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A CONSTRUCTION OF A CW-DECOMPOSITION 
OF S-CUBES WHICH ARE MANIFOLDS 

JOZEF TVAR02EK 

Introduction 

Let In = {xeRn; |JC,|__1, i = l,2, ..., n} be the n-dimensional cube, Jn = 
{jceln; |JC,| = 1 } its /-th double-face and let s,: In—>!", JC»-»(JCI, ..., JC,_I, -JC,-, 
jci+i, ..., xn) be the symmetry of In with respect to the hyperplane JC, = 0. Denote by 
Gn the group generated by the set {su ..., sn} of symmetries. Since for every u e Gn 

we have M2 = id, the group Gn is commutative and Gn =(Z2)2. Every ueGn9 u=/=id, 
can be uniquely written in the form u = stlo si2o ... o sik = sili2...ik, where / i</ 2< 
...<!*. Put Nn = { l ,2 , ..., n}. Then there is a bijective map T„: G„ —>2N", 
**(sili2...id = {iu fe, . . . ,4} , x;(id) = 0. 

Now according to [4] we recall the definition of an s-cube. 
Let ii1, ..., uneGn. An s-cube X = I ' 7 ( M 1 , ..., M") is a factor space In/T, where T 

is an equivalence relation on In defined by 

JC T y if and only if JC = y or there are il9 ..., ik e Nn 

k 

such that JC, yef]J Jand y = u '̂  u ho ... o u *(x). 

The integer n is called the dimension of the s-cube X. The s-cube X will be 
alternatively written in the form X=In/(Uu ..., Un), where L̂  = Tn(M'), ieNn. 

In the paper [1] a CW-decomposition 2Fn of the rc-dimensional cube In is 
introduced in such a way that for any given s-cube X=In/(u1, ..., un) the 
equivalence relation T is a cellular one1) on the CW-space (In, 2Fn) and 
a CW-decomposition 2FnIT of InIT is constructed. Since for every s-cube X = In/T 
T is the cellular equivalence relation on (In, 2Fn), by the growing n the number of 
cells of 2Fn/T increases very rapidly. The practical computation shows that for n i_4 
the CW-decomposition SFnIT of InIT is of very little use for the computation of the 
homology H(X) of X. 

') See [3], page 32. 
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In the present paper a construction of a simpler CW-decomposition $f of such 
n-dimensional s-cube X, which is a manifold, is given. The number of cells of df€ is 
much smaller than that of 3*n. E.g., for the s-cube In/(s12...n ..., s12...n) which is 

homeomorphic to RPn we have card 3^n=- (5 n -3 n ) + 1 and card df€=n + l. 

Moreover, $?is the standard CW-decomposition {e°9 e
1, ..., en} of RPn. Since the 

CW-decomposition W is just cut for the form of the s-cube X, it seems to be one of 
the best CW-decompositions of X for the computation of H(X). 

1. Basic properties of s-cubes 

We shall make use of the paper [4]. 
Let X=In/(u1

9 ..., un) be an s-cube. The s-cube X is called an r-cube if for 
every /, jeNn ul = s} implies uj = sy. Every s-cube is homeomorphic to some r-cube 
([4], Prop. 2.10), hence we can limit ourselves in our considerations only to 
r-cubes. 

An r-cube Y= Inl(vl, ..., vn) has the property "M" if for each nonempty subset 
PczNn such that 

i) V/,/eP: i*j^>vi*vi 

ii) V/eP: card V,±l 

we have 

Pnrn (IlЧ 
According to [4], Th. 3.18, an r-cube is a manifold if and only if it has the property 
"M". 

2. o-cubes and their distribution characteristic 

LetX=J n /(U 1 , . . . , Un) be an r-cube and Mi = {xeNn; Ux= Uf}9jeNn. For the 
future construction of the CW-decomposition d/€ it is suitable to arrange sets 
l/i,..., Un in some appropriate order. 

Definition 2.1. LetX=Inl(Ul9..., Ur) be an r-cube. 
a) The r-cube X is called an ordered cube (shortly an o-cube) if the following 

conditions are satisfied: 
1) card Ui^card U2^...^card Un 

2) there are integers al9...9aS9 l . S a 1 < a 2 < . . . < a . = n, such that Max = 
{1,2, ...,at}, Ma2 = {a1 + l,a1+2, ...,a2}, ..., Maa = {as.1 +1, as^+2, ...,as). 

3) If card Ua<=l, then Ua = {at} for ieNs. 
b) Let X be an o-cube, s9 al9 ..., aS9 the integers defined in part a) and let 
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p, q,OSp^q^s, be such integers that card Ua = l for p<i^q and card Uai£l 
otherwise. Put fi1 = al, p2 = a2-al, ..., ps = as- as.r. An (2s + 2)-touple (p, q; 
au ..., as; ft, ..., A) will be called the distribution characteristic of the o-cube X. 
The set {a,-i + l, a ^ + 2,. . . , a,}, ieNs, will be henceforward denoted by Q„ 
where a0 = 0 by definition. 

Example 2.2. r-cubes Xx = -P/(s124, 5124, S12345, s124, $12345), X2 = r/(id, s2, s2, 
s456, s456, s456) are not o-cubes because the conditions 1), 2) for X1? resp. the 
condition 3) for X2 from Definition 2.1 are not satisfied. An r-cube IV(id, id, s5, s5, 
Ss, si67, si67, si234567s) is an o-cube with the distribution characteristic (1, 2; 2, 5, 7, 
8; 2, 3, 2, 1). 

Making use of [4], Prop. 1.3., it is not difficult to see that every r-cube is 
homeomorphic to some o-cube; it is sufficient to find only a suitable permutation 
of the coordinates. Since every s-cube is homeomorphic to some r-cube, we have 
the following 

Proposition 2.3. Every s-cube is homeomorphic to some o-cube. 

3. Representation of o-cubes by o-balls 

Let Bn = {xe Rn; Vjcf + .-. + J c ^ 1} be the standard n-dimensional ball. In this 
section we introduce a special type of factor spaces of the products of balls. 
Similarly to s-cubes we call them s-balls. We also introduce some special types of 
these spaces and prove that every o-cube is homeomorphic to some o-ball. 

Definition 3.1. Let n, s, s^n, be integers and let A, •••> A 6 N i , 2 A = n-
i - l 

Choose u1, ..., u'eGn in such a way that u^u1 for all iV=;. An s-ball X= 
Bfilx...xBp'/(u\ ..., us) is a factor space BPlx ...x BNTB, where TB is an 
equivalence relation on B* x ... x IP' defined by 

x TB y if and only if x=y or there is a nonempty subset M of Ns such that 

x, ye H J(A> ..» A; U n) and y=T[ u\x), where J(ft,..., A; U n) 

= BPlx ...x Bfii~lxdBPix BPi+lx...xBp>, ieNs. 
The s-ball X will be alternatively written in the form Bft X ... x BN( Uu ..., Us), 

k 

where Ux = Tn(u% ieNs. The sums 2 A will be denoted henceforward by ak, 
i - l 

ke Ns and we put OQ = 0 by definition. 

Definition 3.2. an s-ball X= B* x ... x BN(u\ ..., u') is called a regular ball 

(r-ball) if for every ieN„ jeNn(n = £ AJ u* = sf implies a^Kj^ a,. 
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Definition 3.3. a) An r-ball X=B^x...x B<V( Uu ..., U3) is called an ordered 
ball (o-ball) if the following conditions are satisfied: 
1) card U^card U2=^...^card Us 

2) IfcardUi = l, then Ui = {ai), jeNs. 
b) Let X= B^x ...x BN(UU ..., Us) be an o-ball and let p, q, O^p^q^s, be 
such integers that card 17, = 1 for p<i^q and card L ^ l otherwise. An 
(2s + 2)-touple (p, q; au ..., as; ft, ..., ft) will be called the distribution charac
teristic of the o-ball X. The set { a^ + 1 , a,.,. + 2, ..., a,} we shall denote in future 
byRh ieNs. 

Definition 3.4. Let X = B * x ... x BN(u\ ..., us) be an o-ball and (p, q; 
au ..., as; ft, ..., ft) its distribution characteristic. The o-ball Xhas the property 
"M" if for every nonempty subset P of Ns with card Ui^ 1 for all iePwe have 

where 

A є P ф A n т и ( Г J uа)фØ 
\iєP I 

P=\A;A<Z\}R, card(AnR) = l foгalliєPІ (1) 

Let X=In/(Uu ..., Un) be a given o-cube, (p, q; au ..., a,; ft, ..., ft) its 
distribution characteristic. Now we are going to find an o-ball Y with the same 
distribution characteristic which is homeomorphic to X. 

Let Ft: !'-> B' be the standard homeomorphism defined by the radial extension 
(see [2], p. 55). We show that the map 

F: J"->B f tx...x B\ 

x^(F^(xu ..., xai), ..., Ff}s(xas_l+U ..., xa) 

induces a continuous map 

F: IV(UU ..., UJ^B*x...xB<V(l/ a i ,.. ., Uas), 

(2) 

(3) 
[x]~[F(x)] 

It suffices to prove that Fis well-defined. Let [x] = [y] for x, yel", xty. Then 

there are iu ...,ikeNn such that x, ye fl J? and y= U' o... o iA(*)- Without loss 

of generality we can suppose that u''± u'« for p, q e Nk, p4= q- Let M= {ie N,; 

3/eN*, JyeQ}.1) Then F(x), F(y )eD W . - A : »» n> a n d F(>') = 
ieM 

(FT M°') (F(x)), because u"'= u' for all je Q. Hence F[x] -* fly]-

') For Q see Definition 2.1. 
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Lemma 3.5. The map F, defined by (3), is a homeomorphism. 
Proof. Since the map Jpis onto, the space In/(UU ..., Un) is compact and the 

space B / l ,x.. .xBfy(Ua i , . . . , U J is Hausdorff, it suffices to prove that F is 
injective. Let [F(x))^[F(y)] for some x, yeP, F(x)±F(y). Then there is 

a nonempty subset M of N, such that F(x), F(y)e(~) J(ft> ..., ft; i, n) and 

F(y) = ( n u a « ) (F(x)). Let ieM. Then 

F(x), F();)eBft x ... x B*-1 x dBP'XBP*** x ... x B& 

Denote by qt an element from Q, such that x, yeJn
r Then x, yef] Jn

t and 

y = n «*(*)• Hence [*] = [>•]. 
i€M 

Lemma 3.6. The homeomorphism Fgiven by (3) preserves the property "M". 
Proof. Let P/(ux, ..., un) be an o-cube with the property "M", with the 
distribution characteristic (p, q; au ..., as; ft, ..., ft) and let P=£0 be a subset of 
N, such that card Uai^ 1 for all ie P. Let AeP, where Pis defined by formula (1), 
in which Ri = Q. Then 

1) 0*AcNn 

2) card 17/=£1 for every ieA 
3) l/,=£ 17, for all i,jeA, i±j 

Since the o-cube inl(ul, ..., w") has the property "M", we have 

Anъfjlu^ФØ 

But PI w, = n wa'and the assertion follows. 
.eA teP 

We know that the homeomorphism Fpreserves also the distribution characteris
tic. Then with respect to Lemma 3.5 and Lemma 3.6 we have the following 

Proposition 3.7. Let X=P/(u\ ..., un) be an o-cube with the property "M" 
and with the distribution characteristic (p, q; au ..., as; ft, ..., ft). Then X is 
homeomorphic to the o-ball Y= B* X ... X ff*l( ifi , ..., #» ) which has the proper
ty "M" and the same distribution characteristic as X. 

4. A construction of the CW-decomposition $f of an s-cube 
which is a manifold 

Let X= Inl(ul, ..., un) be an s-cube which is a manifold. Then Xis homeomor
phic to some r-cube X! and according to Proposition 2.3 Xi is homeomorphic to 
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some o-cube X2. Since X2 is a manifold, it has the property "M". Proposition 3.7 
says now that the o-cube X2 is homeomorphic to an o-ball Y with the property 
"M". Thus, there exists a homeomorphism H: X—» Y, so it suffices to construct 
the CW-decomposition ffl of the o-ball Y only. 

Let (0, q; au ..., as; ft, ..., ft) be the distribution characteristic of the o-ball 
Y=B*x...xBN(v\..., v5) = Bp*x...xBPa/TB and let pB: B ^ x . . . x B ^ 
BPl x ... x B*V TB be the canonical projection. Now a CW-decomposition % of 
B^1 x ... X Bfia will be constructed in such a way that TB will be a cellular 
equivalence relation on the CW-space (B* x ... x BPa, %) 

Denote by %k the well-known CW-decomposition 

{e\, eu elu el, ..., elT\ ek~\ e§ 

of the fc-ball Bk with the characteristic maps 

Д,: B'^Bk, x~(Xl,..., x„ ±У/l-xì-...-x2j, 0, ..., 0) 

fS: Bk-*Bk,x^>x (4) 

7 = 0, 1, ..., k-l. This CW-decomposition of Bk induces the product 
CW-decomposition % of Bh x ... x Bft. It consists of cells 

eJ}x...xeS (5) 

where p,.^ft and # 6 {-1,0, 1}, ieNs. The cell (5) will be denoted by 
e(pu ..., p.; <7i> . . , *) and its characteristic map by f(pu ..., ps; qu ..., qs). In 
particular, the cell e(ft, ..., ft; 0, ..., 0) will be shortly denoted by en and its 
characteristic map by fn. 

Let ee gbe an arbitrary cell, e=£ en, and let G(e) be the group generated by the 
set 

{uf; ieNs, ec j ( f t , ..., ft; i, n)} 

The next Lemma follows immediately from the definition of an s-ball. 

Lemma 4.1. Let ee%, e±en. Then pB
1(pB(e))= \J u(e). 

ueG(e) 

To prove that TB is a cellular equivalence relation on the CW-space (Bft x ... x 
B\ <S), we shall need the following 

Lemma 4.2. Let ee%, e± en and let ueG(e). Then 
1) u(e)e% 
2) u(e)ne = 0 or w|e = id. 

Proof: Let (0, p; au ..., as; ft, ..., ft) be the distribution characteristic of Y, 
S(e) = {ie Ns; e c /(ft, ..., ft; i, h). Then u can be written in the form u = v o w, 
where 

v = Y[ ul, w = n "', 
ieP ie O 
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PczNqnS(e), Qcz(Ns- Nq)nS(e). Let us denote 

F = {ai.1 + w + l ; i € P } , Q' = {a<_1 + pf + l ; / e Q } . 

Now put S= P 'uQ' , S* = Snrn(u). With respect to (4) we have sign *, = sign y, 
for all x, yee and /e S. Let for xe e z = w(;t). Then for every ie S* we have 
sign z, = -sign xh hence u(e) = e(pu ..., p5; qf, • •, <?*), where ^1 = ,̂ for /£S*, 
q*i = - q< for ieS*. So we have shown that u(e) e % and that en u(e) = 0 if S* 4 0. 
We shall discuss 3 cases: 

1) Q^0, 2) P*0, Q = 0, 3) P = Q = 0. 
1) Since the o-ball B* x ... x BN(u\ ..., w5) has the property "M" and Q' e Q1), 

we have Q'riTn(Y[u) = Q'nrn(w)40. 

Hence S*^0 and enw(e) = 0. 
2) If Fnrn(u)¥=0, we have s*=£0 and enu(e) = 0. If P'nTn(w) = 0, we have 
u|e = id. 
3) In this case n = id. 

Theorem 4.3. The equivalence relation TB is cellular2) on the CW-space (B^ x 
. . .xB*, %). 
Proof: Let e be an arbitrary cell in %. If e= en, then pi1(pB(e)) = e. If e± en, 
according to Lemma 4.1 and Lemma 4.2, part 1), the set pB

l(pB(e)) is a union of 
mutually homeomorphic cells of %. Making use of assertion 2) of Lemma 4.2 and 
of the definition of an s-ball we get that pB maps every cell ee % homeomorphically 
on pB(e). 

According to [3], Prop. 5.8, p. 60, we have the following corollary of 
Theorem 4.3. 
Corollary. The set <K={pB(e); ee %} is a CW-decomposition of the o-ball 
B* x ... x BN TB. The map pB o f(pu ..., p s ; qu ..., qs) is characteristic for the cell 
PB(e(pu ..-- Ps\ qu . . , qs))-

Example 4.4. Using the previous results we construct a CW-decomposition 9? 
of the o-ball Y which is homeomorphic to the s-cube X= Pl(s2, sX23, s3). By [4], 
Lemma 1.4, X is homeomorphic to an r-cube Xi = P/(si23, Si23, s3) and by [4], 
Prop. 1.3, Xi is homeomorphic to an o-cube X2= P/(su si23, si23). The o-cube X2 

has the property "M" and the distribution characteristic (0, 1; 1, 3 ; 1, 2). By 
Proposition 3.7 the o-cube X2 is homeomorphic to an o-ball Y = B l x B2/(su si23) 
= B1 x B2/TB. The CW-decomposition % of B1 x B2 consists of the following 15 
cells: e(0,0; ±1, ±1), e(0, 1; ±1, ±1), e(0,2; ±1,0), c ( l , 0 ; 0 , ±1), e(l, 1; 
0, ±1), e(l, 2; 0, 0). The CW-decomposition ^fof Yhas 6cells: pB(e(0, 0; 1, 1)), 
pB(e(l, 0; 0, 1)), pB(e(0, 1; 1, 1)), pB(*(l, 1; 0, 1)), pB(e(0, 2; 1, 0)), pB(e(l, 2; 
0,0)). 

*) See Definition 3.4 
2) See [3], p. 32 
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КОНСТРУКЦИЯ С\У-РАЗБИЕНИЯ 8-КУБОВ, КОТОРЫЕ ЯВЛЯЮТСЯ 
МНОГООБРАЗИЯМИ 

1оге! ^ а г о г е к 

Резюме 

Пусть Х- л-мерный 8-куб, который является многообразием. В статье построено С\У-разбие-
ние Ж 8-куба X, которое позволяет вычислить Н(Х) тоже для п 1̂ 4. 
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