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LINEAR TRANSFORMS AND CONVOLUTION
LADISLAV SKULA

1. Introduction

In contemporary applications of mathematics Convolutions and Discrete
Fourier Transform (DFT) are very often used. For the sequences u = {u,}Y -, ,
v={v}¥-! of complex numbers with N members the sequence

uxv=w = {w}_, is called the circular convolution of the sequences u and v if
N-1
W, = Z Ui p (0<1<N—1)9
n=0
v,_,,=v,,,wheremEl—n(modN)andO m N—1.

The discrete Fourier transform X = {X,}}=,' = D(x) of a sequence x = {x,}y =y
of complex numbers is defined by

N-1
X,= Y oW (O<I<SN-—1),
n=0
2r
where W—COSF—] sm—(_| V-1
The inverse discrete Fourzer transform X = {X,}N-J) = D~'(x) of a sequence
x = {x,}),' of complex numbers is defined by
1 N-1
X,=— Y xW" (O0<n<N-—1).
N /=0

In modern computation techn que the circular convolution of the sequences
u and v is often computed by means of the DFT as follows:

uxv =D (D(u) ® D(v))

(® denotes component-wise multiplication).

The circular convolution is also computed by other transforms having this
““convolution property’’, e.g. ‘““Number Theoretic Transforms”’ (NTT). The book
[6] by H. I. Nussbaumer deals with these topics and the collection of
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papers [3] arranged by J. H. McClelan and Ch. M. Rader deals with the
applications of number theory in this direction. There is a book [4] by V.
Cizek on Discrete Fourier Transform in Czech.

The aim of our paper is to study all linear transforms having this ““convolution
property” in general over a commutative ring with identity. In paper [1] by R.
C. Agarwal and Ch. S. Burrus this question is solved for special linear
transforms over a commutative field (4.2).

We give an equivalent characteristic to the “convolution property” by means
of ““certain” condition on the matrices of these linear transforms in Paragraph 2
(2.9).

This question for a commutative field is completely solved in Paragraph 3
(3.6). In Paragraph 4 we give a complete solution for the integral domain (4.1)
and for the case N = 2, where N is the length of the considered sequences (4.4).
The case N > 3 is open in general.

In Paragraph 5 the linear transforms having the “‘convolution property” are
investigated over a residue class ring modulo a prime power. It is shown that for
this purpose the ring of p-adic integers is of great importance. By means of linear
transforms with ““convolution prorerty” over the ring of p-adic integers we can
construct linear transforms with this property over the residue class ring modulo
p" (p a prime, n a positive integer) (5.2). If this construction describes all these
linear transforms over a residue class ring modulo prime power, it is open for
N =3

2. Linear Transforms Supporting Circular Convolution

In the whole paper we shall denote by

R a commutative ring with identity element 1, (# 0, the zero element of R)
and

N a positive integer.

If ¢ 1s an integer, we shall also consider ¢ as the element ¢. 1 from the ring
R ohence c=c. 1z, 1 =14,0=0.1,=04, N=N.l;, etc.

2.1. Definition. A mapping L of the set of all sequences of length N of elements
from the ring R into itself is called a linear transform (of the sequences of length
N of elements from the ring R) if there exist a,e R (0 < i, j < N — 1) such that
for each sequence x = {x;}}'=' (x;€ R) we have

Lix)=y={}" (neR)
with

N -1
yl':Zaijxj O<i<N-1.
=0



The matrix A = (a;)o<;j<n—1 is said to be the matrix of the linear trans-
form L.

The sequences of length N will often be considered as N-dimensional vectors,
i.e. matrices of size N x | over R. Hence, the sequence x = {x;}}_' will be
considered as the vector

Xo
X
x=]":
XN -1

The value x; will be extended onto all integer-indices in the following way:
x,, = x; for an integer m, where 0 <k < N — 1, m = k(mod N).
Then the equality L(x) = y can be written in the form:

y=A.x.
2.2. Definition. Let
Uy Vo
u=|" , o= "
Uy Un_

be N-dimensional vectors over R. By the product of the vectors u and v we
understand the vector

uo=| "
Uy 10y
The vector or the sequence
Wo
Wi
usxv=\">
Wy_i

is called the circular convolution of the vectors or the sequences u and v if for each
0<I/< N—1 we have

-1
W= ) U,
n=0

2.3. Definition. Let L,, L,, L, be linear transforms of the sequences of length
N of elements from the ring R. We say that the 3-tuple (L,, L,, L;) supports
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circular convolution or briefly it is (SCC) if for each sequence x, and each sequence
x, of length N of elements from the ring R the equality

Xy * Xy = L3(L,(x,) ® Lz(xz))
is satisfied.
2.4. Notation. For 0 <7< N — 1 put

X0

X([) — ’:xll

XN -1
where for 0 < u < N — 1 we have

{IR fort=u
Xy ==

0, otherwise.
2.5. Theorem. Let L,, L,, L, be linear transforms of the sequences of length
N of elements from the ring R and let A = (a;), B = (b;), C=(C)) (0 </,
J < N — 1) be their matrices. Then the following statements are equivalent:
(a) The 3-tuple (L,, L,, L,) supports circular convolution.
(b) For each 0 <u, v < N — 1 the following is satisfied:

x() % x(v) = Ly(L,(x(u)) @ Ly(x(v)))-
(c) For each 0 < u,v,w< N — 1 there holds:
n—1
_ Jlg for w=u+ v(mod N)
k;o bk {OR otherwise.

Proof. Clearly (a) implies (b).
I. Let (b) hold and let 0 < u, v, w < N — 1.

Put
= Ll(x(u)), Y= Lz(x(”)), Vi=11®y1, ¥y = Ly(yy),
_.}}IO ] —J’zo ]
yl = N ’ )"2 = 3 B}
| Vin -1 | Vo -1
F?’m ] _}"o ]
rn=\: , y=1: 5
V3N -1 | Vv -1

Then for 0 < k < N — 1 we have

Yik = Qs Y2k=bk,,, _}’3k=aku-bkv,
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hence

N—-1

Yw = Z akubkvcwk .

Since y = x(u) % x(v), there holds

Y = Z XunXow —n =

n=0

N-1 {IR for w — u = v(mod N)
wi—u =
0p otherwise.

Therefore (c) is valid.
I1. Let (c) hold and let

X10 X20
xl = M ’ x2 = .
XIN-1 XN —1

be N-dimensional vectors over R.

Put
%’10 }’20
N =L|(x1)= : s y2=L2(x2)= . s
IN=1 2N — 1]
V3o ).’0 T
»i=n®y,= s y=L(y;) =
IN—1 v N—1

Then we have foreach 0 <A SN -1

n—1 N-1
Yk = Y-V = uZO .;Zo @ DX, X2, -
For 0 < w < N — 1 there holds:
N -1 N—1 N-1 N-1
Yw = Z CorVik = Z Z X1uX2p Z @bk =

le N-1 vmh et ‘=

=Y Y x,X%,(w=u+ v(mod N))
O B

= Z X1 X — u -
u=20

Hence y = x, x x, and the statement (c) is valid.

The Theorem is proved.

Suppose that the ring R is the direct sum of rings R, (1€ I), p, is the projection
from R onto R, and L is a linear transform of the sequences of elements from
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R of length N with matrix A = (a;). Denote by L, the linear transform of the
sequences of elements from R, of length N whose matrix is A, = (p,(a,)). (Under
the direct sum of the rings R, (1te I) we understand the set R that equals the
cartesian product of the sets R, (1€ 1) and the operations are defined component-
wise). From Theorem 2.5 we obtain immediately:

2.6. Proposition. Let L,, L,, L; be lincar transforms of the sequences of
elements from R of length N and let R be the direct sum of the rings R, (1€ ).

Then the 3-tuple (L,, L,, L,) is (SCC) if and only if the 3-tuple (L,,, L,,, L;)
is (SCC) for each 1€ 1.

Further let 7 be and ideal of the ring R and L be 2 linear transform of the
sequences of elements from R of length N with matrix A = (a,). We denote by
a the coset of I containing ae R and by L the linear transform of the sequences
of elements from the quotient ring R// with the matrix A = (a,).

We get from Theorem 2.5. Immediately:

2.7. Proposition. Let L,, L,, L, be lincar transforms of the sequences of
elements from R of length N and let I be an ideal of the ring R. If the 3-tuple (L, ,
L,, L,) is (SCC), then the 3-tuple (L,, L,, L;) of linear transforms of the
sequences of elements from the quotient ring R/I is (SCC).

2.8. Definition. Let A = (a;), B=(b,). C=(c,) (0 <i,j< N — 1) be quad-
ratic matrices of order N over the ring R. We say that the matrices A, B, C support
circular convolution or briefly are SCC-matrices if for each 0 < u, v, w < N — 1
the following relation holds:

N1 I, foru+v+ w=0(modN)
Z akubkrckw = {

k=0 Oy otherwise.

We denote by C* the quadratic matrix (d,) (0 < i,j < N — 1) of order N over
R, where d; = c;, 0S k< N—1, k= —i(mod N). Let Ly, Lg, L. be linear
transforms with the matrices A, B, C*. Then we obtain from Theorem 2.5:

2.9. Proposition. The matrices A, B, C support circular convolution if and only
if the 3-tuple (L,, Lg, Lc.) supports circular convolution.

2.10. Remark. The given change of the transform L. into the matrix C
has the meaning that the matrices A, B, C have symmetrical functions in the
definition of SCC-matrices. If we then prove an assertion for some of these
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matrices, this assertion also holds for the others. Further we remark that
(CH* =C.

3. SCC-Matrices over a Field

In this paragraph we give a description of all matrices A, B, C over a
(commutative) field supporting circular convolution.
We denote by

" F a (commutative) field
and

A=(a),B=(b),C=(c;) (O<ij<N-—=1)

quadratic matrices of order N over F.

For 0 < i,j < N — 1 we denote by A*(i, j) the cofactor of the element a, in
the determinant of A. (For N = 1 we define 4*(0, 0) = 1.)

If n is an integer, we put A*(i, n) = A*(i, j), where 0 <j< N—1 and
n = j(mod N).

3.1. Proposition. For SCC-matrices A, B, C the following assertions are valid:

(a) det A.det B.det C #0,

(b) (det A).b,,.cy,, = A*¥(k, —v — w) for each 0 < k, v, w < N — 1,

(¢) a;.b;.c;.A*(i, j) # 0 for each 0 <i,j < N — 1.

Proof. I. Suppose det A = 0. Then there exist elements feF (0<i<N—1)
and an integer u (0 < u < N — 1) such that f, # 0 and

N-—1
Z fiaki =0
1=0
is valid foreach 0 <k < N — 1.
From this relation we get

N-—-1 N-1 . N-1

Z akubkvckw = - Z f:f; Z akibkpckw

=0 i=0 k=0

i#u

foreachO0<v,w<< N-—1.
Let v= —u(mod N) and w=0. Then i+ v+ w=i— u% 0(mod N) for
i #uand 0 <i< N — 1, therefore for this i we have

N-—1

Z b i = 0.

k=0
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Since v + v + w = 0(mod N), we obtain

N-1

1= Z akubkvckw = Oa

which is a contradiction.

Thus det A # 0 and by reason of symmetry also det B, det C # 0.

II. Let0 < v, w< N—1.Put x, = b, ¢c;, foreach 0 <k < N — 1. Then for
each 0 < u < N —1 we have

N-1
Z QX = { .
k=0 0 otherwise.

Since det4 # 0, we obtain from the Cramer Theorem (det A).x, = A*(k,
—v—w).

IIl. Let0 <k,w< N —1and ¢, = 0. It follows from (b) that A*(k, /) =0
for each integer 4, hence det A = 0, which is a contradiction to (a). Thus ¢; # 0
(0 <i,j < N —1) and by reason of symmetry also a;, b; # 0. From (a) and (b)
we then get A*(i, j) # 0.

1 foru+ v+ w=0(moed N)

3.2. Proposition. Let A, B, C be SCC-matrices. Then for each0 < k < N — 1
there exist elements a,, b, ¢, g, € F such that

g =1
and \ \
akhzghkakabkh:gkbk,Ckh=gkck
foreachO <h< N-—1.
Proof. Let 0<k<N—1. For an integer n and for an integer h
O<h<N-1)put
a, = A*(k, —n).(det A, By =bus = Cun-

According to 3.1 (c) the elements a,, B, ¥, differ from 0 and according to 3.1
(b) we have for integers v, w (0 < v, w < N —1):

ar +w = ﬂvyn' .
It follows that ¢, = By %, B.=a. %', 7. = a.f; "', therefore
ﬂl‘: aL‘ﬂOaO_l’ yu'= au‘ 7’0‘10_1,
a.,,=aqa.0' .

From this we easily derive by mathematical induction that for each integer n
(O<n<N)
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and it follows that for each integer 4 (0 < & < N — 1) we have
h h
a a
ﬂh=<_l> Pos 7h=<_l> Y-
% (24

a
Putg, = —, b, = By, ¢ = %. Then o, = ay = g a,, thus gl = 1. Further we
%
have b,, = B, = gl b, and ¢;, = ¥, = gt c,. By reason of symmetry we also obtain
a,, = gt a,, where a, is an element from F.
Four our next investigation we shall need the following assertion, which is
essentially known in algebra, but in spite of it we give its proof.

3.3. Proposition. Let the polynomial x" — 1 have N different roots in the field
F. Then

(a) there exists (e F such that {1, {, &, ..., {" '} is the set of all roots of the
polynomial x — 1 in the field F,

(b) char F does not divide the integer N,

(¢) for an integer m the equality

Nf fon = {N for m = 0(mod N)
K=o |0 otherwise
is valid.

(The symbol char F means the characteristic of the field F.)

Proof. I. Let R’ be the set of all roots of the polynomial x* — 1 in the
field F and let R be the set of all orders of elements from R’. If pe R’ and r is
the order of g, then the elements 1, g, ¢, ..., o ~ ' are different and form the set
of all roots of the polynomial x" — 1 in F. It follows that the set

M(@r) ={0":1< x <r; x, r are relatively prime}

is the set of all elements from R’ of order r and the number |M(r)| of elements
of the set M(r) equals ¢(r), where ¢ means the Euler function.

Let P mean the subset of elements of the set R” of order < N and let M be
the number of elements of P. Since each re R divides N, we have

M=% IM@)(reP)=7} o(r) (re R — {N}) <

<Y o(d) (1 <d < N, d divides N) =
=N — o(N)

(we have used the equality £ (d) (1 < d < N, ddivides N) = N). Since ¢o(N) > 1,
we have M < N, therefore there exists an element {e R’ with order N. The set

{1, ¢ & ..., {N"'} is then the set of all roots of the polynomial x"—1 in the
field F.
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II. Let the prime p be the characteristic of F, N = pM, where M is a positive
integer. The elements {" (0 < i < p — 1) are different and therefore

¥ —1=[[Gx—-¢O<i<p—1).

On the other hand we have x* — 1 = (x — 1)”, which is a contradiction. Hence
char F does not divide N.
II1. Let m = 0 (mod N). Then & =1 for every integer k, thus

N-1
Letm # 0 (mod N). Then {" # landwe have (" — 1) ), ("= —1=0,
k=0

therefore
N-1
Y ¢r=o.
K=0
Recall that for x;, x,, ..., xy_, € F the determinant
2 N—1
1 x(] -X() xo
2 N
D = D(xy, Xy, ..., Xy ) = 1 XX e Xy
‘ 2 N1
1 Xy_1 XN - Xny_

is called the Vandermonde determinant and there holds

D=H(x,-—x,)(0<j<i<N—l) for N > 1
D=1 for N=1.

For 0 < r, s < N — 1 let D mean the cofactor of the element in the rth row
and the sth column of the determinant D (for N = 1 we define D, = 1). Then
we have

3.4. Proposition. Let x,, x,, ..., Xy _, be different elements of the field F with
the property x! =1 (0 < i< N — 1). Then there holds for 0 <r,s < N — 1

D = Nx!Dx*.
18



Proof. We can suppose N < 2. Put X = xx,...x, _; X, ;1...Xy_. We have

s—1 s+ 1 N-1

1 x, x5 ... x37' x§ X0
1 x
* __ r+s 3 —
Dr.r—(_l) 1 X, =
1 Xr41
N—1
1 xy_, Xn-1
s+ 1 s+ 2 N+s—1
Xo Xo X0
_(_1)r+s+(N—l—.v).r Xy -
- s+ 1
xr+l
sl N+s—1
XN-1 XN -1

= (_1)r+j+Ner+lD(x0’ Xpy eees Xp_ s xr+1’ seey xN—l)

=(=1y+rtM [ —x) O<j<i<N-—1,i#r#))

Thus

DE[TCh=x) O<jSN—1j#r)=(=1y*rs+¥sN-tory+ip,

Since x¥ —1=(x—x) (x—x)...(x — xy_,), we have x,.x,...xy_, =
= (="', therefore X =(—D"'.x7'. If we put X,=x,[](x,—x) x
x (0<j< N-—1,j#r), we obtain

D3 X, x; =D,

thus
N—

1
ND= Y DiX,x =XD.

s=0
It follows that N = X, and hence D = Nx D}.

3.5. Proposition. Let A, B, C be SCC-matrices. Then using notation of 3.2 we
have:

(a) the elements g, (0 < k < N — 1) are different,

(b) char F does not divide the integer N,

(¢) Naybc, =1 for each0 <k < N-—1.



Proof. I. According to 3.2 det A=aya,...ay_ D (8¢, &15 ---» En—1) = Ay a...
- ay_ [T —g) (0 <j<i<N-—1).Since det A # 0 (3.1 (a)), the elements

g (0 < k < N — 1) are different.
II. According to I and 3.3 (b) char F does not divide N as by 3.2 g¥ = 1.
I[TI. Let 0 <k < N — 1. According to (3.1) (b)

(det A) bkocko = A*(k, 0).
From 3.2 and 3.4 we obtain

detA = qgya,...ay_,D(gy, 15 ---» Ev-1) = aNA*(k, 0),
therefore

Nab,e, A*(k, 0) = A*(k, 0)
and since A*(k, 0) # 0 (3.1 (c)), we have Nab,c, = 1.

3.6. Main theorem. The following statement are equivalent:
(a) The matrices A, B, C support circular convolution.
. (b) For each0 < k < N — 1 there exist a,, b,, c,, g, €F such that
(@) &' =1,
(B) Nabc, =1,
() the elements g, (0 < k < N — 1) are different,
(0 ay,=g'a,, by, =gby, ¢y = ghc, for each0 <h <N — 1.

Proof. If the statement (a) holds, then according to 3.2 and 3.5 the state-
ment (b) also holds.

Let (b) holdand let 0 < u, v, w < N — 1, m = u + v + w. Then according to
3.3 (a) there exists {e Fsuch that {1, ¢, &, ..., " Y = {gy, &1 .-, gv_ 1} We get
according to 3.3 (c)

N-1

N-1
N kz b, = N kz abcgy =
=0 =0
N-1 N for m = 0(mod N)
-5

Since charF does not divide N (3.3 (b)), we have

N—-1

Z akubkvckw =1
0

k=

0 otherwise.

for u + v + w = 0(mod N).
The Theorem is proved.

3.7. Example. The Discrete Fourier Transform (DFT) is a linear transform D
of the sequences of elements from the field of complex numbers of length N,
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whose matrix A has the form

1 1 1
2 N -1
S B Okj<N-1,
i Wi’—] PN =12

where W = cos %r — jsin 27\77—[ (j =/ —1). The Inverse Discrete Fourier Transform

D' is a linear transform with the matrix
A'=(N""WHO0O<k j<N-1).

It is well known that the 3-tuple (D, D, D~") supports circular convolution.
If C = (¢;) = (A™")*, then ¢; = N~ 'W'. The matrices A, A, C support circular
convolution.

4. Some Other Cases

From the Main Theorem 3.6 we derive the analogous Theorem for SCC-
matrices over an integral domain:

4.1. Theorem. Let A = (a;), B = (b;),C = (¢;) (0 < i,j < N — 1) be quadratic
matrices of order N over an integral domain D. Then the following statements are
equivalent:

(a) The matrices A, B, C support circular convolution.

(b) For each 0 < k < N — 1 there exist a,, by, ¢, ge€D such that

(@ g =1,
(B) Nabie, =1,
(y) the elements g, (0 < k <N — 1) are different,

(O) @y = L ax, by = &by, ci = gick
for each0 < h< N-—1.

Proof. Let F be the quotient field of D. According to 3.6 the statement
(a) follows immediately from (b).

Let A, B, C support circular convolution. According to 3.6 there exist a,, b,
¢, 8 €F(0 <k < N — 1) fulfilling the conditions (@) — (J) in the statement (b).
We must show that these elements a,, b, ¢, , g, belong to D.

Put 4 =0 in (8). Then g, = g,;e D and analogously b,e D and c,eD. For
h =1 we have q;; = g.a, and by multiplication of this equality by the element
Nb,c, we get g, = Na,b,c,g. = Nb,c,a,, €D.

The Theorem is proved.

The paper [1] deals with the case when A = B =T is a regular matrix and
C* = T~'. The following theorem (slightly adapted) is given in this paper:
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4.2. Theorem. (Agarwal, Burrus). Let T = (t;) (0 < i,j < N — 1) be a regular
matrix of order N over a (commutative) field F. Let L and L™ be linear transforms
with matrices T and T, respectively. Then the following statements are equiv-
alent:

(a) The 3-tuple (L, L, L™") supports circular convolution.

(b) For 0 <k < N — 1 there exist different g, € F such that g} = 1 and for
0<hsN-1

Tew = &h»

and char F does not divide N.
Then for T~' = (t,,) (0 <k, h < N — 1) we have

i;dz:N_lgh—k'

Proof. Recall that the condition “char F does not divide N’ is equivalent
to the condition “N has an inverse in F”’. Then this inverse will be denoted by
N~

Put A=B=T=(), C=(c;)=(T ) =(1;)* 0<i, j<N—1), hence
1; = ¢y, wWhere I(i) = —i(mod N), 0 < /(i) < N — 1. The statement (a) is equiv-
alent to the statement: “A, B, C are SCC-matrices’’. If this holds, then accord-
ing 3.6 there exist a, = b,, ¢, g.€F (0 <k <N — 1) with the properties
(@) — () from 3.6 (b). We must show that aq, = b, = 1.

According to 3.3 (a) there exists {€ F with {* = 1 and a permutation p of the
set {0,1,2,..., N—1}such that g, = ® 0 <k < N-—1).

We get for A.C* = (x;) according to 3.3 (¢)

N1 N—1 N-1
— P — Ihy .
Xp= Y lyly = Y tacin = ) glagc=
K=o K=0 K=0

N-1
= ag, h;) 00 =p0) =

_ {Na,-ci for i=j
0 otherwise

_J1 fori=j

~ |0 otherwise.

Therefore Nac; = 1 = Na’c; and then a,= b, = 1.
The implication “(b) — (a)” follows directly from 3.6 because the matrix
(N~'g;*) (0 <k, h < N — 1) is the inverse matrix of T (3.3 (c)).

4.3. Remark. This Theorem and Theorem 3.6 do not hold in a general case
of the ring R.
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Example. Let R be the residue classs ring Z/15Z modulo 15. Put

1 11

8 2
8 13

(The integers in matrices A, C mean the corresponding residue classes modu-

lo 15.)

A, B, C support circular convolution.

In the following Theorem we give complete solution of the case N = 2.

The elements in the matrix T have not the form from 4.2 (b), but the matrices

4.4 Theorem. Let A = (a;), B = (b;), C=(c;) (0<i, j<1) be quadratic
matrices of order 2 over the ring R. Then the following statements are equivalent:
(@) The matrices A, B, C support circular convolution.
(b) There exist a,, by, ¢;, {eR (0 < k < 1) such that

(@ £=1,

(7) @ = ghay, by = giby, cun = gher for 0 <k, h <1, where {gy, g} =

={ -3

Proof. Clearly the statement (a) follows from (b). Let the matrices A, B,

C support circular convolution. For simplicity put

w1 s

e =[5 )

where a, ..., we R.
Then there holds

apx + crz =1

|

apy +crw =20
agx + csz=0

) agy + csw =1
bpx +drz=0
bpy + drw =1
bgx + dsz =1
bgy + dsw = 0.

The elements q, ..., w are not zero-divisors. We show this for the element a.
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(For the other elements it is shown analogously.) If a is a zero-divisor, then there
exists a€ R, a # 0 such that aa = 0. Since apx + crz = 1, we have @ = acrz, and
since apy + crw = 0, there holds acrw = 0, which implies ew = 0. From the
equality agy + csw = 1 we get a = 0.

Let T be the total quotient ring of R (analog of the quotient field (see, e.g.,
[5] p. 12), each non zero-divisor of R has an inverse element in T).

From (1) we get

A S
py px
and
cr(zy —wx)=y
Szpy = rwgx
csSwp — crwg = p
2) dr(wx — zy) = x
dszp —drzqg = p
SWpX = rzqy.

Since y is not a zero-divisor, we get from the first equality of (2) that the
element zy — wx is not zero-divisor either. Then we obtain from (2)

c=—?d - * _ wgx
r(zy — wx) ’ r(wx — zy) ’ szy
and
ys(wx — zy) = xr(zy — wx)
(3) zs(wx — zy) = wr(wx — zy)

wix? = %%

It follows that

AY zs
x:-L’ VY= —
r w
and
Z4=w4

Then zy — wx = 22 (22 + w?), thus the element z2 + w? is not a zero-divisor.

rw
Then the equality z* = w* follows z> = w” The element 2 is not a zero-divisor
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because 2w? = 22 + w Put { = — ¥ Then ¢ = 1 and we obtain by successive

z
substitution of r, x, p, ¢, d into derived formulas
1
a-:_L, szé: C:L, d:——g,
2qy 2qy 2sw 2sw

qugs r=—s§, X=yC, Z=—‘W§.
Put

1 1
ay=—, by=qf cy=y{ ay=—, b=-5§ c=—w{
2qy 2sw

8o = g’ & = _é,
Then ay, b,, ¢y, a;, by, c,eR, {= —2sza, e R and we can see easily that (b)
holds.
The proof is complete.

4.5 Remark. The case N =1 is quite easy, but the case N >3 is open.
However, we can give the following sufficient condition.

Let g9, &5 ..., Ev— 1 €R and let g¥ = 1 for each 0 < kK < N — 1. We call the
set {go, &1» .--» v _1} @ regular system of the Nth roots of unity (in R) if
N-1
Y. g = 0 for every integer s, s % 0(mod N).
k

=0

Clearly this holds.

Proposition. Let a,, b,, c,e R and Naybic, =1 (0 <k <N —1). Let {g,, &,
-.vs &n_1} be a regular system of the Nth roots of units in R. Put A = (ay,),
B = (by), C=(cn) (0 <k, h< N — 1), where

WG = &Ly by = gibi Cn = 8kCx-

Then the matrices A, B, C support circular convolution.

5. SCC-Matrices over Residue Class Rings

According to 2.6 the study of SCC-matrices over the residue class rings
modulo m (m is an integer > 2) is reduced to the case when m is a prime power.
In this paragraph we denote by

p aprime
n a positive integer
¢, the canonical homomorphism from the ring Z of rational integers onto the
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residue class ring Z/p"Z modulo p", i.e. for zeZ we have ze ¢,(2)eZ/p"Z,
Z, the ring of p-adic integers, hence each element @eZ, has the form
a=ay+ap+ap’+ ..., where 0 <a,<p—1 (0 <i< o) are rational
integers,
Q, the p-adic number field, hence the quotient field of the ring Z,,.
The basic properties of the p-adic numbers are mentioned in the book of Z.
J. Borevich and I. R. Shafarevich [2] or in the book of H. Koch and H. Pieper

[7]. In the latter (Satz 3.5) the following Hensel Theorem is mentioned:

Theorem (Hensel). The multiplicative group of the field Q, is isomorph to the
direct sum of additive groups

Z+HDE, H)DE/Wp—-1Z +)forp+#2,

This Theorem states that there exist N different Nth roots of unity in the field
Q, if and only if N divides p-1 for p odd and N =1 or N = 2 for p = 2. Then
these Nth roots of unity belong to the ring Z, because this ring is integrally
closed (inQ,).

From 3.6 and 4.1 we get the Existence Theorem for SCC-matrices over Q, and
Y4

-
5.1 Theorem. There exist SCC-matrices A, B, C of order N over the field Q,

if and only if N divides p — 1 or N = 2.

There exist SCC-matrices A, B, C of order N over the ring Z,, if and only if N
divides p — 1.

(The case of N = 2 is excluded for the ring Z, because the equation NX = 1
has no solution in this ring.)

The description of these matrices is given by Theorems 3.6 and 4.1.

From SCC-matrices over the ring Z, we can construct SCC-matrices over the
residue class ring Z/p"Z modulo p” by means of the following Proposition, which
follows immediately from 2.7.

5.2. Proposition. Let A = (a;), B = (f,),C = (7)) 0 <i,j < N — 1) be SCC-

-matrices over the ring Z,,. Let a;, b;, c; be rational integers with the properties:

aij = aija bu = ﬂij, Cij = y,.j(mod p")

(0<i, j< N—1). Then the matrices A = (p,(a;)), B = (9,(b;), C = (p,(c;)
0 <i,j< N —1) over the ring Z/p"Z support circular convolution.

The following Theorem states an equivalent condition when, by construction
of 5.2, all SCC-matrices over the ring Z/p"Z are described.

5.3. Theorem. The following statements are equivalent:

(a) For every positive integer n and rational integers a;, b;, c; such that the

ij> Dijs Ci
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matrices

(@(@),  (2a®y),  (@ulcy)) O<i, j<SN=1)

over the ring Z|p"Z support circular convolution, there exist p-adic integers a;, B;,
¥y such that the matrices

(@), B, @)O<i,j<N-1)
over the ring Z, support circular convolution and

a; = Gy, by = By, ¢; = v;(mod p")
for0<i,j<N-—1.

(b) For every positive integer n and rational integers a;, b
matrices

ii» Cj such that the

over the ring Z/p"Z support circular convolution, there exist rational integers a;
b;, c; such that the matrices

ijo
((071 + I(a;j))a ((pn+ ](b!,j))9 ((pn + l(cl/j)) (0 < i’ .1 S N - 1)
over the ring Z/p"*'Z support circular convolution and

b, = b, ¢; = cj(mod p")

ijo

a_a

for0<i,j< N-—1.

Proof. The implication (a) — (b) follows from 5.2. Let (b) hold and let
a;, b, c;€ Z and the matrices (9,(a;)), (2.(6;)), (@.(c;)) (0 < i,j < N — 1) over the
ring Z/p"Z support circular convolution.

Then there exist rational integers af’, b, ¢ (0 <i,j<SN—-1,u=0,1,2,
...) with these properties:

i

a) =a;, bY=0b;, =c,,
(@ s @), (004 s B)), (@04 () (0 < i, j SN —1)

are SCC-matrices over the ring Z/p"*+2Z,

ijo ijo

— 1 1 —
afjﬂ) = ag]y"' )’ b(l‘) b(ﬂ"' ), CSJ/J) = cf][-lﬁ' 1) (mod pn+y)

forevery u=20,1,2, ....
Put

a; = ,lllm aP, B,= 11m b, = lxm c®,
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where lim denotes the p-adic limit, Then the p-adic integers a;, f;, 7, have

H— o
properties required in (a).
The Theorem is proved.

Further suppose that a,, b,

;> Cj are rational integers and

(2a)), (2.6)) (@ucy)) 0<i,j<N—1)

are SCC-matrices over the ring Z/p"Z.
Then we have for0 <u, v, w< N — 1:

N-1

Z akubkvckw = e(u’ v, W) + pns(u, v, W),
K=0
where
1 foru+ v+ w=0(modN)
e(u, v, w) =
0 otherwise

and s(u, v, w) is a rational integer.

Then for the integers a;, b}, c; from 5.3 (b) we have

’ n 4 n
a;=a;+ p'x;, by=0b;+py; c;=c;+pzy,
where x;, y;, z;€Z and

N-—-1 N-1 N—
(*) kz bkvcku'xku + kz akuckwyku + kzo akubkvzkw = — S(u, v, W) (mOd p)
=0 =0 =

forO0<u,v, w<N-—1.

The system () is a system of N° linear equations with 3N? unknowns x,,, ,,,
2, over the field Z/pZ. Since the matrices (¢,(a))), (¢:1(b;)), (¢(c;)) over the field
Z/pZ support circular convolution, we have for 0 < i, j < N — 1 according to
3.6:

a; = gia;, b; = gib;, Cij = glc;(mod p),

where q;, b;, c;, g; are rational integers, Nabc; = 1 (mod p) and
{01(80)s @1(81)s s oi(gn- )} = {@(D), @i(2), 9i(gD), ... (8" ")},

g is a rational integer, p does not divide g and g has order N mod p.
This implies that the rank of the system (x) is equal to the rank of the matrix
(mod p) of size N* x 3N%
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Xku yku Ziew

(o) [ghtrn g guss
(u’ v, W/) .”gk(v+w’).“ ”.gk(u+w').“ ...0 e
woow [ g e e
W, v, w) 0 L g L g
u #u O<uv,w,k<N-—1.
v # D
w o #w

For N = 1 we can put g = 1 and then this matrix has the form:
[1, 1, 1].

Hence the system (*) is solvable.

For N = 2 we can put g = —1 and the given matrix has the form:
uvw Xo X0 Xo Xnu Yoo Yie Yo Yn Zoo Zw Za 2y
000 [T T 0 0 1 1 0 0 1 1 0 0]
001 1 —1 0 0 1 -1 0 0 0 0 1 1
010 1 -1 0 0 0 0 1 1 1 -1 0 0
011 1 1 0 0 0 0 1 -1 0 0 1 —1
100 0 0 1 1 1 —1 0 0 1 —1 0 o
101 0 0 1 -1 1 1 0 0 0 0 1 —1
110 0 0 1 -1 0 0 1 -1 1 1 0 0
Irr1r [0 0 1 1 0 0 1 1 0 0 1 1]

The determinant chosen from this matrix for columns Xg, X105 Xo15> X115 Yoo,
V10> Zoo» 210 has the value 64, from which it follows that the system (*) is solvable

for any odd prime p and N = 2. Thus we have shown

5.4 Proposition. Let N =1 or N = 2. Let a;, b;, c;€Z and the matrices

(eu@)), (b)), (0u(cy)) O<i,j<N—1)

over the ring Z/p"Z support circular convolution. Then there exist p-adic integers
@;, B, ¥y such that the matrices

(@), B, () O0<ij<SN-1)
over the ring Z, support circular convolution and
a; = a, by = ﬂij: C; = }’,-j(mod p")

foreach0<i,j< N-—1.
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5.5. Remark. We can also obtain the proof of 5.4 by means of Theorem 4.4.
For N > 3 the description of SCC-matrices over the ring Z/p"Z of order N in the
way from Proposition 5.4 is an open question.
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JIMHEMHBIE MPEOBPA30BAHUN A U KOHBOJIIOLIU A
Ladislav Skula

PesomMme

N3yyarorcs nuHelHble npeobpa3oBaHUs, KOTOPbIE yIOBJETBOPAIOT «CBOWCTBaM KOHBOJIIO-
uuuy». CkaxeM, YTO TPH JIMHEHHbIE NPe0OpPa30BaHUS YAOBJIETBOPSIOT CBOWCTBAM KOHBQJIOLMH,
€CJIM MBI MOXEM BBIYHCIIMTh KPYrOBOIO KOHBOJIIOLMIO ABYX MOCJIEJOBATEIbHOCTEH MPH MOMOLIH
3THX npeobpa3oBaHuii Mo GopMysie, U3BECTHOIH B TEOPHH AUCKPETHOro npeodpasoBaHus Qyphe.
DTo u3yuyeHHEe pPa3BHUTO I KOMMYTATHBHBIX KOJiell C ejuHuued. DTa npobiiema pelleHa
MOJHOCTBIO Ul TOJe, 00sacTell LEJOCTHOCTH W B Cllyyae, KOrAa [UIMHA U3y4aeMblX MOC-
NenoBaTeNbHOCTEH paBHa 2. [Is KOJel BLIYETOB UCMOJb3YETCs MOHATHE p-aJUueCKUX YUCEN.
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