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ON AN ASYMPTOTIC BEHAVIOUR
OF SOLUTIONS OF THE DIFFERENTIAL
EQUATION OF THE FOURTH ORDER

JOZEF MIKLO

In the paper presented an asymptotic behaviour of solutions of the linear
differential equation of the fourth order of the form

y®+p(0)y"+q()y’ = (=1)"r()y=0, m=12 (E)

is investigatesd. Five Theorems and five corresponding Corollaries and two
examples are shown.

Throughout the paper the functions p(t), r(t) and q(t) will be supposed
continuous and continuously differentiable to the order which stands in the
Theorems and r(t)>0 on the interval [a, »).

Asymptotic and oscillatory properties of the differential equation

y®+a(t)y' +b(t)y=0 (a)

were studied in papers [5, 6, 8, 9] and elsewhere. The form (a) is the so-called
second canonical form of the linear differential equation of the fourth order
(see [4]).

The aim of the present paper is to show asymptotic formulae of the first
canonical form

y®+p()y"+q(t)y' +r(t)y=0 (b)

of the linear differential equation of the fourth order. Equation (E) is a special case
of equation (b).
In paper [4] it is proved that if the differential equation

" l —
b4 +10 p()z=0 (c)

has a solution z(t) #0, then the differential equation (b) can be transformed into
the form (a). Since such functions p(t) will be considered that will not be known
whether the equation (c) has a nonzero solution, the asymptotic behaviour of
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solutions of the equation (b) will be studied. Some results can be found in [3] under
the condition |p(t)—a|—0 as t— », where a is a positive constant.

The paper gives new results on the asymptotic behaviour of solutions of equation
(b). Some of them (Theorem 1 and 4) generalize the results in [8].

The equation (E) is equivalent to the system of linear differential equations of
the first order

Z'(=A(0)z(1) (S
where
0 1 0 0
0 1 0
av=| o 0 1
(_l)mr(t)’ _q(t)’ —P(‘), 0

and z(6) =(y(2), y'(6), y"'(1), y"""(1))".
Let T(¢t) be a diagonal and nonsingular matrix. If we change z(t) by setting
z(t)=T'(t)w(¢) and subsutitute in (S), we obtain

w' () =[T(OANT () + T (OT'(O]w() . (1)

The form of system (1) depends on the matrix T(t). For the following purpose we
choose the matrix T(¢) in the form

T(t)=dia [r3"(t), rl/2(t)’ rl/A(t)’ 1] .
Then the system (1) has the form
w' (1) =[Aor*(t) + A,q(O)r~2(t) + Ap (D) r~"4(1) + Asr ' () r' (D)]w(t) , (2)

where A;=dia [%, %, %, 0] and Ao=(a;), A:=(b;), A,=(c;) are the matrixes of

the fourth degree such that a,, = a,3=as=1, as1 =(—1)" and all the others a; =0;
b; =0 for i#4, j¥2, bspa=-1; ¢; =0 for i#+4, j¥3 and ci;=-1.

Let j r'’4(t) dt = « ; then the function s = w(t) =J’ r'#(t) dt has the derivative

o'(t)=r"4(t)>0, and so w(¢t) has an inverse function ¢ = a(s) defined on [0, «).
Putting t = a(s) we get

x'(s)=[Ao+ Aif(s) + A2g(s) + Ash(s)]x(s) , (3)

where

x(s)=w(a(s)), f(s) =q(a(s))r>*(a(s)),
g(s)=p(a(s))r"*(a(s))
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and
h(s)=r'(a(s))r**(a(s)) .
The system (3) is a special case of the linear system
x'=(Ao+ V(s)+R(s))x . 4)

There is proved a following theorem for the system (4) in [1], p. 92:
Theorem L. ([1], p. 92) Let A, be a constant matrix with characteristic roots y;,

j=1, 2, ..., n, all of which are distinct. Let the matrix V be differentiable and
satisfy

JGIV'(S)| ds <o

V]

and let V(s)—0 as s— x. Let the matrix R be integrable and let
IG|R(s)| ds<o .
[}

Let the roots of det (Ao+ V(s)—AE)=0 be denoted by A(s), j=1, 2,

Clearly, by reordering the y; if necessary, lim A;(s)=y;. For a given k, let

ey N

Dy;(s)=Re (A(s) — 4;(s)) .

Suppose all j, 1=j=n, fall into one of two classes I, and I,, where

jel, if J‘D,‘,-(o) do—>® as s>
[

and

7
J Dk,'(o) do>—-K (SZESIEO) N

jel, if j "Dy(0) do<K (5;25,20),

where k is fixed and where K is a constant. Let p, be a characteristic vector of A,
associated with u., so that

Aopk = UkPk -

Then there is a solution @i(s) of (4) and a s,, 0=s5,< such that
ll_rg @«(s) exp [—J‘s Me(0) da] =px .
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If the hypothesis is satisfied for all k, 1=k =n, then @i(s), k=1, 2, ..., n form
a fundamental system of solutions of (4).

The following theorem will also be needed.

Theorem II. (Hinton [2]) Let r(¢)>0 on an interval [a, «) and r"(t)/r'*' "(t) be
in L[a, »), where the symbol L[a, ©) will refer to the set of all complex-valued
functions which are Lebesgue integrable on the interval [a, «), for n=1, 2, ...
Then

(i) r'~(t) is not in L[a, =)
@Gi) [r'(e)/r'*V"(¢)]’ is in L[a, «)
(iii) [r'()/r'*"*(0)])? is in L[a, ).

Applying Theorem I to the system (3) we obtain the following theorems.
Theorem 1. (i) Let r"(¢e)/r*(t), q'(t)/r¥*(t), q*()/r*(t), p'(¢)/r'?(t) and
p*(t)/r¥*(t) be in L[a, ).
Then there is a fundamental system of solutions z:(t), k =1, 2, 3, 4 of the system
(S) and ty=a such that
lim T(¢)ze(£)r=5(¢) ex [—Jﬂ (u r”‘(r)—&—pﬂ—(—l)’" i q(r) ) dr] =
m k P .\ k 4 rm(r) 4 rl/Z(T) Pk -
(5)
(ii) If in addition we suppose that r'(t)/r(t) is in L[a, ), then there is

a fundamental system of solutions z(t), k=1, 2, 3, 4 of the system (S) and ty=a
such that

tim TOz(0) exp | = [ Gurs(0) -5 FiT -
_(_I)M%zr?fgg_—)) dt]:pk, (6)

where . are the roots of the characteristic equation u*—(—1)" =0 of the matrix
Ao and p.=(1, W, ui, ui)T are the characteristic vectors of the matrix A,.
Proof. We show that all hypotheses of Theorem I for the system (3) are

satisfied.
The characteristic equation of the matrix A, is

u—(-m"=0, m=1,2. (7)

The roots of (7) are H1.2=\/L§ié, U3, 4= —%t% for m=1and u, .= *1,

~s.a=xifor m=2. So the characteristic roots of the matrix A, are distinct. The
vectors px = (1, e, pui, ud)™, k=1, 2, 3, 4 are characteristic vectors of A, corres-
ponding to p.
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(i) Denote
V(s)=Af(s)+ A2g(s) + Ash(s) and R(s) =0
in the system (3).
In order to be J: |V'(s)| ds <= it is sufficient to prove that

[(1r@lds<e, [lg'e)ds <o and ["Jh) ds <.
0 0 0

If we put a(s)=t, then from the definition of the functions f(s), g(s) and h(s)
there follows

[C1re) as = [ latanr> a6l ds=

ds=

= ["|[a'@enr>*atsn -3 atats)rats)riae)]a)

s [le ool ad [Tlaororola.

The first integral is in L[a, «) by hypothesis. By apply the Cauchy inequality to the
second integral we get

[ lawr @@l de=[la@r= ] @@ s

s[[[awrwa] " [[ corora”,

since q*(t)r~**(t) is in L[a, ) by hypothesis and r'(t)r=>*(¢) is in L[a, ©) by
Theorem II of point (iii). Therefore f If'(s)] ds < oo.

0
Similarly (by hypothesis and by Theorem II) we get

[Tl as = [ lpasnra)r) ass
= ["lp@r @l de+s [ p@yr @) des
I 2 ).
<[l @) a2 [ [ poyr @y al -
J Al ]
: [ f " (r (1) dt] " o
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and

[ r'(a(s))

rs"(a(S))]' [ 0

r5/4(t)]lldt<oo .

ds=Jm

J:Ih’(s)l ds =J:

Consequently f | V'(s)] ds <.
0
Similarly we get

[ e as=["q0r= @ dr<=,
[ gy as=[ o ar<e,

j “h(s) ds = f IO OF de< oo
0 a
Since f'(s) and f*(s) are in L[a, ») then f(s)—0 as s — ®. By the same way we get
g(s)—0 and h(s)—0 as s— . Therefore V(s)—0 as s— o,
Evidently f |R(s)| ds < because R(s)=0.
()

The characteristic equation of the matrix Ao+ V(s) is

P(l)=l4+all3+a212+a3l+a4=0, (8)
where
3 11
al=_§h9 a2='i'gh2+gv
——i 3_§ _é 2_2 —(—_1\m
as= 32h 4gh+f, a,,—sgh 4fh (=)™ .

Since f(s)—0, g(s)—0, h(s)—>0 as s—> o we get that a,—0, a,—0, a,—0,
a;— —(=1)" and P(A(s))—>u*—(—1)" as s— . Hence the roots A(s) of (8)
converge to the roots of (7). Thut we may write for s €[0, »)

A(s)=u+96(s),

where 8(s)— 0 as s —» ». In order to find whether the hypotheses of Theorem I are
‘'satisfied we show that the function 8(s) may be written as a sum

6(s)=B(s)+v(s), (10)
where B(s) = c,f(s) + c2g(s) + c;sh(s) for some numbers ci, ¢, ¢; and y(s)—0 as
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s— o and y(s) is in L[0, »), Then $(s)—0 as s > » (because f(s)—0, g(s)—0,
h(s)—0 as s—>®) and y(s)—0 as s— o (this follows from (10)).
Substituting A(s)=pu + B(s) + y(s) into (8) we get

P(u+B(s)+y(s) =y +[4(u+p) +a]y’+
+[6(u+B)*+3(u+B)ar+as]y’ +
+[4(u+B)’+3(n+B)ai+2(u+ P+ asly + P(u+4)=0,  (12)
where
P(u+pB)=p*+(4u+a,)B>*+(6u*+3ua, +a,)p*+
+ (4u*+3ua, +2ua, + as)p + P(u) .
The equation (12) may be written as
Y(s)H(s)=—P(u+B(s)) , (14)
where
H(s)=y’+[4(u+B) +a,]y*+[6(u+B)* +3(u+B)ar+ar]y +
+4(u+B)+3(u+B)a+2(u+Pa+as.

Since a,(s)—0, ax(s)—0, as(s)—0, B(s)—>0, y(s)— 0 as s— = then H(s)— 4u>
as s— o, If i, k=1, 2, 3, 4 are the roots of the equation (7), then H,(s)—4u3 as
s—>®,
Thus for every £ >0 there is a number s,€[0, ©) such that

|[4ui—He(s)|<e for se[so, ).

From this it follows that

[Hi(s)>4|ui| —e=4—¢ (16)
because |ui|=1. If we put e=1, then from (14) and (16) we get
3|7 ()| <|P(ux + Be(s))|, k=1,2,3,4 for se€[so, ®). 17)

Put Be(s) in P + Be(s)) such that
4p3u(s) =3 h()ui+ g+ () =0,
ie.
Bu(s)=3 ()~ () — (-1~ B (o),
then P(u, + Bi(s)) is in L[0, ); (because each term of P(u + Pu(s)) consist of
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functions f* or g* or h* or fg or hg or hf, which are in L[0, »)) and consenquently
from (17) it follows that y,(s) is in L[0, ).
The roots A(s) of the equation P(1)=0 may be written as

M) = e +3 () =B () = (1) B () 4 (o)

where , are the roots of the equation u*—(—1)"=0, m=1, 2.
Then D, =Re (A(s)—4;(s)) for all k,j=1, 2, 3, 4 may have the following
forms

a) Dy=G(s)

b) D,=c+F(s)+ G(s)

¢) Diy=—c+F(s)+ G(s)
where ¢ >0 is a constant, F(s), G(s) are functions such that F(s)—0, G(s)—0 as
s— o and G(s) is in L[0, ).

In the case of a) j € I, because of G(s) being a continuous function on [0, «) and

f Dy;(s) ds =f G(s)ds<

0 0

it follows that there exists a number K >0 such that
szki(s) ds<K forall 0=5,=s,.

In the case of b) jeI,, since F(s)—0 as s — %, the exists a number s’ €[0, ®)
such that for every number s>s’ there is

c+F(s)+ G(s)§§+ G(s)
Then
| Dus) ds=["(c+F)+ G(s) ds ==
since
[{5vo) =
and

ISZD,(,-(S) ds>—K forall s,=5,=0 and some K>0.
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In the case of c) j € I,, because from F(s)— 0 as s — o it follows that there exists
a number s" €[0, ») such that

—c+F(s)+G(s)< —§+ G(s) ontheinterval [s”, ©)
and .
Lka,-(s) ds =J'0m(—c+F(s)+G(s)) ds<f(—§+ G(s)) ds=—o
and also
KZD,(,-(S) ds <K forevery s,=s5,=0
and some K>0.
Thus all assumptions of Theorem I are satisfied, so that there are four linearly

independent solutions x.(s), k=1, 2, 3, 4 of (3) and a number so, 0= s, < ® such
that

x(s) exp [—r M(0) dO]—-)pk as s—®, ie.

: 3 r'(a(9)) _fu _p(a(a))
Xk(s)exp[ f (Uk 8r5"‘(a(0)) 4 ruz(a(a))

- bk _q(a(0)) oo
-(-1) 4 r_:;/«t(a(o))'*'yk(o)) dO’]—)pk as §—ox.

Denoting exp [ j Yi(s) ds] =b,, the formula (18) may be written as

wi(£)r=8(t) exp [—f

to

(e = PO qym Bk (D)) 1
4

4 rl/4(.t) r1/2(r)
— pibir¥(ty) as s—> o,

Since w(t) = T(t)z(t) and the system (3) is a linear one, there are solutions zx,
k=1, 2, 3,4 of the system (S) with properties (5). Hence part (i) is proved
completely.

(i) To prove the second part of Theorem 1 we denote

Via(s) = Aif(s) + A29(s) and Rs(s)=Ash(s)
in the system (3).

77



The integral f [Ry(s)| ds is in L[0, ®), because
0

f:lh(s)l ds=f|r'(t)r—l(:)| dt < oo

by hypothesis.
The matrix Vi,(s) is the special case of the matrix V(s), therefore

j |Via(s)| ds<® and Viy(s)—0 as s— .
0
The characteristic roots of the matrix Ao+ Vy,(s) have the form

M) =~ g(5) = (=1 EE f(5) +1u(s).

k=1, 2,3, 4.
Thus all assumptions of Theorem I are satisfied. Then there are four linearly
indespendent solutions x,(s) of (3) and a number so, 0=s,<  such that

x«(s) exp [—J: (uk—&ﬂgﬂl,

4 r"*(a(o))

_ (=1 4k _q(a(9) ) ]

(=1 4 r3/4(a(0))+Yk(0) do|—p as s>>.

By a similar procedure as the assertion (5) we get the assertion (6).
Putting in the system (3)

(1) Vis(s)=A,f(s)+ Ash(s) and R,(s)=A.g(s)

(i) Vi(s)=A.f(s) and Ry(s)=A.g(s)+ Ash(s)
we obtain

Theorem 2. (i) Let r'(£)r=>%(t), q'()r=>*(t), q*(t)r=>'*(t) and p(t)r~"*(¢t) be in
L[a, »).

Then there is a fundamental system of solutions z:(t), k=1, 2, 3, 4 of the system
(S) and a number t,, ty=a such that

!HE T(t)zk(t)r‘”(t) exp [ _[’ (ukrm(r) — (—l)"‘ %‘2‘ '——r?,gzz)) dl’] =Pk -

(i) If in addition we suppose that r'(t)r~'(t) is in L[a, ), then there is
a fundamental system of solutions z(t), k =1, 2, 3, 4 of the system (S) and t,=a
such that
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lim TO2(0) exp [ - [ (ar ()= (-1 & 5 de=p,

where w. and p, are the same as in Theorem 1.
Denoting in the system (3)
(l) V23(5)=A29(S)+A3h(8) and Rl(S)=A1f(S)
((i1) Va(s)=A.g(s)and Rys(s)= A:f(s)+ Ash(s)

we get

Theorem 3. (i) Let r"(¢t)r=54(t), p*(t)r=>*(t), p (t)r'”zt) and q(t)r-"*(t) be in
L[a, ).

Then there are four linearly independent solutions z(t), k=1, 2, 3, 4 of the
system (S) and a number to=a such that

lim T (0r*@) exp | = [[ ()~ B ae] =

(i) If in addition we suppose that r'(t)r~(t) is in L[a, ), there are four linearly
independent solutions z.(t), k =1, 2, 3, 4 of the system (S) and t,= a such that

ll_:}l T(t)z(t) exp [ —j' (ukr”“(r) —%;‘,’—,5(%) d‘t] =D,

to

where p. and p, are the same as in Theorem 1.
If in system (3) we denote

Vi(s)=Ash(s) and Ryy(s)=A,f(s)+ A29(s) we get

Theorem 4. Let r'(¢)r=54(t), q(t)r="*(t), p(t)r "“(t) be in L[a, ).
Then there is a fundamental system of solutions z(t), k =1, 2, 3, 4 of the system
(S) and ty=a such that

lim T(t)2()r~"*(z) exp [ - f wer(t) dr] =P,

where w. and p, are the same as in Theorem 1.
If in the system (3) we put

Vo(s)=0 and Ryx(s)=A,f(s)+ A,g(s)+ Ash(s) we obtain
Theorem 5. Let q(t)r~"(t), p(t)r~"*(t) and r'(tyr=\(t) is in L[a, ®) and
f ”4([) dt_

Then there is a fundamental system of solutions z(t), k =1, 2, 3, 4 of the system
(S) and a number t,=a such that
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t

!Lrg T(t)z(t) exp [—fukr”“(r) dr] =D,

to

where w. and p. are the same as in Theorem 1.

Theorms 2, 3, 4 and 5 may be proved in the same way as Theorem 1.

Theorems 1—5 result in Corollaries 1—5 respectively. The hypotheses of
Corollaries are the same as in the Theorems.

Corollary 1. (i) There is a fundamental system of solutions y,(t), k=1, 2,3, 4 of
the differential equation (E) and a number t,, ty=a such that

yP = uir(z’_”/s(t) exp [f (ukrm(r) _-% rl‘)g(?) —

t
o

—(—1)m“§r?,§(’r))) dt](1+o(1)), j=0,1,2,3. (19)

(if) There is a fundamental system of solutions y.(t), k =1, 2, 3, 4 of equation
(E) and a number t,=a such that

. o ‘ 1 T)
yi}):“’(r(l 3)/4(t) exp [L) (“krm(r) _% rI‘)/S(—r) -

- (-0 B0 ar 1+ o). j=0.1,2.3.

Corollary 2. (i) There is a fundamental system of solutions y.(t), k=1, 2,3, 4 of
the equation (E) and t,=a such that

yii)= Mir(zi_S)/s(t) exp [f (Mkr1/4(r) —

—(=1)" %2‘ r‘,’,g(’z)) dr](l +o(1)), j=0,1,2,3.

(ii) There is a fundamental system of solutions y,(t), k=1, 2, 3, 4 of equation
(E) and to=a such that

yii) = utl‘(r(i-:&)m(t) exp [f (Hkrm(f) _

—(—1)m%§r‘,’+(’r))) dr](1+o(1)), j=0,1,2.3.

Corollary 3. (i) There is a fundamental system of solutions y«(t), k=1, 2, 3, 4 of
(E) and t,=a such that
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yP = “,’-‘r(z,'—a)/s(t) exp [J" (Mkrm(t) -

to

—%,’,’/S—g)) dr](1+o(1)), j=0,1,2,3.

(if) There is a fundamental system of solutions y.(t), k=1, 2, 3, 4 of (E) and
to=a such that

t

F—

B 22 ara+oq). j=o0.1.2.

Corollary 4. There is a fundamental system of solutions y,(t), k=1, 2, 3, 4 of
(E) and to=a such that

(w0 -

V9 = ukr®Y%(1) exp [ j wer(7) dt](l +o(1)), j=0,1,2,3.

Corollary 5. There is a fundamental system of solutions y,(t), k=1, 2, 3, 4 of
(E) and ty=a such that

y@ = uiri=>4(t) exp [J wer4(t) dr](l +0(1)), j=0,1,2,3.

Proof of Corollary 1. (i) Since the system (S) is equivalent to the equation
(E) for the fundamental system of solutions z.(¢), k =1, 2, 3, 4 of (S) it follows that

Zk =(yk7 yk’ ylo y;C")T ’

where the functions y.(¢), k =1, 2, 3, 4 are four linearly indespendent solutions of
the equation (E). From the formula (5) we get

lim (7*(O)9(0), (i), T OV, T Oy O)

-exp[_ﬂ (uk'(f)‘%%_( )muk “g(t))) ]

=(17 “ka Mi, ﬂi)r )
or

im 0y exp | - )= s -

m T i .
—(-1) %ﬂ%) d‘t] =ul, where j=0,1,2,3
and so the formula (19) holds.
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The proof of the second part of Corollary 1 is analogous to the first.

In the same way we prove Corollaries 2, 3, 4, 5.

Remark. Theorems 1 and 4 generalize the result in [8] in which p(¢)=0 is
supposed.

Example 1. Let q(¢)/¢* and p(t)/t be in L[a, ), a>0. Then the differential
equations

a) y®+p(0)y"+q(D)y +641'y =0,

b) y®+p(0)y"+q(t)y' =161y =0

satisfy the assumptions of Corollary 4 and therefore their solu tions are

a)  y(t)=t"¥Ye"(c, cos 1>+ ¢, sin 12) + e~ (c5 cos 12+ cq sin 12)](1+ o(1)) ,
b)  y(t)=t">*(cie”+ ce™"+ ¢y cos t2+ ¢y sin 12) (1 + 0o(1)),

where ¢y, ¢, ¢3, ¢, are arbitrary numers.
Example 2. Let p(t) be in L[a, ), a >0.

a) Then the differential equation
v n a ’
y©+p()y"+y' =By =0,

where a and 8 >0 are constants satisfies the hypotheses of Corollary 2 and so its
solutions have the form

y(£) =[t7*(c,e® + c,e ™) + t*'*¥*(c; cos Bt + ¢4 sin Br)](1 +o(1)) ,
where ¢y, c,, c3, ¢4 are arbitrary numbers.

b) The function
y(t)=[e?"V*(c, cos (Bt/NV2—(a/4B?) In 1)+
+ ¢y sin (Bt/V2 = (a/4B?) In 1)) + e P"V*(c, cos (Bt/V2 +
+(a/4B?) In t) + ¢y sin (Bt/V2 + (a/4B?) In )](1+o(1)) ,

where ¢y, ¢, 3, ¢4 are arbitrary numers is the solution of the differential equation

i ”n a. '
y@+p(0)y"+,y' + By =0,

because this equation also satisfies the assumptions of Corollary 2.

From these examples we see that the coefficients do not satisfy the assumptions
of theorems in [3], [4] and therefore this paper gives new results on the asymptotlc
behaviour of the differential equation of the fourth order.
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OB ACUMITTOTUYECKOM IOBENEHUU PEUIEHUN JU®OEPEHIUATILHOIO
YPABHEHHUA YETBEPTOI'O ITOPAIKA

Jozef Miklo

Pesiome

B pa6oTa paccMaTpUBAalOTCS aCHMIITOTHYECKHE NOBeAeHuUs peluenuii ypaBHenus (E) npu t — o, ecnu
HeCcOOGCTBEHHBIE MHTErpaibl OT HEKOTOPBIX ApoGeil MyHKUMIA p, g U r SBASIOTCS KOHEYHBIMH.
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