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WEAK APPROXIMATION
BY POSITIVE MAPS ON C*-ALGEBRAS

B. V. LIMAYE—M. N. N. NAMBOODIRI

-1. Introduction

Let A and B denote C*-algebras with identities 1, and 15 respectively.
A *linear map ¢: A — B is said to be positive if for every a € A, there is some b € B
such that ¢(a*a)=b*b. For a, and a, in A, we write a, <a, if there is some ae A
such that a,—a,=a*a. Let

P(A, B),={¢: A— B: ¢ positive, p(1.) <15} .
If ¢ eP(A, B) in fact satisfies

¢(a)*¢(a)<¢(a*a)

for all ae A, then ¢ is called a Schwarz map. A J*-subalgebra (resp., C*--
subalgebra) of A is a *subspace A that is closed under the Jordan product a;o
a,=(a,a,+ a,a,)/2 (resp., the usual product a,a,).

The main Korovkin-type result for weak convergence (which we denote by —)

given in [8], Theorem 2 can be improved by a minor modification of its proof as
follows: .
Theorem. Let ¢o, ¢1, @2, ... be a sequence in P(A, B),. Then

C={aeA: ¢.(a) > ¢o(a), Pu(a*oa) > Po(a*oa)=po(a)*odo(a)}

is a J*-subalgebra of A. If each ¢, is a Schwarz map, then C is, in fact,
a C*-subalgebra of A.

It is of interest to know when C actually equals A, so that the approximation
method (¢.) would work on the entire algebra A. This question is closely related to
the uniqueness of the extension of ¢|c to A as a positive map. We give sufficient
conditions for this to happen in terms of extreme points of P(A, B); (Theorems 2.2
and 2.5). ‘

As a particular case we consider A =C(X), the set of all complex-valued
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continuous functions on a compact Hausdorff space X and B = ,, the set of all
k x k matrices with complex entries (Corollary 2.3). The special case k=1 gives
the well-known Korovkin-type result for positive functionals on C(X). Also, by
taking A = f(H), the set of all bounded operators on a complex Hilbert space H,
and B =¢, the set of all complex numbers, we improve a previous result of the
authors about the approximations of a simple eigenvalue of a normal operator

on H. It would be interesting to obtain Korovkin-type results for the case
A =B(H) and B =M.

2. Korovkin-type results for weak convergence

If J is a J*-subalgebra of A, then a C*-homomorphism ¢,: J— B is a *linear
map satisfying

Po(a®) = Ppo(a)*
for all aelJ. Clearly, a C*-homomorphism ¢, on A is positive and satisfies
¢o(14)<1p, i.e., it belongs to P(A, B);.
If ¢ eP(A, B),, Kadison has proved in [5] that
P(a)’<¢(a?)

for all a € A with a* =a. We begin with a lemma on extreme points of P(A, B),.
Lemma 2.1. Let J be a J*-subalgebra of A, and ¢,:J—>B be
a C*-homomorphism. Let

Qo={¢ eP(A, B):: ¢|,=o} .

Then Q, is a convex extremal subset (i.e., a fa.ce) of P(A, B),, so that the extreme
points of Q, are precisely those extreme points of P(A, B), which lie in Q..

Proof. The set Q, is clearly convex. Let ¢,, ¢, € P(A, B),, and ¢ = (¢, + ¢.)/2
belong to Q,. We show that ¢, ¢, € Q,.

Let a e J with a* =a. By Kadison’s inequality, we have
$i(a)’ < ¢Pi(a®) and Px(a)’<x(a?).

Since J is a J*-subalgebra, we see that a’el. Also, ¢|;=¢o, which is
a C*-homomorphism. Hence

¢ (a*) = Po(a®) = po(a)’ = ¢(a)” .
Now,
[$1(a) — p2(a)]* = ¢i(a)’ + pa(a)’ —2¢1(a) o pa(a) =
=2¢1(a)*+2¢x(a)’ —[Pi(a)’ + px(a)’ +2¢:(a) o Px(a)] <
92



s4[¢1(az)';¢2'(02)] _4[¢,(a) '; ¢2(a)]2=4[¢(a)2—¢(a)2] -0,

Thus, ¢,(a)=¢1(a) for all aelJ with a*=a. Since J is *-closed, we have

¢1|;=d2|;. Hence ¢|; = uls = ¢ols, i.e., ¢ € Qo. We have thus shown that the set

Q, is extremal. The final statement about extreme points now follows immediately.
Theorem 2.2. Let ¢o: A—B(H) be a C*-homomorphism, and let (¢,), n=

1,2, ..., be a sequence in P(A, B(H)),.

Assume that if ¢ is an extreme point of P(A, B(H)), and ¢ # ¢, then there is some

ao€ A such that ¢(ao) # ¢po(ao),

®n(a0) = Po(ao) and Pa(atoas) = o(akoas) .

Then ¢.(a) = ¢o(a) for all ae A.
Proof. Let

C={aeA: ¢.(a) > ¢o(a), P.(a*ea) > Po(a*.a)} .

By the theorem quoted in the Introduction (Cf. Theorem 2 of [8]), C is
a J*-subalgebra of A. We claim that ¢o|c extends to a unique element of
P(A, B(H)),, namely ¢, itself.

Let '

Qo={¢ EP(A’ B(H))l ¢|c=¢olc} .

Since P(A, B(H)), is compact in the weak operatdr topology (p. 974 of [4]), we see
that the closed convex subset Q, is also compact. If Q, contains more than one
element, then by the Krein—Millman theorem it must contain an extreme point ¢
which does not equal ¢,. However, by Lemma 1.1 ¢ is an extreme point of
P(A, B(H)):, and by our hypothesis there is a, in C such that ¢ (a,) # ¢o(a,). But
¢ € Qo, 50 that ¢ |c = ¢o|c. This contradiction shows that Q is a singleton set, and
our claim is justified.

Now, let ¥ be any cluster point of the sequence (¢.) in P(A, B(H)),, and let
(¢.) be a subnet of (¢,.) which converges to . Since lim ¢,(a) exists for all a € C,
we have

Y(a)=lim ¢,(a)=lim ¢,(a) = ¢po(a),

ie., P|c=o|c. But ¢o|c extends to a unique element of P(A, B(H)); so that
Y = ¢o. Thus, every cluster point of (¢.) in P(A, B(H)): concides with ¢,. This

shows that ¢, — ¢, in the weak operator topology, or ¢,(a) S ¢o(a)forallae A.
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The usefulness of the above result depends on the specific knowledge of the
extreme points of P(A, B(H)),. We now consider such a situation.

Corollary 2.3. Let x,, ..., x, be distinct points in a compact Hausdorff space
X and let P,, ..., P,, be mutually orthogonal non-zero self-adjoint projections in
My, the set of all k X k complex matrices. For f e C(X), let

do()=f(x1)Py+ ...+ f(x) P .
For a sequence (¢,) in P(C(X), M), let

C={fe C(X): @.(f)— do(f), du(If|)— al|fI?)} -

If C contains the constant function 1 and separates each x; (1 <j<m) from every
other point of X, then ¢.(f)— ¢o(f) for all f e C(X).

Note. Since /, is finite dimensional, the weak convergence (— ) is equivalent

to the norm convergence (— ).

Proof. Let A=C(X) and H=C* so that B(H)=U,. It is clear that ¢, is
*linear, and for all f e C(X),

®o(f>) =f(x)) Py + ... + f*(Xn) P,
=[f(x))Pi+... + f(xn) P, ]?
=[do(f))?,

since P*=P;=P? and PP,=0 for i#j, 1<i, j<m. Thus, ¢, is a
C*-homomorphism.

Let ¢ be an extreme point of P(C(X), ), such that ¢|c= do|c. In order to
apply Theorem 2.2, we show that ¢ = ¢,.
Let ¢o(1)=Po. Since 1€ C, we see that ¢ is an extreme point of

{y: C(X)— My: ¢ positive and y(1)=P,} .

Now, the algebra C(X) is commutative and hence every positive map on C(X) is
completely positive ([10], 3.9 of Ch. IV). It then follows by Theorem 1.4.10 of [1]
that

*(N=fy)Qi+...+f(y,)Q, ,

for all f € C(X), where y,, ..., y, are distinct points of X and Q,, ..., Q, are positive
matrices in M, satisfying Q,+ ...+ Q, = P,.

Since C separates each x; from every other point of X, and since C is an algebra
containing 1, it follows that there are f,, ..., f,, in C with
fi(x)=1, fi(x)=0 for i¥j,1<i,j<m.
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First we show that each x; € {y,, ..., y, }. For otherwise, we can find f, € C such that
fo(x))=1 and fo(y:)=0 for all 1<i<p. Then fof e C and
do(fof) = P=0=¢(fof;) ,

which is a contradiction to ¢ |c = ¢o|c. Thus, each x; equals some y,. Hence m <p.
By renumbering the y’s and the corresponding Q’s, we may assume that
Y1=2Xi, ..., Ym =Xn. Then for all fe C(X),

d’(f) =f(xl)Ql +... +f(xM)Qm +f(ym+l)0m+l +... +f(yp)0p .

Were p >m, then we could find goe C such that go(x;)=0 for all 1<j<m and
gdo(y:)=1 for all m+1<i<p. Then

Om+l +...+ Qp = ¢(go) =¢0(go)=0 .
Since Q, =0, we see thatkQn..=...=Q, =0. Thus, for all fe C(X),
d(H=Ff(x) Qi+ ...+ f(X)Qnm .

But for 1<j<m,

Q=9(f;)=do(f})=P, .

Hence ¢ =¢o. Now Theorem 2.2 applies and we obtain the desired resuit.
Remark 2.4. Often one can choose a finite number of functions f,, ..., f, in

C(X) which separate any two distinct points of X. Also, we can easily see, as in

Corollary 4 of [8], that the conditions @.(f)— ¢o(f) for j=1,...,p and

¢"(,~.i |f,-|2)—>¢o<i§:|f,-|2) imply ¢.(|f)|*)— @o((f;|?) for each j. Then, the result in
Theorem 2.3 says that ¢.(f)— ¢o(f) for all fe C(X), provided

Pa(1)— ¢o(1) ,
®a(fi) = do(f)), i=L, .., p, and

o S 16F) > 0o 3 157)

For example, if X is a compact subset of the Euclidean space R, then we can take f;
to be the jth co-ordinate function, j=1, ..., p. If X denotes the p-dimensional
torus {(e*®, ...,e%):0<6;<2xm, j=1, ..., p}, then we can let fi((e', ..., e%))=
e'%. Since in this case, |fj|>=1 for 1<j<p, we need the convergence of (¢,) only
on 1, fi, ..., f,. These results generalize earlier results proved for the case M, =C,
i.e., for positive functionals on C(X). (See Corollaries 2.5 and 2.6 of [9].)

When the map ¢, that is being approximated- is not a C*-homomorphism, the
following version of Theorem 2.2 is useful.

Theorem 2.5. Let ¢o, ¢1, ¢2, ... be a sequence in P(A, B(H)), (resp., a sequ-
ence of Schwarz maps from A to B(H)), and let E c A be such that for everya € E,
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¢n(a) > Po(a) and ¢.(a*oa) — Po(a*oa)=po(a)*opo(a) .

Assume that if ¢ is an extreme point of P(A, B(H)), a ¢# ¢y, then there is a, in
the J*-subalgebra (resp., the C*-subalgebra) generated by E in A such that

®(ao) # do(ac).
Then ¢.(a) = ¢o(a) for all aeA.

Proof. By the theorem quoted in the Introduction, the set

{acA: ¢.(a) 5 ¢o(a), pa(a*oa) = do(a*oa)=go(a)*oPo(a)}

is a J*-subalgebra and it contains E. Hence it contains the J*-subalgebra Jg
generated by E in A. Thus, for every aoe Jg, we have

®n(ao) > Po(ao), Pa(atoao) - Po(atoao) = do(a0)* o o(ao) -

Then the proof of Theorem 2.2 holds verbatim if we replace C by Je throughout. In
case each ¢, in a Schwarz map, we merely have to replace C by the C*-subalgebra
Ce generated by E in A.

Remark 2.6. If either A is commutative, or if B(H) is commutative (i.e., H is
of dimension 1), then every ¢ € P(A, B(H)), is, in fact, a Schwarz map ([10], 3.5,
3.9 and 3.8 of Ch.IV). When H=¢, we obtain the following result from
Theorem 2.5:

Let ¢, @1, @2, ... be positive functionals on a C*-algebra A with ¢,(1.) <1. Let
E c A be such that for very a€E,

lim ¢.(a) = Po(a)
and
lim ¢, (a*oa)=o(a*oa)=|po(a)|*.

If the C*-algebra Cg generated by E in A separates ¢, from every other extreme
point of P(A, €),, then ¢.(a)— ¢o(a) for all ae A.

This result improves upon Theorem 1.2 of [7] for a C*-algebra A with identity,
because the earlier result assumed in addition that ¢,|c. was an extreme point of
the set of all positive functionals of norm <1 on Cg, and it required

lim ¢, (a*a)=o(a*a)=|do(a)|*= po(aa*) =lim ,(aa*).

Various concrete cases of this result about positive functionals are given in [7].
We choose to improve one of them.
Corollary 2.7. Let T, € B(H) be normal and A, be a simple eigenvalue of T, with
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a corresponding unit eigenvector x,. Let (¢.) be a sequence of positive functionals
on B(H) such that

¢.(I)— 1,
¢.(To)— Ao, and
On(TETo)— |Ao|2.

Then ¢,(T)— ( Txo, xo) for all T e B(H).

Proof. Let A =p(H) and ¢o(T)= (Txo, X,) for T € B(H). On replacing ¢, by
¢./ pa(I), we can assume without loss of generality that ¢,.(I)=1. Let E= {1, T,}.
Since T%To=T,T%, we see that @.(T%oTo)—> Po(T%oTo)= || Toxol|>=|Lo|?>=
|§o(To)|*.

Let o(T,) denote the spectrum of the normal operator T,, and u, denote the
corresponding spectral measure. If f, is the characteristic function of the set {4,},
then f, is continuous on a(To), since A, is an isolated point of o(T,). Hence f, is
a uniform limit of polynomials in z and Z on o(T,). The spectral mapping theorem
shows, in turn, that

FTo= [ ul2) duo(2)= ol (A})

is a limit in B(H) of polynomials in T and T*. Thus, fo( To) € Cg, the C*-subalgebra
generated by E in S(H). But fo(T,) is an orthogonal projection and its range is the
eigenspace corresponding to A,, which is one dimensional. Thus, fo(To)x =
{x, xo)x, for all xeH.

Let ¢ be an extreme point of P(8(H), €), and ¢ # ¢o. Then by Theorem 2.5.2 of
[5]), either ¢(T)=0 for all compact T € B(H), or ¢(T)=(Tx,, x,) for some x,e H
with ||x,||=1 and all TeB(H). In the former case, ¢(fo(To)) =0 since fo(Ty) is
compact, while @o(fo(To)) = (fo(To)Xo, Xo) = (X0, Xo) =1#0. In the latter case,
& (fo(To)) = po(fo(To)) implies (fo(To)x1, x,) =1 so that x, is in the range of the
projection fo( To), i.€., x; and x, are scalar multiples of each other. But then ¢ = ¢,
which is not the case. Thus, we see that the element fo(T,) in Cg separates ¢ from
¢o. By the result in Remark 2.6, we see that ¢,(T)— ¢o(T)=(Tx,, xo) for all
T e B(H).

Remark 2.8. The above result is better than Corollary 3.2 of [7] since the
earlier result required in addition that the operator T, be compact and that 4,
satisfy [Ao| =|| Tol|.

In order to apply this result to specific situations, we must have examples of
operators which have simple eigenvalues. In this connection the following results
are known:

1. Let an n X n non-singular normal matrix A, be such that all its minors have
non-negative determinants and the elements just above and justs below the
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principal diagonal are non-zero. Then all the eigenvalues of A, are simple
(Chapter II, Theorem 6 of Sec. 6 and Theorem 10 of Sec. 7 n [2]).

2. Let k(s, t) be a continuous real-valued function for (s, t) €[a, b] x [a, b]. For
feL*([a, b])=H, let

T(,(f)(s)=fk(s, Of(t) dt, s €[a, b]

be a normal operator in B(H). If k(s, t)>0fora<s, t<b,andif fora<s, <...<
sn<b,a<t,<...<t,<b, the determinant of the matrix (k(s;, t,)) is non-singular,
then all the eigenvalues of T, are simple (Chapter IV, Sec. 2, pp. 239 and 240 of

(2)).

Addendum: Question similar to the ones consider in this note, but for com-
pletely positive linear maps on B(H) are consider in the Weak Korovkin approxi-
mation by completely positive linear maps on f(H)' by the authors. This paper is to
appear in the Journal of Approximation Theory.
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CJIABAS ANIMTPOKCUMALUS TMONOXUTEJIBHBIX OTOBAXEHWUH
C*-AJITEBP

B. V. Limaye—M. N. N. Namboodiri

Pe3iome

IMycts A — C*-anre6pa c eaunnuenn 1, u B(H) — MHOXeCTBO Bcex OrpaHMYEHHbBIX ONEPaTOpOB
B npocrpaHctBe [mnbbepra H. Iycts ¢.: A—»B(H), n=0, 1, 2,..., nocneqoBaTeabHOCTb
NOJIOXHUTENbHBIX 0TOGpaXeHuit, Anst KOTopuix ¢, (14)<I n ¢.(a)—> py(a) cnabo nns a, npuHan-
NeXaluX HEKOTOPOMY MOAMHOXECTBY A. B TepMHHax 3KCTpeMasbHbIX TOYEK MOJOXHTENbHBIX
0TOGPaXXeHN! TPUBOSATCS JOCTATOUHBIE YCNOBMS st cnaboit cxopumocTi ¢,(a)— do(a) nns Beex
acA.

Yayyiaercst pe3yabTaT aBTopa 0 NPHONMXKXEHHH MPOCTOr0 COGCTBEHHONO 3HaYEHMS HOPMAalbHOro
onepartopa.
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