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COVERING GRAPHS AND SUBDIRECT
DECOMPOSITIONS OF PARTIALLY ORDERED
SETS

JAN JAKUBIK

Covering graphs of partially ordered sets (and, in particular, of lattices) were
investigated in several papers; cf., e.g., [1], [2], [3], [6]. [7], [8], [9], [13].

The notion of an almost discrete partially ordered set was introduced in [5]; cf.
also Section 1 below.

Let &£ be an almost discrete partially ordered set and let C(£) be the covering
graph of £. The relations between certain types of subdirect decompositions of
C(&£) and subdirect decompositions of ¥ will be studied in the present paper.

1. Preliminaries

The covering graph C(Z) of a partially ordered set £=(L; =) is defined to be
the undirected graph whose vertices are the elements of L and whose edges are
those pairs (a, b) of elements of L for which either a covers b or b covers a.

A partially ordered set % is said to be almost discrete if, whenever a, b € L and
a <b, then there are elements ao, a,, a5, ..., a, € L such that ap=a, a,=b and ga;
covers a;_, for i=1,2, ..., n.

All partially ordered sets dealt with in this paper are assumed to be almost
discrete.

Weak direct product decompositions of lattices and partially ordered sets were
studied in [4] and [5]. Weak direct product decompositions of graphs were
investigated in [11]. In [2], the relations between two-factor direct decompositions
of a partially ordered set £ and the two-factor direct decompositions of C(¥) were
dealt with.

The basic notions and denotations concerning direct and subdirect product
decompositions of partially ordered sets and graphs will be recalled in Sections 2
and 3 below.

Let %, be a partially ordered set with four elements a,, a,, by, b, such that g; is
covered by b; (i, j=1,2) and that there are no other covering relations in %,. (Cf.
Fig. 1a.) In [5] it was noted that C(£,) can be expressed as a nontrivial direct
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product while %, is directly indecomposable. (Cf. also [2].) Hence there does not
exist, in general, a one-to-one correspondence between the direct product decom-
positions of a partially ordered set and the direct product decompositions of its
covering graph.

b, b

Fig. la Fig. 1b

Each subdirect decomposition of £ induces a subdirect decomposition of C(¥).
Let us have a subdirect decomposition

@: C(£)— (sub) I, ., (1)

of the covering graph C(&). Then the condition that
(o) @ induces a subdirect decomposition of ¥

need not be valid in general. As a counter-example the partially ordered set %, can
be used again.

A subset K of L is called saturated, if, whenever a, b € K and a covers b in the
partially ordered set ./ = (K; =) (with the inherited partial order), then a covers b
in 7.

It will be shown below that the following condition is necessary for () to be
valid:

(B) If K is a saturated subset of L such that % is isomorphic to %, then there is
i € I such that card @;(K)=1 for each je I\{i}.

(Here, ¢; denotes the natural map of L onto the set of all vertices of ¥;
corresponding to the subdirect decomposition @: C(£)— (sub) I1;.,%:.)

For a certain type of subdirect decompositions ¢ of C(%) there will be found
necessary and sufficient conditions for (a) to be valid. These subdirect decomposi-
tions will be said to be of type (y) (for C(¥) connected this type includes direct and
weak direct decompositions.)

Let x,, x, X3, x4 be distinct elements of a partially ordered set & such that
(x1, x2), (X2, x3), (x3, x4) and (x4, x;) are edges of C(P). Then Q = (x,, x2, X3, X4) is
said to be an elementary quadruple in ?. The following two lemmas are easy to
verify (cf. also [8], Lemma 1.1 and 1.2).

1.1. Lemma. Let Q be an elementary quadruple in P. Then (Q; =) is
isomorphic either to ¥, or to the partially ordered set in Fig. 1.b.
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1.2. Lemma. Let Q =(x, X2, X3, X4) be an elementary quadruple in 2 such that
(Q; =) is not isomorphic to %,. Then we have either (i) x, is covered by x, and x,
is covered by xs, or (ii) x; covers x, and x, covers xs.

If x, y are vertices of a graph, then their distance d(x, y) is defined in the usual
way (cf. e.g, [2]); if for any two vertices x, y we have d(x, y) <, then the graph
is called connected.

2. Subdirect decompositions of graphs

We begin by recalling the notion of the direct product of graphs. Then we
introduce some definitions concerning subdirect products of graphs which will be
applied in the sequel.

Let % =(Vi, H) (ieI) be graphs; V; or H; is the set of all vertices or the set of
all edges of ¥, respectively. Let V be the cartesian product of the sets V;: the
elements of V will be denoted as a =(a;);.r with a; € V; for each i e I. Further let
% =(V, H) be the graph such that H is the set of those pairs (a, b) of elements of
V which fulfil the following condition: there exists j e I such that (a;, b;) € H; and
a;=b; for each i e I\ {j}. Then ¥ is said to be the direct product of the graphs %;
and we write 4 =1II,.,%;; the graphs ¥ are called direct factors of 4.

If aeV, a=(a)ic1, then we denote also a; = a(%) (the component of a in §;).
For X<V we put X(%)=1{x(%): xe X}.

Let xo be a fixed element of V and let ye V, jeI. We denote by yj[xo] that
element z € V, for which z; =y, and z; = x,; for each i € I\ {j}. If no misunderstand-
ing can arise, then we write y7j istead of yj[xo].

. Let X < V such that X(%;) =V, is valid for each i € I. Next let H, be the set of all
pairs (xi, x,) of elements of X such that (x,, x,) € H. Then the graph %,=(X. Hy)
is said to be a subdirect product of the graphs %; and we denote this fact by writing

(g():(sub) rl,-e,(g,-. (1,)

Our considerations would be trivial if card V= 1. Hence let card V> 1. In this
case we can suppose that card V;>1 for each i€ I. Let us consider the following
conditions for %,:

(Y1) There exists xo=(x0i)ic1€ X such that, whenever jel and ye X, hen
yjeX.

(y2) fp,q,r.seXandielwith(p,q)eH.(r.s)eH,p,=r., q,=s. p;# q and
ri¥# s;, then there are distinct element§ x;, X2, ..., Xas Y1, Y2y ..., ¥, (n 21) in X such
that yi=q, ya=s. xi=p, X, =r, (x)i =(xs)is (¥)i=(ven)i fore=1,2, ....n—1,
(x,y)eHfort=2,3, ....,n—1and (x,. x;s))eH, (V.. yiu)eH for t=1, 2. ....
n—1. (Cf. Fig. 2.)

The subdirect product decomposition (1) of the graph ¥, is said to be of type (Y)
if the conditions (y:) and (y.) are satisfied.
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A condition analogous to the condition (y,) was introduced by F. Sik [12] for
subdirect products of lattice ordered groups.

By a graph isomorphism ¢ of a graph 4, =(V,, H,) onto a graph 4,=(V,, H,)
we mean a bijection ¢: V,— V, such that (a, b)e H, iff (¢(a), (b)) e H,.

Y, Y, o1
q <

P e r
X4 X3 Xy Xp

Fig. 2

Let 4" =(V’, H') be a graph and let ¢ be an isomorphism of §' onto %,, where
% is as above. Then

p: 9 -1, 1)

is said to be a subdirect product representation of the graph §'. If 4, is of type (v),
then @ is said to be of type (y).

4, is called a weak direct product of graphs %, if the following condition is
satified :

(v3) there is xo € X such that, for each x € V, x belongs to X if and only if the set
liel: xoi# x;} is finite.

2.1. Lemma. If %4, is connected, then (vs:) > (v2).

Proof. Suppose that %, is connected and that (1') is a weak direct decomposi-
tion of %,. Let p, g, r and s be elements of X which fulfil the assumptions of (y,).
In the case of p = r we have g =s and hence (y,) holds. Let p# r; then g+ s. There
are elements ay, as, ..., an € X with a;=p, a,, = r such that (ax, a,,,)e Hfor k=1,
2,....,m—1.Letke{2,3, ..., m—1}. Since (y,) is valid, there exists b, € X such
that (by);=p; and (by); = (ax), for each jeI\{i}. Thus for each ke{l, 2, ...,
m — 1} we have either b, = by, or (b, bi.,)€ H. Hence there are elements ¢,, c,,
vees ¢ In X (n=m) such that ¢,=p, ¢,=r, (¢.).=p, for t=1,2, ...,n and
(¢, co)e Hfork=1,2,...,n—1. Again, because (y) holds, there are elements d,,
dy, ..., d, in X such thatforeach te {1,2, ..., n} we have (d,), =g, and (d.); = (¢,),
for each je I\{i}. Now it suffices to put x,=c, and y,=d, for t=1, 2, ..., n.

Clearly (y3) = (y1). Hence if %, is connected, then each weak direct product of
%, is of type (y). Similarly, if %, is connected, then each direct product of 4, is of
type (y). Weak direct products of graphs were investigated by Miller [11].

If (1') is a subdirect product decomposition of type (Y), then it need not be
a weak direct product decomposition of %4, (cf. examples below).
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3. Subdirect products of partially ordered sets

Let £=(L; =) be a partially ordered set. If a, b € L and a is covered by b (i.e.,
if the interval [a, b] of &£ is prime), then we write a a <b or b > a. Each nonempty
subset of L is partially ordered by the inherited partial order. £ is said to be
connected if for each pair x, y € L there are elements x;, x, ..., x, € L (i=1) such
that x,=a, x,=b and for each ie {1, 2, ..., n —1} either x; covers x;,, or x; is
covered by x;.,. Hence the partially ordered set £ is connected iff the graph C(%¥)
is connected.

The direct product of partially ordered sets is defined in the usual way (cf. e.g.,
[6D).

Let I be a nonempty set of indices and for each iel let & =(Li; =) be
a partially ordered set. Let £ = (L ; =) be the direct product of the system { £ };¢1;
&£ is denoted by I, %. For elements and subsets of L we use denotations
analogous to those in Section 2.

Let Loc L, $o=(Lo; =). Assume that Lo(%£)=L; is valid for each i e I. Then
%o is said to be a subdirect product of the partially ordered sets £ and we write

$o=(sub) rl,-elfl,’;. (2)

The following lemma is easy to verify.

3.1. Lemma. Let £ and ¥, be as above (i.e., &, fulfils (2)). Assume that L, is
a saturated subset of L. Let a =(a;)icr and b = (b;)ic1 be elements of L,. Then a is
covered by b in ¥, iff there is j € I such that a; < b; and a; = b, bor each i € I\ {j}.

As a corollary we obtain:

3.2. Lemma. Let ¥ and %, be as in 3.1. Then

C(&o) = (sub) IT;.,C(£). (29

The subdirect product decomposition (2') of the graph C(%,) is said to be
induced by the subdirect product decomposition (2).
More generally, let £'=(L’, =) be a partially ordered set and let

¢: &'>lliad=<¢ 3)

be an isomorphism of £’ into £ such that
@(£')=(sub) I (£); (3.1

then @ is said to be a subdirect product representation of £’. The subdirect product
representation ¢ of £’ is said to induce a subdirect product representation of the
graph C(Z') if

¢: C(&L)-11,,C(%) 3"
is a subdirect product representation of the graph C(<’).
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From 3.2 we infer:

3.3.Lemma. Let ¢ be as in (3). Assume that ¢ is a subdirect product
representation of &' such that @(L') is a saturated subset of L. Then ¢ induces
a subdirect product reprzssentation of the graph C(£’).

Let us remark that if ¢(L’) fails to be saturated in L, then the assertion of 3.3
need not hold.

Conversely, let us start by having a subdirect product decomposition of the graph
C(&'):

Y: C(£)-,,% =%, where 4=(V,, H). 4)

Then v is said to induce a subdirect product representation of £’ if there are
partially ordered sets & =(V;; =;) such that

(i) C(%)= G, foreach ie, and (4"
(ii) Y: ' %=% (4"

is a subdirect product representation of .£’.

In the following lemma we use the denotations introduced above.

3.4. Lemma. Let (4) be valid. Assume that y induces a subdirect product
representation (4') of #'. Then y(#’) is a saturated subset of L=TI,_,7,.

Proof. Letx,yeL’, x<y.Hence (x, y) is an edge in C(£’) and in view of (4),
(y(x), ¥(y)) is an edge in 4. Thus there is j € I such that (Y(x)(j), Y(y)(j)) is an
edge in % and for each ieI\{j} we have yY(x)(i)=y(y)(i).

From (4’) (ii) and from the relation x <y we infer that y(x)<vy(y) holds in £.
Thus y(x)(k)=y(y)(k) for each k € I. Hence y(x)(j) <y (y)(j). In view of (4'1),
Y(x)()<y(y)(j) is valid in %. We obtain that y(x)<y(y) is fulfilled in £.
Therefore y(L') is saturated in L.

Again, let @ be as in (3) and suppose that @ is a subdirect product representation
of #’. Let je I be fixed. We denote by L# the set of all elements a* = (a,), . p(;
belonging to the direct product IT; . (; L; and having the property that there exists
x € L'such that (@(x)); =« for each ie I\{j}. Under the above denotations put
@i(x)=((¢(x));, a*). Then

Qi L' > LX 1% ©))

is a subdirect product representation of £’. If @(L') is a saturated subset of L, then
for each jeI, @ ”(L') is a saturated subset of [, x L*.

Similarly, let us have a subdirect product representation of the graph C(£’)
(cf. (4)). Then for each je I we define 4% =(V* H*) analogously to the case of
¥* and we obtain that

Yi: C(£L')— G x g* (6)
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is a subdirect product representation of the graph C(¥£’). The representation v is
of type (y) iff all y)(j € I) are of type (y).

4. The conditions () and (B,) — necessity

The considerations performed at the end of Section 3 suggest to investigate first
two-factor subdirect decompositions.

4.1. Lemma. Let P, and P, be partially ordered sets, £ = (sub) (?, X P,). Let
Q be a saturated subset of L such that 2 =(Q ; =) is isomorphic to £;. Then either
Q(%,) or Q(P,) is a one-element set.

Proof. We may suppose that Q ={a, b, ¢, d}, where a <c,a<d, b<c, b<d,
a is incomparable with b and c is incomparable with d. We denote a(P,)=a,,
a(%P,) = a,, and similarly for other elements of Q. Assume that Q(%;) fails to be
a one-element set. We have to verify that card Q(%?,)=1.

There exist elements x, y € Q such that x(%?,) # y(%,) and (x, y) is an edge in
C(&). Without loss of generality we may suppose that x =a and y=c. Hence
a, # c,. Since a <c, we infer that

ci=a, and a,<c;. 4.1)
Suppose that d; # a,. Then, because of a <d, we must have

a;<d, and a,=d,. 4.2)
Next, from b <c it follows that there are two possibilities :

either
bi=a, and b,<c,. (4.2a)

or

b;<a, and b,=c;. (4.2B)

In the case (4.20) we would have (a;, b,) = b <d =(d,, a,), and in view of (4.2)
(because of a,# d;) the relation b, = a, would be valid, implying b =(a,, a;) =a,
which is a contradiction.

In the case (4.2B), (b, c;)=b <c=(ay, ¢;), thus b;<a,. At the same time,
(by, c;)=b <d=(d,, ay). If b,=d,, then c,<a,, contradicting (4.1). Hence b, <
d,, and so ¢, =a,, which is impossible in view of (4.1).

Therefore d, = a, must be valid. Thus a,<d,.

Now suppose that b, # a,. Then from b < ¢ and b <d we infer that we must have
¢, = b, =d,, thus ¢ = d, which is a contradiction. Therefore Q(%,) is a one-element
set.

4.2. Corollary. Let (3) and (3.1) be valid such that ¢(L') is a saturated subset
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of L. Let Q be a saturated subset of L' such that 2 =(Q; =) is isomorphic to %,.
Then there exists j € I such that card (p(Q))(£)=1 for each ie I\{j}.

Proof. The set @(Q) is a saturated subset of L. There exists je I such that
card ((Q))(¥)#1. Now it suffices to apply Lemma 4.1 for the subdirect
decomposition (5).

4.3. Proposition. Let £’ be a partially ordered set and let ¢y be a subdirect
product representation of the graph C(£') described in (4). Suppose that y
induces a subdirect product representation of ¥'. Then the condition (B) is
fulfilled.

Proof. Let K be as in (B). Let £ (i € I) be as in (4'). According to 3.4, y(L') is
a saturated subset of IT;¢,L;. Since K is a saturated subset of L', the set Y (K) is
saturated in IT;.,L;. Thus in view of 4.2, the condition (§) holds.

Let us consider the following condition for the subdirect product decomposition
(1):

(B1) The condition (y,) holds and whenever u and v are distinct elements of X
such that the relation u7=v7 is valid in £ for each i€ I, then there are je I and
z € X which have the following property: the relations z7 > u7j and z;=v7 hold in
£.

The subdirect product representation (1”) is said to fulfil (8,) if ¢(G') = G, fulfils
the condition (B,).

In view of the denotations introduced above it suffices to consider the case when
Y is an identity on £’; this assumption (which simplifies the notations) will be
applied in 4.4 and also in 5.1, 5.2, 5.3, 5.5. below.

4.4. Lemma. Let the assumption of 4.3 be fulfilled. Moreover, assume that in
Y(C(Z£')) the condition (v:) holds. Then the condition (8,) is valid.

Proof. Because v induces a subdirect product representation of £’, for each
x,yeL’ and for each ieI we have

XiZSyexi=SyT.
Let u, ve L’ such that u#v and u;=v7 is valid for each i e I. Hence u; = v,

holds for each i € I, thus u <v. There exists z € L' such that u <z =<v. Then there
is j €I such that

u;<z; and w; =gz foreach iel\{j};
moreover, z; =v; for each i e I. Therefore
uj<zj and z7=v7 foreach iel.

Hence (1) holds.
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5. The conditions (f) and (B,) — sufficiency

Let ¢’ be a partially ordered set. In this section it will be shown that if (4) is
a subdirect product representation of C(¥’) such that

(1) the subdirect representation vy is of type (y),

(ii) the conditions (B) and (f,) are fulfilled,
then v induces a subdirect product representation of the partially ordered set #".

5.1. Lemma. Assume that the conditions () and (y) are fulfilled. Let p, q, r,
seL’ andiel. Suppose that (p, q)e H, (r,s)e H, pi=r:, q;=si, pi# qi, ri#* s; and
p<q. Then r<s.

Proof. Let xy, X2, ..., X, Y1, Y2, ---, Yo b€ as in (y2) (with X replaced by L'). If
n=1, then p=r, q=s. Let n>1. Thus Q=(x;, X2, y5, ¥1) is an elementary
quadruple in ¥’ and Q is a saturated subset of L’.

We have to verify that 2 =(Q; =) fails to be isomorphic to #,. By way of
contradiction, suppose that 2 is isomorphic to "¥;. Since the condition (B) is
fulfilled and because of card Q(%4;)>1, we have card Q(%;)=1 for each j e J\ {i}.
Therefore the natural map of Q into V; is an injection, which is a contradiction
(since (x1); =(x2):). Hence in view of 1.1 and 1.2, the relation x, <y, is valid. Now
it suffices to apply the induction on n.

5.1.1. Corollary. Assume that (B) and (y) are fultilled. Let p,qeL’, iel.
Suppose that (p,q)e H and p7# q7. Then the relations p<q and p;<q7 are
equivalent.

Let i e I and let x, y be distinct elements of V,. We put x <y if there are distinct
elements xo, X1, ..., x, in V; such that (i) xo=x, x,=y, and (ii) for each
j€{0,1,...,n—1} there exist elements u, ve L’ such that u<v and u;=x;,
Vi=Xjs1-

In view of 5.1 and 5.1.1 we obtain:

5.1.2. Corollary. Assume that () and () are fulfilled. Leta,beL’ and iel.
Then the relations a;=b; and a7 =b7 are equivalent.

5.2. Lemma. Assume that () and (y) are fulfilled. Let a, be L' and iel. If
a=<b, then a;=b;.

Proof. The case a=b is obvious; let a<b. There are elements ¢, i, ...,
cn €L’ such that co=a, c,=b and ¢;<cis is valid for i=1,2, .., n—1. We
proceed by induction on n.

Let n=1.Then a <b, hence (a, b) is an edge in C(£L’). Thus we have either (i)
a; = b;, or (ii) a;# b; and a; = b; for each je I\{i}. Let (ii) be valid. Then from 5.1
we obtain a7 <b7, whence a;<b;.

Next suppose that n>1. Then (co);=(c,);; moreover, from the induction
assumption we infer that (¢,)i =(¢a)i, completing the proof.

5.3. Lemma. Assume that (B), (B1) and (y) are fulfilled. If a, b € L' and if a; = b;
is valid for each iel, then a=<bh.
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Proof. By way of contradiction, assume that the assertion of the lemma does
not hold in general. Then there are distinct elements u and v in L' such that u< v
and u; = v, for each i e I. In view of 5.1.2 we have u7=v7 for each i € I. Hence the
assumptions of (B,) are satisfied; let j and z be as in (B,).

Since the partially ordered set £’ is almost discrete we can also assume that the
following minimality condition is fulfilled:

if ¢, d € L' such that ¢;=d; is valid for each i e I\{j} and either u;<cj<d;=
vioru;=c;<dj<vj, then c<d.

Then 5.1 yields that u<z is valid. Moreover, from the above minimality
condition we obtain (by taking ¢ =z, d =v) that z=v holds. Therefore a <b.

From 5.2, 5.3, 4.3 and 4.4 we obtain immediately:

5.4. Theorem. Let £’ be a partially ordered set. Let y be a subdirect product
representation of the graph C(¥') described in (4). Suppose that v is of type (y)
Then the following conditions are equivalent:

(i) The conditions (B) and (B,) hold.

(ii) y induces a subdirect product representation of £'.

5.5. Lemma. Assume that ¥’ is connected. Further suppose that (§) and (Y3)
are fulfilled. Then (f3,) holds.

Proof. The method applied here is similar to that used in the proof of 2.1. Let u
and v be elements of X fulfilling the assumptions of (B;). Since u# v, there exists
jelI such that uj<vj. According to the definition of uj and v; we have
(u3)i=(v7), for each i e I\{j}. Hence there are elements a,, a,, ..., 4 in X such
that a,=uj, a,=v7jand a,<au,, for k=1,2, ..., m—1. In view of (y;) for each
ke{l,2,..., m} there exists b, € X such that (b,); = (a:); and (b,); = u; ), for each
ie I\{j}. Hence b,=u,;, b,,=v; and for each ke {1, 2, ..., m— 1} we have either
by = bi., or (b, by.) € H. Moreover, if (by, b.;) € H, then in view of 5.1 and 2.1
we infer that b, < b,., is valid (we take now j instead of i).

Hence. after changing the indices if needed, we obtain elements c,, c,, ..., C,
(n=m)in X suchthatc,=uj, . =vj, c<cemfork=1,2,..,n—-1,(c); =(u7j);
for each ie I\{j} and each ke {1, 2, ..., n}. According to (y;) there exists z € X
such that z; = (¢,); foreach i e I\ {j} and z, = (¢;);. Then z7 = ¢, and hence z has the
desired properties; therefore (B:) is valid.

From 5.4, 5.5 and 4.3 we obtain:
5.6. Corollary. Let #' be a connected partially ordered set. Let vy (described in

(4)) be a weak direct product (or direct product) representation of C(¥£'). Then ¢
induces a weak direct product (or direct product) representation of £’ iff the

condition (B) holds.
(If ¢ is a direct product representation of ¥’ where ¥’ is connected and if

card G;>1 for each i€ I, then I must be finite; cf. [5].)
Now let ¥’ be a semilattice. Then no saturated subset of £’ with the inherited

partial order is isomorphic to .#,. Thus 5.6 yields:
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5.7. Corollary. Let ¥’ be a semilattice. Let 1y be a weak direct product (or direct
product) representation of C(£'). Then v induces a weak direct product (or direct
product) representation of &'.

Corollary 5.7 generalizes a result of [2] (cf. [2], Thm. 4) concerning two-factor
direct decompositions of C(£'), where £’ is a lattice ; in the proof of Thm. 4 in [2]
a theorem of Kolibiar [10] on direct products of quasiordered sets was applied.

6. Examples

Let £’ be a partially ordered set.

6.1. Let %), 4, be graphs and let ¢ be an isomorphism of C(£’) onto 4§, X 4,.

If &' is not connected, then (B) need not imply that 1y induces a direct product
representation of £’. In fact, let L' ={a, b, ¢, d}; L' is partially ordered such that
a<b, d<c, and no other covering relations are defined on L'. Let 4,=(V,, H,)
and %, =(V,, H,) be graphs such that V,={u, v}, H;={(u, v)} and V,={x, y},
H,=0. Consider the mapping ¥: L'— V, X V, defined by y(a)=(u, x), ¢(b)=
(v, x), Y(c)=(u,y), v(d)=(v,y). Then the condition (B) holds, ¥ is an
isomorphism of C(¥') onto 4, X%, and y does not induce a direct product
representation of £’.

6.2. Let ¢ be a subdirect product representation of C(£’) of type (y). Then y
need not be a direct representation (a weak direct representation) of C(£’).
Example:let N be the set of all positive integers with the natural linear order ; put
Ni=N,=N, P=N;XN,. Let me N, m>1 and let Q be the set of all elements
q =(x, y) € P such that some of the following conditions is fulfilled: (i) x =1; (ii)
y=1; (iii) x + y=m. The set Q is partially ordered by the inherited partial order.
Let ¢ be the identity on Q. Then y: C(Q)— C(N,) X C(N,) is a subdirect product
representation of C(Q); v is of type (y) and v is not a direct (weak direct) product
representation of C(Q).

6.3. Let v be a subdirect product representation of C(¥') fulfilling (y,) and
(Y2)- Then vy need not fulfil (B,). Example: Let P be as in 6.2. Let Q, be the set of
all elements g =(x, y) of P such that one of the following conditions holds: (i)
x=1; (ii)) y=1; (iii) x =y =2; (iv) x = y = 3. We define a partial order =, on Q,
as follows : for distinct elements (x;, y1), (x2, y2) we put (x1, y;) <, (x2, y2) if either
a) x;=x,=1and y,; <y, or b) y;=y,=1 and x, <x,. Let ¢ be the identity on Q,.
Then y: C(Q,)— C(N;) x C(N,) fulfils the conditions (Y;) and (y,), but it does not
fulfil the condition (8.).

6.4. Let ¢ be a subdirect product representation of C(¥£’) fulfilling (y:) and
(B1). Then vy need not fulfil (v,). Example: Let &’ be as in 6.1 with the distinction
that we put ¢ <d instead of d <c. Then (Y:) and (B,) hold, but (y.) does not hold.

Let us also remark that if y fulfils (Y), then ¥’ need not be connected.
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Pesiome

B cTaThe uccnenyoTes yeaoBUs As TOFO, YTOObI MONYNpsAMOe pa3iokeHKe MOKpbIBatolero rpaca

C(£) no4TH JMCKPETHOTO HYACTHUHO YMOPAJOYEHHOTO MHOXecTBa £ HWHAYLHMPOBANO MOAYNpsMOe
pasnoxetue &.
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