a nonzero lower bound in Q, by the assumption. Let 
Kn(v{n{Mh: heft}: iel}) = {yu ...,yt}, / ^ l . Then for every je{\, ...,/} 
there exists /, e I such that y} e n{Mh: h eHh}, i.e. Hi} ^y7. By the assumption, the 
set (KnSnP)u{H,1, ..., Hi,} has a nonzero lower bound in Q, and this is 
a nonzero lower bound of K, too. Since T cz P, T has the f.l.b.p. also in P. Let M be 
a subset of P containing T and maximal with respect to the f.l.b.p. By 3, infPM 
exists. Set p = infPM. p is a lower bound of n{Mh: h e Ht} for every i e I and since 
infp(n{Mh: heHi}) = 0, we havep=0. Therefore M = Mho for some h0eH. Since 
TczM^ and {/z0} e #"(H), {/i0} is a lower bound of T in Q. To show that {/i0} is 
also a lower bound of S in Q, it is sufficient to prove {h0} cz H{ for every / e I. Take 
any iel. If Jten{M„: heHi}, then {/I0}^JC, which follows xeM^. Therefore 
n{Mh: heHi} czM^. As H, is saturated, we have h0eHi. 

Consider the following condition for (P, ^ ) : 
(a) If Mis a subset of P maximal with respect to the finite lower bound property 

and infpM = 0, then Mis closed under the existing nonzero infima of its subsets. 
By 3, this condition is equivalent to the following one : 
(a) If A(czP) has the finite lower bound property and infPN = p=£0 for some 

Ncz A, then Au{p} has also the finite lower bound property. 
The following Theorem is proved in [1]. 

7. Theorem. If (P, ^ ) has a compactification, then (P, ^ ) satisfies (a). 
We prove the converse. 
8. Theorem. Let (Q, ^ ) be the poset constructed above, i the identical 

mapping P-+Q. If (P, ^ ) satisfies (a), then ((Q, ^ ) , i) is the minimal compac­
tification of (P, ^ ) . 

Proof. It is evident that the mapping i has the properties (1), (2) from 
Definition 2 and it is suprema-preserving. Let A czP, infPA =p=»-=0. We show that 
if H' e tf'(H) is a lower bound of A in Q, then H' ^p. Let H' ^a for every aeA. 
Then A czMi, for every h eH', whence, by (a), pen{Mh: heH'},\. e. H ' ^ p . Let 
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now AczP, infPA=0. If 0 is the unique lower bound of A in Q, too, then 
inf0A = 0. Assume that H' e ^'(H) is a lower bound of A. Then A cz Mh for every 
heH', hence A is infinite and has the f.l.b.p. Let H1 = {heH: AczM,.}. Then 
Hi e &"(H) and evidently Hi = infQA. We proved that ((Q, ^ ) , i) is a compactifi-
cation of (P, ^ ) . The minimality of ((Q, ^ ) , t) follows from Theorem 5. 

* . • . . 

o 

0 
Fig. 1 

ò*t* .. 

Fig.2 

9. Example. Let P = {aij: iJeN} u {b0: f,/eN}u{0} (N is the set of all 
positive integers). Define the relation ^ on P as follows: if f, /, k, / G N , then 

fliy^flfc/Of^k, / ^ / , 
bij^bkjoi^k, / = /, 
bij^auoizzk, / < / , 
fliy^bfc/-

0^f l 0 , bi, 
(cf. Figure 1). It is easy to verify that (P, ^ ) is a lattice. Maximal with respect to 
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the f.l.b.p. are the sets Ml = {aij: i, jeN}, Mk = {ai;: /, jeN, j^k} u 
{bitk-i: ieN} for k^2. We have infMi = 0 for every ieN, hence H = N. 
Obviously ^(^^{H^H: Hx±0,card H^Ko}, Sf'(H) = {{h} : heH}u{{l, 2, 
..., k}: keN, k^2}. The diagram of the above constructed (Q, ^ ) is shown in 
Figure 2. 

In what follows we suppose that (P, ^ ) fulfils (a). We shall investigate some 
properties of the above-mentioned compactification ((Q, ^ ) , t) of (P, ^ ) . 

10. Theorem. Every non-void subsystem of the system &"(H) has an infimum in 
(O, ^ ) . 

Proof. Let 04= {Hr / e I }c#" (H) . First, assume that n{Hr iel}=0. Then 
evidently infQ{H.: iel} =0. Now, let H0 = n{Hr iel}4=0. Take any i0el. 
The relation HocH^ implies n{Mh: h G H J czn{Mh: h eH0}, whence 
infp(n{M„: h eH0}) = 0. Hence H0etf(H). Suppose that n{Mh: h e H0} c M^ for 
some h0eH. Then also n{M/,: heH{} c M ^ for every iel and since every H{ is 
saturated, we have h0eH0. We proved that H0eSf'(H). Then evidently H0 = 
inf0{H: iel}. 

The following example shows that not even finite subsystems of Sf'(H) have 
a supremum in Q, in general. 

11. Example. Let (P, ^ ) be a poset of Figure 3. Obviously (P, ^ ) is a lattice. 
There are three subsets of P maximal with respect to the f.l.b.p., Mx = 
{a-r. ieN}v{b-r. ieN}, M2 = {a-t: ieN} u {c-t:ieN}, M3 = {a-,: ieN} u 
{a ; : /6N}. There is infpM! = infPM2 = 0,infpM3 = a1. Hence H = { 1 , 2}, &>'(H) = 
{{1}, {2}}. Upper bounds of the set {{1}, {2}} in Q are just the elements of the 
set MinM2 = {a-r ieN}. Since the set {a-t: ieN} has not the least element, 
supQ{{l}, {2}} does not exist. 

Based on Theorem 10, we have: 
12. Corollary. If (P, ^ ) is a lower semilattice, then (Q, ^ ) is also a lower 

semilattice. 
13. Corollary. If (P, ^ ) is a complete lattice, then (Q, ^ ) is also a complete 

lattice. 
Proof of Corollary 12. It is sufficient to show that any two elements from Q, 

at least one of which belongs to P, have an infimum in Q. If x,yeP, then there 
exists infP{jc, y} by the assumption and since ((Q, ^ ) , t) is a compactification of 
(P, ^)wehaveinfP{jc, y} = infQ{jc, y}. Let jceP, H' eSf'(H). If {JC, H'} has no 
lower bound in &"(H), then evidently 0 = info{jc, H'}. Suppose that H'I^JC, 

HI ^H' tor some H[ e <f'(H). Set H'0 = {h eH': x eM,}. It is easy to verify that 
H'0eSf'(H) and H0 = info{jc, H'}. 

Proof of Corollary 13. Since the greatest element of P is also the greatest 
element of Q, it is sufficient to show that every non-void subset of Q, which is not 
disjoint from P, has an infimum in Q. If 0£X={xt: iel} c P , then, by the 
assumption, there exists JC 6 P with JC = infPX. If X is an infinite set with the f.l.b.p. 
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and x = 0, then H' = {heH: X c K } evidently belongs to ST(H) and H' =inf0X. 
In the opposite case (i.e. if it does not hold that X is an infinite set with the f.l.b.p. 
and JC = 0) , there is infPX = inf0X. Take 0±{x{: ie 1} c P , 0 + {H\: je J} cz 
5^'(H)andset Y={xt: iel} u {H-: je J}. By what we have already proved, there 

0 
Fig. 3 

exist elements u,veQ such that u=inf0{jcl-: iel}, v =infQ{H-: /eJ} . Using 
Corollary 12 we obtain that there exists weQ with w = infQ {u, v}. Then evidently 
w = inf 0 Y. 
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КОМПАКТИФИКАЦИИ ЧАСТИЧНО УПОРЯДОЧЕННЫХ МНОЖЕСТВ 

1ио'Иа \.\\юуа. 

Резюме 

В работе продолжается изучение компактификаций частично упорядоченных множеств. 
Показывается, что необходимое условие для существования компактификаций частично упо­
рядоченного множества, данное в работе [1], является также достаточным. 
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