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Math. Slovaca 36,1986, No. 3, 283—288 

ON THE A-CONTINUITY OF REAL 
FUNCTION II 

JOZEF ANTONI 

In the present paper two problems concerning the A-continuity to a regular 
matrix summability method are partially solved. 

Let A = (a™) denote a regular summability method given by a matrix (amn). We 
A 

say that a real function / is A-continuous at the point x0 if f(xn)—>f(x0) whenever 
A 

x n —> x 0 . 

R. C. Buck [2] showed that if / is a (C, l)-continuous at least at one point of R, 
then / is a linear function. In paper [1] the existence of a regular matrix 
summability method A for which there exists a nonlinear function A-continuous at 
least at one point is given. 

Professor Salat puts the following problem: 
1. To characterize regular summability methods A for which there exists 
a nonlinear function which is A-continuous at least at one poit. 
2. To characterize QA, the set of all points of A-continuity of the function /. 
method is given for which only linear functions are A-continuous at least at one 
point. 

Definition 1. A regular matrix summability method has the property (G) if there 
exists sequences {a„}*-,l5 {j3„}*=i, of zeros and ones which are A-covergent to 

numbers a, b respectively a6(0,1), b=£0, b+\, ( j =£( , J for all 

non-zero integers p, q. 

Lemma 1. Let T be a regular matrix summability method which sums at least 
one sequence of zeros and ones to a number a, ai= 0, aj= 1. Letf be a T-continuos 
at least at one point. Then f is a continuous function. 

Proof. Let / be a T-continuos at a point z0. Let us suppose that / is discontinuos 
at a point x. Thus there exists a sequence u„—>0 such that lim f(x + u„) = y^f(x) 
(also be y -h oo, or — oo). Let {an}n^ denote a sequence of zeros and ones for which 
T-lim an = a. The sequence {xn}naml 
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xn = a„(x + 0 + ( l - a n ) ( ^ - - - f ) 

is T-summable to z0 for every sequence {i,}".., t,—»0. Especially for x'n= 

aF,(x + Mn) + ( l - a „ ) ( ^ ^ we have T-lim f(x'n) = ay+ (1-a) f(^^j . 

However, for 

x„=anx + (l- an) (-TZ—) w e obtain that 

T-lim f(x"n) = af(x) + (1 - « ) / ( f ^ f ) • 

Since / is T-continuous at the point z0 both above limits have the same value 
(/(zo)). From this we can conclude that f(x) = y. This fact, however, is in 
contradiction with the assumption and the proof is finished. 

Theorem 1. Let Abe a regular summability method with property (G). Let f be 
a A-continuous at least at one point Then f is a linear function. 

Proof. Without restriction on generality we can suppose that / is A-continuous 
at the point 0 and /(0) = 0. The sequence {xn}n=h {yn}n=1 where xn = 
an+(l-an)y, yn=finu + (l - an)v, ({an}n=u {j3„}n=i are sequences of the defini­
tion 1) are A-convergent to 0 if x, y, u, v satisfy equations 

ax + (\ — a)y = 0 
bu + (l-b)v = 0. 

The A-continuity of the function / at the point 0 and /(0) = 0 implies that for each 
x, u the following equations are valid 

'(-г-Ь*}"г--я* 

/(-ŢTV) = -ÏГV ( U )-

The last two equations can be rewriten in the form: 

/(-*,*) = -/<,/(*), f(-k2x) = -k2f(x) 

where ki = 1 _ , k2 = __ , . By indukction we can verify the following equality 

/(fci'fci;Jc)= kVf(x) for all x and /, ; = 0, 1, 2, ... . The numbers k\, k\ are positive. 
Let (R+, .) denote the topological multiplicative group of nonnegative numbers. It 
is well known that a subgroup gr (c, d) generated by c, d (c, deR+) is dense if and 
only if the equality cp = dq holds only for p = q = 0, p, q are integers. (See [3] 
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p. 27—36.) Thus we easily obtain that f(kx) = kf(x) for all x and fcegr (k\, fci). 
Since the summability method A has the property (G) the subgroup gr (k\, k2) is 
a dense subset of R+. According to the lemma 1 / is continuos function. Thus 
f(x) = f(l)x for x^O and f(-x) = f(-l)x for x<0, which means that / is 
composed of two linear parts, i .e . f(x) = cx for x^O and f(x) = cfx for x<0, 
where c, c' are constants. The assumption a (0, 1) of property (G) gives that fci > 0 . 
Computing the value of / at the point — fci in two different ways we obtain 
/(-fci) = c'(-fci) and /(-fci) = -fci / ( l ) = -fciC according to (1). Thus we can 
conclude that c=c' and / is a linear function. An example of summability method 
without property (G) for which there exists non-linear function A-continuous at 
least at one point, is given in Example 1. 

E x a m p l e 1. A linear transformation given by matrix B = (bmn), where 

b2k+i,4k+i = b2»v+i,4k+4 = x , b2k,4k+3— 02/c,4k+4 = ;> , fc = 0, 1, 2, ... and bmn = 0other­

wise, is a regular summability method. A sequence {xn}n=l is transformed by matrix 

B to the sequence {t,}r-i, where t2k+1 = ̂ (x4k+i + x4k+4) and t2k=^(x4k+3 +x4k+4), 

fc = 0, 1, 2, ... . Each B-summable sequence {z„}~=iof zeros and ones has a B-limit 

equal to one value of the set j 0, - , 11 as it can be easily verified. Since the terms on 

places of the form 4fc + 2 do not have any influence on the B-limit, we have that 
there exist infinitely many sequences of zeros and ones, which have the B-limit 

equal to - . But for every two integers p, q the eqality l p = lq holds. It is suffitient 

to take for a function f an arbitrary nonlinear odd function which is uniformly 
continuous and /(0) = 0. Such a function is continuous at the point 0 and is not 
a linear function. 

Another condition is given in the following theorem. 

Theorem 2. Let there exists for a regular summability method A = (a^) sequ­
ences {an}"-i, {A,}n-.i, {y«}n=i of zeros and ones such that A-liman = a, 
A-lim pn = b, A-lim yn = c, abc±0, a±\^hb, c=£ 1 and an + fin + yn = l for every 
n. Then f is a linear function whenever f is A-continuous at least at one point. 

Proof. Let / be A-continuous at a point x0. Then the sequence {tn}n=i, 
tn = anx + finy + ynZy has A-lim tn = Xo whenever x, y, z satisfies the equality 

ax + by + cz = Xo (1) 

Since / ( O = anf(x) + pnf(y) + yHf(z) we have that A-lim / (4 ) = 
af(x) + bf(y)+ cf(z). The A-continuity of / at poit x0 gives the equality 

af(x) + bf(y) + cf(z) = f(x0) (2) 
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By (1) and (2) we can conclude that the function f satisfies the following functional 
equality 

/ ( - f x - f y + ixo)---f/(x)-^(y) + i/(*,), 

for all JC, y. According to lemma 1 / i s a continuous function. Thus the well-known 
results about functional equalities of this type give that / is a linear function (see 
e. g. [5] pages 68—70). 

2. The set of all points at which a given function is A-continuous strongly 
depends on the summability method A. Let e.g. A = (a^,), where a™ = am,n+1 = 

- , m = l , 2 , 3, ... and amn = 0 otherwise. Then the set QA acquires one of the 

following posibilities: 
a) the set of all real numbers 
b) the empty set 
c) only a one point set 
d) a countable set of isolated points. 

We outline a verification of this statment. 
Let / be A-continuous at a poit a. Without loss of generality we can suppose that 

a = 0 and /(0) = 0 (in another case we take a function g(x) = f(x + a) — f(a) which 
satisfies the above assumptions and Q = Q + a, Cf,A= CgA + a, Q + a is a shift of 
the set Q ) . A-continuity a the point a implies that f necessarily satisfies the 
following equations 

f(-x)+f(x + 2a) = 2f(a) 
f(-x + a) + f(x + a) = 2f(a) (3) 

for all x e R. Especially for a = 0 we obtain /(—x) = — f(x). This condition allows us 
to give an example of a function for which QA = 0 (e. g. f(x) = x2). An example of 
a function for which QA = 0 is the function defined by 

/(*) = 
1 for x&l 
x for xe(—1, 1) 

- 1 for x ^ - 1 

(for more detail see [1]). 
We prove that QA is a finite set if and only if QA contains exactly one point. If 

0 and a are points of A-continuity of a function /, then using (3) we obtain that 
f(na) = nf(a) for n = 0, ± 1, ±2, ... and all points na are also points of A-continuity 
of the function /. An example of such a function is the function sinus. 

Let QA have a finite limit point. Without loss of generality we can suppose that 
this limit point is 0 and /(0) = 0. Then / is an odd function and for all aeQd 

f(na) = nf(a) n = 0, ±1 , ±2, . . . . Since there exists a sequence a„—>0, an e QA then 
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QA is a dense set in R. Since according to lemma 1 f is continuous on R and 
f(nat) = nf(ai) 0 = 1, 2, 3, ..., n = 0, ±1, ±2, . . . ) , / is a linear function. 

The fact that every linear function is A-continuous on R is evident. 
The following theorem tells us more about the possibilities for QA. 

Theorem 3. Let B be a G8 set. Then there exist a regular summability method 
T stronger than the convergence and real function f for which Cp- = B. 

Proof. It is well known that to any G6 set B there exists a function / for which 
Q = B. Let { nx < n2 <...} be an infinite set of positive integers whose complemen­
tary set (in N) is also an infinite set. 

Let us define T in the following way: T=(amn), where 0 ^ = 1 and amn = 0 for 
n£nm, m = 1, 2, 3, ... . The regularity of such a method is evident. For regular 
method A such that {f(xn)}n=:1 is A-summable whenever {xn}nsl converges the 
lemma of [4] gives that f is continuous. It is sufficient to prove that Q--=> Q. 

The convergence field of T consists of all sequences {yn}nsl for which the 
T 

subsequence {y„J*--i is convergent. Let x0e Q. Let xn-+x0. Then xnk-^x0. Since / 

is continuous at JC0, the sequence f(xnk)^>f(x0). However, this fact means that 
T 

f(xn)—>f(x0) and so we have that x0eCp-. Thus CfT = C1 = B and the proof is 

complete. 
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О А-НЕПРЕРЫВНОСТИ ВЕЩЕСТВЕННЫХ ФУНКЦИЙ 

5огЫ АпТош 

Резюме 

Пусть А — ре гул арная матрица. Функция /: Я—>К называется А-непрерывной в точке Хо, 
если из А-Нт Хп = ль вытекает А-Нт {(хп) = {(х0). В работе даны достаточные условия для того, 
чтобы из А-непрерывности функции вытекала линейность функции. Тоже доказано, что дла 
любого множества В типа С* существует матрица А и функция / такие, что множество всех 
точек А-непрерывности функции / равно В. 
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