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INITIAL AND BOUNDARY VALUE
PROBLEMS FOR nth ORDER DIFERENCE
EQUATIONS

RAVI P. AGARWAL

1. Introduction

In recent years there has been considerable interest in the theory and construc-
tive methods of solutions of difference equations satisfying some boundary
conditions, e.g., see [1—3, 8—12 and references therein]. In particular following
the methods of Seda [14] for continuous problems, Eloe [9] has discussed the
existence and the uniqueness of solutions of the noth norder difference equations
together with multi-point boundary conditions. In this paper we shall consider the

nth order difference equation
A(e()A™ 'u(t)) =f(t, u(t), Au(t), ..., A" 'u(t)), te I(0, N) (1.1)

and use shooting type methods to prove the existence and the uniqueness of
solutions satisfying two point boundary conditions. These methods have been

analysed successfully for the continuous problem in [7, 13, 15].
In the following, for two nonnegative integers p and q (p<gq), I(p, q)

represents the discrete set {p, p+1, ..., q}, whereas I(p)={p, p +1, ...}. For any

function g(¢) the sum i g(s)=0. The (r)™ is the usual factorial notation and
s=q

stands for r(r—1) ... (r—m+1) with (0)*”=1. Finally, Au(t)=u(t+1)—u(t).

In (1.1) the function f is assumed to be defined on I(0, N) X R", the o(t) is

defined and positive for all ¢ € I(0, N + 1). With these assumptions the solution of

(1.1) can be constructed inductively once the initial conditions
Au(0)=A,, O0<isn-1 (1.2)

are prescribed. However, this is not the case if we seek the solution of (1.1)
together with some boundary conditions, e.g., see [1].
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2. Basic Lemmas

Lemma 2.1. [4, 5] Let u(t) be some function defined on I(t,) = I(0). Then, for
0<k=<p-—1, tel(t,) the following identity holds
t—p+k

Aku(r)= 2(‘“‘3()' A’u(t.)+ﬁ S == nerranuts).

Lemma 2.2. Let u(t) be some function defined on I(0, n + q), and A'u(0) =g,
0<j<n—1. Further,

(i) if §>0,0<j<n-—1 and A" 'y(t)>0 for all t e I(0, q + 1), then A*u(t)>0
for all teI(0,n+q—k), (and hence A*u(t) is strictly increasing for all
tel(O,n+q—k)) 0<sk<n-2

(i) if =0, 0<j<n-—2, then

A*u(t)=0 forall tel(0,n—k—2) 2.1

Afu(n—k—-1)=¢,.,,0<k<n-1 )
also, if A"'y(t)>0, telI(0,q+1), then A*u(t)>0 for all tel(n—k—1,
n+q—k), 0<k<n-2 and for such t that

u(t)s% (t—nk + 1A (1), I<k<n—2. (2.2)

Proof. From lemma 2.1 (p=n—1, t,=0), for all 0<k<n—2, we have

t—n+k+1

Atu(t)= 2 (t)(‘k)i 13—2)! 2 (t=s =) PATY(s)

s=0

2.3)
and hence if >0, 0<j<n-—1 and A" 'y(t)>0 for all telI(0, q+1), then
A*u(t)>0 aslongas t—n+k+1<q+1,ie., t<q—k.

From part (ii), the equality (2.3) reduces to the following

A*u(t) :(n——li—-—2)! I_:Z:H (t—s—1)"*=2A 1y (s) (2.4)

and from this (2.2) immediately follows. Further, if A" 'y(t)>0 for all
teI(0, g + 1), then, from (2.4), A*u(t)>0aslongas 0<t—n+k+1<q+1,ie.,
tel(n—k—-1, n+q—k).

Finally, to prove (2.2), once again from lemma 2.1 (p =k, k=0, t,=0), we have

1 t—k
u(t) =(k_—_1—)_? s=r§<—l (t=s—=1)*VA*u(s), 1<sk<n-2. 2.5)

Since, A*u(#)>0 and strictly increasing for all teI(n—k—1,n+q—k), 1sk<
n—2, from (2.5) we find
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T, (50N = ;S AG=9) 80 =

s=n—k—

u(t)<

= — L (= s)®keiAku(t) = (1= + k+ 1)0AR()

Remark 1. Throughout lemma 2.2 the strict inequalities can be replaced by
less than or equal to inequalities.

3. Comparison results

Theorem 3.1. Assume that
(i) f(t, uo, uy, ..., u,) is nondecreasing in u, u,, ..., U,—, for a fixed t € I(0, N)
(ii) v(t) and w(t) are defined for all t e I(0, N +n) and for all t € I(0, N) one of
the inequalities

A(e(D)A*w(D))<f(t, v(1), Av(t), ..., A" (1)) (3.1)
Al (DA 'w(t)) =f(t, w(t), Aw(t), ..., A" 'w(t)) (3.2)
is strict.
(iii) Av(0)<A*w(0),0<k<n-1. (3.3)

Then, for all te I(0, N+ n —k)
AR (1) <A*w(t),0<k<n-1. (34)

Proof. From lemma 2.2 it suffices to show that for all teI(0, N+1) the
inequality A*~'y(t) < A"~'w(t) holds. For this, let us assume that r e I(1, N+ 1) be
the first point where A" 'y(t)=A""'w(t). Then, from lemma 2.2 for all
tel(0,n+r—k—-2), Av(t)<A*w(t), 0<k<n-2. Thus, in particular for all
O0<k=<n-—1, A*v(r—1)<A*w(r—1). However, from the inequalities (3.1), (3.2)
we have

A(e(r=DA™'w(r=1))—Ae(r— DA "y (r—1))>
>f(r—=1, w(r—1), Aw(r—1), ..., A" 'w(r—1))—
—f(r—1, v(r=1), Av(r—1), ..., A"y (r = 1))
and hence from the nondecreasing nature of f, we find

Alo(r—1DA 'w(r—1))—A(e(r— 1A 'y(r-1))>0,
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which is the same as
o(NA"'(w(r)—v(r))>o(r— DA ' (w(r—1)—v(r—1)). (3.5)

Since o(t)>0 for all teI(0, N+ 1), inequality (3.5) implies that A" 'w(r)>
A" 'y(r). This contradiction completes the proof.

Corollary 3.2. Let the conditions of theorem 3.1 be satisfied with strict inequal-
ity in both (3.1) and (3.2). Further, let u(t) be the solution of the initial value
problem (1.1), (1.2) and A*v(0)<A.<A*w(0), 0<k<n-—1. Then, for all
teI(0, N+n — k) the inequality A*v(t)<A*u(t)<A*w(t) holds.

Corollary 3.3. Assume that the conditions (i) and (ii) of theorem 3.1 are
satisfied, and A*v(0)<A*w(0), 0<k<n-2 and A" 'p(0)=A"'w(0). Then,
A*v(t) <A*w(t) for all te I(0, N+ n — k) and in particular for all te I(n —k — 1,
N+ n —k) the strict inequality A*v(t)<A*w(t), 0<k<n—1 holds.

Lemma 3.4. Assume that q;(t), 0<i<n—1 are defined and nonnegative on
I(0, N). Then, for all a>0 the solutions of the initial value problems

A@OA™ (1) = a (A1) (36)

Av(0)=0,0<i<n—2
A"y (0)=a>0

have the property that A*v(t) =0 for all t € I(0, N + n — k) and in particular for all
tel(n—k—1, N+n—k) the strict inequality A*v(t)>0, 0<k<n—1 holds.

Proof. Let rel(1, N+1) be the first point where A"y (t) <0, then from
lemma 2.2, A*v(t)=0 for all t€I(0, n+r—k—2) and in particular A*v(r—1)=
0, 0<k=<n —2. However, from the difference equation (3.6), we have

(3.7)

n—1
o(NA"y(r)=o(r—1DA" y(r—1)+ 2 q(r—1DAv(r—1)>0.
1=0
This contradiction completes the proof.
Theorem 3.5. Assume that

(i) g(t, uo, uy, ..., un—yy is defined for all (t, uo, s, ..., un.-1) € I1(0, N) X R and
nondecreasing in uo, Ui, ..., U,—, for a fixed t € I(0, N), also for A >1

Ag(t, o, Uy ..y Un—r)<g(t, Ao, AUy, ..., Au,_,)
(i) for a fixed teI(0, N) and u;eR,, 0<i=n-—1

n—-2
f(t, Uo, Uy ...y un—l)?g(t, Ugy, Uy -. oy un—l)+l(t)u0+ 2:1 q'(t)ul

where q,(t)=0, 1<i<n -2 and I(t) are defined on I(0, N) and
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n—2 (i)!
10+ 3 00 =0 (3.8)
(iii) u(t, 0, B) is the solution of (1.1) satisfying the initial conditions
Au(0)=0,0<isn-2,A"'y(0)=8

(iv) there exists a solution v(t, 0, a) of the difference equation

A(e()A (1)) =g(t, v(t), Av(2), ..., A" "v(1)) +(Dv(e) + Eqi(t)A‘v(t)
(3.9)

satisfying the initial conditions A'v(0)=0, 0<i<n-—2, A" 'w(0)=a>0
such that A""'y(t,0, a)>0 for all te I(0, N+1).
Then, for all te I(0, N+ n —i)

os%‘f Aiv(t, 0, a) <Aiu(t, 0, B),0<i<n—1 (3.10)

where €=0 and PB—-e=a. In particular A'u(t,0,8)>0 for all
telln—i—-1,N+n—i),0<i<n-1.

Proof. Since A"'y(¢,0,B)>0 for all teI(0, N+1) and Av(0, 0, B)=0,
0<i<n-—2,lemma 2.2 ensures that A'v(¢, 0, ) =0 for all te I(0, N+n —i) and
in particular the strict inequality holds for all teI(n—i—1, N+n—i), 0<i<
n — 1. Thus, it suffices to show that B;{;A‘v(t, 0, a)<A'u(t,0,B),0<i<n-1
holds for all ¢ € I(0, N + n —i). For this, we define a function ®(¢), t e I(0, N+ n)
as follows

®(1) = ut, 0, ﬁ)—ﬁa;e v(t,0, ).

Then, A'@(0)=0, 0<i<n-—2 and A"'$(0)=¢e>0, and from lemma 2.2 and
remark 1 note that we need to prove A"'@(t)=0 for all teI(0, N+1). Let
rel(1, N+1) be the first point where A""'¢d(t)<0. Then, from lemma 2.2,
A*®(t)=0 for all tel(0,n+r—k—-2), 0<k<n-—1. Hence, in particular
A*u(r—1)=0, 0<k=<n—1. Since, o(t)>0 for all teI(0, N+ 1), we have

A(o(r—DA'd(r—1)=o(nA"'d(r)—o(r— 1A 'd(r—1)<0.
(3.11)

Next, using the conditions on the functions and the inequality (3.11), we
successively obtain

fr=1u(r—=1), Au(r—1), ..., A" 'u(r—1))=A(e(r— DA 'u(r—1))=
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= Ale(r= DA a(r— 1)+ L2 AGp(r— )au(r - 1)<

<B=E A(r- 1A u(r- 1)) =

;g[g(r— Lo(r=1), Av(r=1), ..., A'p(r= 1)+ I(r— v(r— 1)+

+'Z_12q,»(r— DA (r— 1)] <

<g(r—1, ﬁ v(r 1), B Av(r—l) %A"“v(r—l))+

B—¢
a

+ [1(r—1)v(r—1)+§q,(r—1)Afv(r—1)]s
<f(r—1,u(r=1), Au(r=1), ..., A" 'u(r—1))—I(r—Du(r—1)—

gq,(r— DAu(r—1)+

+[3;£ [l(r-— Dov(r— 1)+22q,(r— DAv(r— 1)] =

=f(r—=1Lu(r=1), Au(r=1), .., A" 'u(r=))=I(r=1)P(r—1)—
—Ezqi(r— DAD(r—1)<
<f(r—1,u(r—=1), Au(r—1), ..., A~ 'u(r—1))—

-[10-0+F L= o -1y,
which is not true from (3.8) and the fact that @(r—1)=0. This contradiction
completes the proof.
Corollary 3.6. Assume that u(t, 0, B) be the solution of (1.1) satisfying the
initial conditions A'u(0)=0, 0<i<n-2, A" 'y(0)=p, and let for a fixed
teI(0,N) and ,eR,, 0<i<n-—1

n—1
f(t, Uo, tyy oy Unsr) =D, qu(t)u;
1=0

where q.(t)=0, 0<i<n-—1 and defined on I(0, N). Then, the conclusion of
theorem 3.5 holds.

Proof. In view of lemma 3.4 we see that all the conditions of theorem 3.5 are
satisfied.
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4. Boundary value problems

Theorem 4.1. In addition to the assumption (i) of theorem 3.5, we assume that
(1) for a fixed teI(0, N) and ;= w;, 0<i<n-—1

f(t’ Uo, Uiy ..y un—l)—f(t, L_lo, l_ll, cesy d,._lé
n—2
?g(t, Ug— L-l(), u, — L_ll, ey U1 — 12,._1)"' l(t)(uo_‘ 120) + E q,»(t)(u,— - a,)
i=1

where /() and q,(t), 1 <i<n —2 are the same as in condition (ii) of theorem 3.5.
(2) for each a>0 the condition (iv) of theorem 3.5 holds.
Then, the difference equation (1.1) satisfying the boundary conditions

Au(0)=A;,0<i<n-2 4.2)
Au(N+n—-q)=B,, 0<q<n-—1 and fixed 4.2)
has a unique solution.

Proof. Let A denote the vector (A,, Aa, ..., An-2) and u(t, A, v:), i=1,2 be
the solution of (1.1), (4.1) and A"'u(0, A, y:)=v:. For v,>v,, we define
w(t, A, vy, Y2)=u(t, A, 1) —u(t, A, v2), then w(t, A, v, y.) is the solution of the
initial value problem

A(e(NA™'w(t, A, v1, v2)) = F(t, w(t, A, 11, v2), Aw(t, A, 71, 72), ...
A™w(t, A, 11, 72)) (4.3)
Aw(0, A, 11, 72,)=0,0<i<n-2
A"'w(0, A, 11, ¥2) =Y1— 12>0
where
F(t, w(t, A, v1, 72), Aw(t, A, Y15 Y2)s .-, &7 w(t, A, 71, ¥2)) =
=f(t, w(t, A, 1, v2) +u(t, A, v2), Aw(t, A, v, v2) +
+Au(t, A, 72), ...A"'w(t, A, y1, Y2) +
+A 'y, A, 7)) —f(t, u(t, A, v2), Au(t, A, y2), ..., A" 'u(t, A, v2)) .
By (1) the function F satisfies the conditions of theorem 3.5. Thus, for the solution
w(t, A, v, v2) of (4.3) and v(t, 0, a) of (3.9) with y,—y.>a >0, we find
0<L=22 A (1,0, ) SAW(L, A, 71, 12), 0Si<n—1,1€1(0, N+n—i)

and A'w(t, A, y1, .)>0 for all tel(n—i—1, N+n—i).
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Thus, in particular AW(N+n-—q, A, y,, v2)=A%U(N+n—gq, A, y,)—
A'u(N+n-—gq, A, v,)>0. Hence, for a fixed y,e R, we get lim Au(N+n—

q, A, y))== and for a fixed y,eR, lim Au(N+n—gq, A, y,)= —. This
vz =

implies that A"u(N+n—gq, A, y) — B, is a continuous function of y and its range
must be the whole real line R. Hence, there exists a y* € R such that A‘u(N+n —
q, A, y¥)=B,. This u(t, A, y¥) is a solution of the boundary value problem (1.1),
(4.1), (4.2).

Next, we shall prove the uniqueness of the solution. For this, let u,(t) and u,(¢)
be two solutions of (1.1), (4.1), (4.2). Since the solutions of the initial value
problems (1.1), (1.2) and are unique, it is necessary that A"~'y,(0)# A"~ 'u,(0).
Without loss of generality we can assume that A" "'y, (0)=a,>a,=A"""u,(0).
Then, as in the existence proof we easily arrive at the inequality A%u,(t) — A%u,(t) >
0 for all tel(n—q—1, N+n—gq) and in particular A%U,(N+n—q)>
A%u,(N + n —q). This contradiction completes the proof of the theorem.

Corollary 4.2. Let us assume that for a fixedt e (0, N) andu, = iz, 0<i<n-—1

n—1
f(h uOv ul’ RS ] un—l) _f(t’ aO’ al’ ceey an—l)zz qx(t)(uz - an)
=0
where q.(t1)=0, 0<i<n -1 and are defined for all t € I(0, N), (in particular f is
non-decreasing in all w,, 0<i<n —1). Then, the boundary value problem (1.1),
(4.1), (4.2) has a unique solution.
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