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LINEAR TRANSFORMS AND CONVOLUTION 

LADISLAV SKULA 

1. Introduction 

In contemporary applications of mathematics Convolutions and Discrete 
Fourier Transform {DFT) are very often used. For the sequences u = {un}n~Q

x, 
v={vn}n = o °f complex numbers with N members the sequence 
u* v = w = {W^JQ1 is called the circular convolution of the sequences u and v if 

Wt = _ и-f,_. ( 0 < / < Л Г - l ) , 

vl_n = vm where m = I — rz(mod N) and 0 ^ m ^ 1V — 1. 
The discrete Fourier transform X = {X,}^1 = D{x) of a sequence x = {xn}nl~o 

of complex numbers is defined by 

Xt=
N_^ xnW

nl ( 0 ^ / < N - l ) , 
* = o 

where W = cos j sin — (\ = J—I). 
N N 

The inverse discrete Fourier transform X = {Xn}n~0

] = D _ 1 (x) of a sequence 
x = {xi}"_~0

] of complex numbers is defined by 

Xn = ~ t *iw~ln (P^n^N-l). 
N i = o 

In modern computation techn que the circular convolution of the sequences 
u and v is often computed by means of the DFT as follows: 

W*W = D" I (D(II)(8>D(W)) 

(® denotes component-wise multiplication). 
The circular convolution is also computed by other transforms having this 

"convolution property", e.g. "Number Theoretic Transforms" {NTT). The book 
[6] by H. I. N u s s b a u m e r deals with these topics and the collection of 



papers [3] arranged by J. H . M c C l e l a n and Ch. M . R a d e r deals with the 
applications of number theory in this direction. There is a book [4] by V. 
C i z e k on Discrete Fourier Transform in Czech. 

The aim of our paper is to study all linear transforms having this "convolution 
property" in general over a commutative ring with identity. In paper [1] by R. 
C . A g a r w a l and Ch. S. B u r r u s this question is solved for special linear 
transforms over a commutative field (4.2). 

We give an equivalent characteristic to the "convolution property" by means 
of "certain" condition on the matrices of these linear transforms in Paragraph 2 
(2.5). 

This question for a commutative field is completely solved in Paragraph 3 
(3.6). In Paragraph 4 we give a complete solution for the integral domain (4.1) 
and for the case N = 2, where N is the length of the considered sequences (4.4). 
The case N ^ 3 is open in general. 

In Paragraph 5 the linear transforms having the "convolution property" are 
investigated over a residue class ring modulo a prime power. It is shown that for 
this purpose the ring ofp-adic integers is of great importance. By means of linear 
transforms with "convolution property" over the ring ofp-adic integers we can 
construct linear transforms with this property over the residue class ring modulo 
pn (p a prime, n a positive integer) (5.2). If this construction describes all these 
linear transforms over a residue class ring modulo prime power, it is open for 
N^3. 

2. Linear Transforms Supporting Circular Convolution 

In the whole paper we shall denote by 
R a commutative ring with identity element \R(^0R9 the zero element of I?) 

and 
N a positive integer. 
If c is an integer, we shall also consider c as the element c AR from the ring 

R9 hence c = cAR9\ = \R9 0 = 0 . 1 ^ = 0*, N = N. 1*, e.t.c. 

2.1. Definition. A mapping L of the set of all sequences of length N of elements 
from the ring R into itself is called a linear transform (of the sequences of length 
N of elements from the ring R) if there exist a0e R (0 ^ /, j ^ N — 1) such that 
for each sequence x = {X^JQ (XjER) we have 

L(x) = y = M,"=V (y^R) 
with 

N - I 

y,= £ a9Xj (O^i^N-l). 
j=0 
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The matrix A = (aij)0<ij^^_] is said to be the matrix of the linear trans­
form L. 

The sequences of length jY will often be considered as jV-dimensional vectors, 
i.e. matrices of size N x 1 o\er I?. Hence, the sequence x = {X^JQ will be 
considered as the vector 

""xo 

-XN- 1-

The value Xj will be extended onto all integer-indices in the following way: 
xm = xk for an integer m, where O^k^N— l,m = k(mod N). 

Then the equality L(x) = y can be written in the form: 

y = A.x. 

2.2. Definition. Let 

u = 

L . M / V - 1 - I L i ^ - i - l 

be N-dimensional vectors over R. By the product of the vectors u and v we 
understand the vector 

u®v = 

uӣv{ 0^0 

UлV \v\ 

í-UN_]uN_]_i 

The vector or the sequence 

u*v = 

w0 

w, 

L - W л t - l — I 

is called the circular convolution of the vectors or the sequences u andv if for each 
0 ^ / ^ N — 1 we have 

w, 7 = Z UnVl-n-

2.3. Definition. Let Lx, L2, L3 be linear transforms of the sequences of length 
N of elements from the ring R. We say that the 3-tuple (L,, L2, L3) supports 
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circular convolution or briefly it is (SCC) if for each sequence xx and each sequence 
x2 of length N of elements from the ring R the equality 

xx * x2 == L3(Lx(xx) ® L2(x2)) 

is satisfied. 

2.4. Notation. For 0 ^ t ^ N - 1 put 

x(t) = 

where for 0 ^ u ^ N — 1 we have 

-XtN- 1—1 

11^ for t = u 

tOR otherwise. 

2.5. Theorem. Let Lx, L2, L3 be linear transforms of the sequences of length 
N of elements from the ring R and let A = (ay), B = (bif), C = (C,y) (0 ^ /, 
j ^ N — 1) be their matrices. Then the following statements are equivalent: 

(a) The 3-tuple (Lx, L2, L3) supports circular convolution. 
(b) For each 0 ^u, v ^ N — 1 the following is satisfied: 

x(u) * x(v) = L3(Lx(x(u)) ® L2(x(v))). 

(c) For each 0 ^ u, v, w ^ N — 1 there holds: 

Z ' ^ A ^ , = j i R for* = u + v(modN) 
k = o (0* otherwise. 

Proof. Clearly (a) implies (b). 
I. Let (b) hold and let 0 ^ u, v, w ^ jV - 1. 
Put 
yi = Lx(x(uj), y2 = L2(x(v)), yj = yx ®y2, y = L3(y3), 

y\ = \: \, yi 

y}= : , y 

Then for 0 ^ k ^ N — 1 we have 

yi* = aku, yik = bkv, 

12 

^20 

? 

_ V 2 Л Г - 1 _ 

Л 
: ? 

L - y N - 1 _ 

Уъk = % w 
- b k v , 



hence 
N-1 

yw = Z akubkvCwk • 
k = 0 

Since y = x{u) * x(v), there holds 

N-1 

I 
n = 0 

Уw 2— XunXvw _ n Xvw _ u 

\R for w — u = i;(mod N) 

0* otherwise. 

Therefore (c) is valid. 
II. Let (c) hold and let 

Xi = 
4 0 

I_**1N- 1-

x2 [ x20 ~| 

*2ЛГ-lJ 

be N-dimensional vectors over R. 
Put 

yt = £, (* , ) = Уг = Lгfo) = [f 1. 

Üлr-J 

yio 

Ly iN-iJ 

ry3o 
y3=yl®y2 = | I, y = £3(y3) = 

Ly3N - 1 

Then we have for each 0 ^ k ^ IV — 1 

n-\ N- 1 

y3*=yl*-y2*= Z Z akubkvX\uX2v 
u=0 v=0 

For 0 ^ w ̂  IV — 1 there holds: 
N - 1 N-1 N-1 N-1 

yw = Z Cwky^k = Z Z xlwx2i; __ akvPkvCwk ~ 
k=0 u=0 v=0 k=0 

N- 1 N- 1 

= Z Z xi^vv == u + u(mod N)) 
u=0 v=0 
N- 1 

= 2-< X\uXlw-u' 
u = 0 

Hence y = xx *x2 and the statement (c) is valid. 
The Theorem is proved. 
Suppose that the ring R is the direct sum of rings R£i e 7), pt is the projection 

from R onto Rt and L is a linear transform of the sequences of elements from 
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R of length IV with matrix A = (atj). Denote by L. the linear transform of the 
sequences of elements from I?, of length N whose matrix is A, = (p^a^). (Under 
the direct sum of the rings Rt (tel) we understand the set R that equals the 
cartesian product of the sets Rt(iel) and the operations are defined component­
wise). From Theorem 2.5 we obtain immediately: 

2.6. Proposition. Let L,, L2, L3 be linear transforms of the sequences of 
elements from R of length N and let R be the direct sum of the rings Rt (tel). 

Then the 3-tuple (L,, L2, L3) is (SCC) if and only if the 3-tuple (Lu, L2l, L3.) 
is (SCC) for each tel. 

Further let I be and ideal of the ring R and L be a linear transform of the 
sequences of elements from R of length N with matrix A = (atJ). We denote by 
a the coset of /containing a eR and by L the linear transform of the sequences 
of elements from the quotient ring R/I with the matrix A = (at/). 

We get from Theorem 2.5. Immediately: 

2.7. Proposition. Let L,, L2, L3 be linear transforms of the sequences of 
elements from R of length N and let I be an ideal of the ring R. If the 3-tuple (L,, 
L2, L3) is (SCC), then the 3-tuple (L,, L2, L3) of linear transforms of the 
sequences of elements from the quotient ring R/I is (SCC). 

2.8. Definition. Let A = (atj), B = (bu), C = (cfJ) (0 ^ /, j ^ N - 1) be quad­
ratic matrices of order N over the ring R. We say that the matrices A, B, C support 
circular convolution or briefly are SCC-matrices if for each 0 ^ u, v, w ^ N — 1 
the following relation holds: 

N- 1 Г 

Z Û * A A И - = ) 
k = 0 l 

ÌR for u + v + w = 0 (mod IV) 

* = o t()R otherwise. 

We denote by C* the quadratic matrix (d0) (0 ^ i,j ^ N — 1) of order IV over 
R, where d0 = cjk, 0 ^ k ^ IV — 1, k = —/(mod IV). Let LA, LB, Lc* be linear 
transforms with the matrices A, B, C*. Then we obtain from Theorem 2.5: 

2.9. Proposition. The matrices A, B, C support circular convolution if and only 
if the 3-tuple (LA, LB, Lc*) supports circular convolution. 

2.10. R e m a r k . The given change of the transform Lc* into the matrix C 
has the meaning that the matrices A, B, C have symmetrical functions in the 
definition of .SCC-matrices. If we then prove an assertion for some of these 
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matrices, this assertion also holds for the others. Further we remark that 
(C*)* = C. 

3. SCC-Matrices over a Field 

In this paragraph we give a description of all matrices A, B, C over a 
(commutative) field supporting circular convolution. 

We denote by 

F a (commutative) field 

and 

A = (a,), B = (b,), C = (c^ (0 ^i,j^N- 1) 

quadratic matrices of order N over F. 
For 0 ^ ij ^ jY — 1 we denote by A*(i9j) the cofactor of the element atj in 

the determinant of A. (For jV = 1 we define A*(0, 0) = 1.) 
If n is an integer, we put A*(i9 n) = A*(i9 j ) , where 0 ^ j ^ N — 1 and 

n =y(mod N). 

3.1. Proposition. For SCC-matrices A, B, C the following assertions are valid: 
(a) det A. det B . det C ^ 0, 
(b) (det A). bkv. ckw = A*(k9 -v - w) for each 0 ^ k, v9 w ^ jV - 1, 
(c) aij.bij.Cij.A*(Uj) 7-0for eachO^Uj^N - 1. 
Proof. I. Suppose det A = 0.Then there exist elements feF ( 0 ^ i^N— 1) 

and an integer u (0 ̂  u ^ jV — 1) such that fu ^ 0 and 

N- 1 

i = 0 

is valid for each 0 ^ k ^ TV — 1. 
From this relation we get 

N-1 N-1 N-1 

Z akubkvckw= - £ f;]f Z akibkvck« 
k = 0 i = 0 k=0 

i*u 

for each 0 ^ v9 w ^ N — 1. 
Let v = -u(mod N) and w = 0. Then / + v + iv == / -- w -£ 0(mod jV) for 

i 7-- u and 0 ^ / ^ N — 1, therefore for this / we have 

N- i 

Z akhiCkw = o. 
k = 0 
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Since u + v + w = O(mod N), we obtain 

N- i 

I 
k = 0 

1 = Z akubkvckw = 0, 

which is a contradiction. 

Thus det A 7-= 0 and by reason of symmetry also det B, det C ^ - 0 . 
II . Let 0 < v, w < N - 1. Put xk = bkvckw for each 0 ^ k ^ N - 1. Then for 

each O ^ u ^ N — l w e have 

N~i (T for u + v + w = O(modN) 
X ak«xk = ) 

k = o 10 otherwise. 

Since deL4 ^ 0, we obtain from the Cramer Theorem (det A).xk = A*(k, 

— v — w). 
I I I . Let 0 ^ k, w ^ N - 1 and ckw = 0. It follows from (b) that A*(k, h) = 0 

for each integer h, hence det A = 0, which is a contradiction to (a). Thus ctj T-= 0 
(0 ^ i,j ^ N — 1) and by reason of symmetry also atj, bi} 7-- 0. From (a) and (b) 
we then get A*(i,j) 7-= 0. 

3.2. Proposition. Let A, B, C be SCC-matrices. Then for each 0 ^ k ^ N — 1 
there exist elements ak,bk, ck, gkeFsuch that 

*? = -
and 

akh = giak9 bkh = gh

kbk, ckh = gh

kck 

for each 0 ^ h ^ N- 1. 
P r o o f . Let O ^ k ^ N — 1 . For an integer n and for an integer h 

(0^h^ N- 1) put 

an = A*(k, - rz) . (detA)- 1 , Ph = bkh, yh = ckh. 

According to 3.1 (c) the elements an, A , yh differ from 0 and according to 3.1 
(b) we have for integers v, w (0 ^ v, w ^ N - 1): 

ffr + n-= A TV 

It follows that «0 = A/V A = «t 7o_1 - 7w = «wA_1 - therefore 

A- = «r A ab"1 - /«• = a»t- 7o «o_1 -
a, + u. = a1.aM.ab~1. 

From this we easily derive by mathematical induction that for each integer n 

(O^n^N) 

чßoj 
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a n d it follows t h a t for each integer h (0 ^ h ^ N — l ) w e have 

A-(a)'. A. П = \-) -ľo-
Ka0; \a0. 

P u t gk = —, bk = y80, ck = y 0 . T h e n a0 = aN = gN«0, thus g " = 1. F u r t h e r we 
a0 

have bA7l = f5h = gkbk a n d ckh = yh = gh
kck. By reason of symmetry we also obta in 

akh = gh
kak, where ak is an element from F. 

F o u r o u r next investigation we shall need the following assertion, which is 
essentially k n o w n in algebra, b u t in spite of it we give its proof. 

3.3. Proposition. Let the polynomial x N — 1 have N different roots in the field 
F. Then 

(a) there exists ^eF such that {1, £ f2, ..., ^~ x} is the set of all roots of the 
polynomial xN — 1 in the field F, 

(b) char F does not divide the integer N9 

(c) for an integer m the equality 

Ny] /*w = j ^ for m — 0 ( m °d -V) 
k = o \0 otherwise 

is valid. 
(The symbol char F means the characteristic of the field F.) 
Proof. I. Let R' be the set of all roots of the polynomial xN — 1 in the 

field F and let R be the set of all orders of elements from R'. If geR' and r is 
the order of g, then the elements 1, g, g1, ..., gf " x are different and form the set 
of all roots of the polynomial xr — 1 in F. It follows tha t the set 

M(r) = {g*: 1 ^ x < r; x, r are relatively prime} 

is the set of all elements from R' of order r and the n u m b e r |M (r ) | of elements 
of the set M(r) equals cp(r), where cp means the Euler function. 

Let P mean the subset of elements of the set R' of order < jV and let M be 
the number of elements of P. Since each reR divides jV, we have 

M = X \M(r)\ (reP) = £ q>(r) (reR - {N}) ^ 

< X <P(<Q 0 < d < jV, d divides N) = 

= N- <p(N) 

(we have used the equality S (d) (1 ^ d ^ TV, d divides N) = N). Since </>(jV) ^ 1, 
we have M < jV, therefore there exists an element f e i?' with order jV. The set 
{1, £ £2, ..., fN-1} is then the set of all roots of the polynomial xN— 1 in the 
fieldF. 
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II. Let the prime p be the characteristic of F, N = pM, where M is a positive 
integer. The elements £Mi (0 ^ / < p — 1) are different and therefore 

XP-\=Y\(X- CMi) (O^i^p- 1). 

On the other hand we have xp — 1 = (x — l)p, which is a contradiction. Hence 
char F does not divide N. 

I I I . Let m = 0 (mod N). Then £*m = 1 for every integer k, thus 

X £m = N. 
k = 0 

Let m ^ 0 (mod N). Then ^ ^ 1 and we have (£" - 1) X ^ = ^ m - - = 0, 
k = 0 

therefore 

N- i 

I 
A = 0 

A = 0 

Recall that for x0, x,, ..., xyv_,eFthe determinant 

D = D(x0, x,, ..., xN ,) 

1 x0 

1 x, 
4 ... x0 

л 
. . . Л i 

1 X N - \ ^ N - 1 
, V - 1 

is called the Vandermonde determinant and there holds 

D = n (x, - xy) (0 ^j<i^N- 1) for N > 1 

D= 1 for N= 1. 

For 0 ^ r, s ^ N — 1 let D* mean the cofactor of the element in the rth row 
and the sth column of the determinant D (for N = 1 we define D*0 = 1). Then 
we have 

3.4. Proposition. Let x0, x,, ..., xyv_ , be different elements of the field F with 
the property x" = 1 (0 ^ / ^ N — 1). Then there holds for 0 ^ r, s ^ N — 1 

D = NxlD*. 



Proof. We can suppose IV^2. Put X= x0x}...xr__xxr + l...xN_x. We have 

I>* = (-D r 

1 x0 x0 

1 X, 

1 xr-1 

1 X г + j 

1 xN-1 

^S - 1 „ 5 + 1 

l N - 1 

= ( - ! ) ' 
,Г + .V + (N - 1 - .Ç) .V 

^л + 1 V..V + 2 
Л 0 Л 0 

v-s + 1 
Л г _ ^ 

v-v+ 1 
Xr + 1 

v*+ 1 
XN- 1 

vN + л - 1 
Л 0 

rN + s-l 
C N - 1 

Thus 

— (— 1) X LKxO? X\ ' •*•' Xr- 1 ? xr+ 1 ? •••? xN- l) 

= (_ jy+ * + ^ +1 J I (x, - x,) (0 < j < i < At - 1, i # r # j ) . 

I>* li (*, - xj) (0 < j < At - L j ^ r) = ( - 1 ) ' + * + * + *-1 --jr-+I D. Since x^ — 1 = (x — x0) (x — x,)...(x — xN_ x), we have x0.x, ...xiV_! = 

= (-\f-\ therefore X = ( - I f " 1 .x,"1. If we put Xr = xr \\ (xr - Xj) x 

x (0 ^j < IV — 1, j 7- r), we obtain 

i)*zrx; = o, 
thus 

AtZ) = " _ ' £>* A^x, = *,/>. 
.v = 0 

It follows that IV = Xr and hence D = Nx;D*. 

3.5. Proposition. Let A, B, C be SCC-matrices. Then using notation of 3.2 we 
have: 

(a) the elements gk (0 ^ k ^ IV — 1) are different, 
(b) char F does not divide the integer IV, 
(c) Nakbkck = 1 /or each 0 ^ k ^ IV - 1. 
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P r o o f . I. Accord ing to 3.2 det A = a0a]...aN_]D(g09 gl9 ..., gN^) = a0 ax... 

-" aN-\ J ! (gt - gj) (° < j < i < -V - 1). Since det A # 0 (3.1 (a)), the elements 

gk (0 < k < N - 1) are different. 
II. According to I and 3.3 (b) char F does not divide N as by 3.2 gk = 1. 

III. Let 0 ^ k < N - 1. According to (3.1) (b) 

(detA)b,0C,0 = ^*(k, 0). 

From 3.2 and 3.4 we obtain 

det A = a0al...aN_lD(g09 gl9 . . . , £ * _ , ) = akNA*(k9 0), 
therefore 

NakbkckA*(k9 0) = A*(k9 0) 

and since A*(k9 0) # 0 (3.1 (c)), we have Nakbkck = 1. 

3.6. Main theorem. The following statement are equivalent: 
(a) The matrices A, B, C support circular convolution. 

. (b) For each 0 ^ k ^ N — 1 there exist ak9 bk9 ck9 gkeFsuch that 
(a) gN

k = \. 
(p) Nakbkck=\9 

(y) the elements gk (0 ^ k < N — 1) are different, 
(<5) akh = gh

kak9 bkh = gh
kbk9 ckh = g\ckfor each 0 < h ^ N - 1. 

Proof. If the statement (a) holds, then according to 3.2 and 3.5 the state­
ment (b) also holds. 

Let (b) hold and let 0 ^ u, v9 vv' ^ N — 1, m = u + v + w. Then according to 
3.3 (a) there exists feFsuch that {1, £ (?9 . . . ,£*- ]} = {g0,g], ..., gN_ ,}. We get 
according to 3.3 (c) 

N- I N - I 

-V J_ akubkvckw = N X akbkCkgT = 

A: = 0 k = 0 

V Mem \N f ° r m ~ ° ( m ° d N) 
k = o 10 otherwise. 

Since charF does no t divide N (3.3 (b)), we have 

N- I 

_\j akiPkvCkvt — 1 

for u + v + w = 0 (mod N). 
The Theorem is proved. 

3.7. Example. The Discrete Fourier Transform (DFT) is a linear transform D 
of the sequences of elements from the field of complex numbers of length N, 
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whose matrix A has the form 
'l 1 ... 1 
1 W W2 ... w"-1 

A = 
: : W*1 (Ok,jKN-l), 

where W = cos j sin — (i = J—I). The Inverse Discrete Fourier Transform 
N N 

D~] is a linear transform with the matrix 

A"1 = (N~]W~kj)(0^k,j^N- 1). 

It is well known that the 3-tuple (Z>, L>, D_1) supports circular convolution. 
If C = (c0) = (A-1)*, then ctj = N~]WiJ. The matrices A, A, C support circular 

convolution. 

4. Some Other Cases 

From the Main Theorem 3.6 we derive the analogous Theorem for SCC-
matrices over an integral domain: 

4.1. Theorem. Let A = (atj), B = (b,y), C = (c0) (0 ^ i,j ^ N — I) be quadratic 
matrices of order N over an integral domain D. Then the following statements are 
equivalent: 

(a) The matrices A, B, C support circular convolution. 
(b) For each 0 ^ k ^ IV — 1 there exist ak9 bk, ck, gkeD such that 

(a)gZ=l, 
(p) Nakbkck=l, 
(y) the elements gk (0 ^ k ^N — 1) are different, 

(<5) akh = gh
kak,bkh = gh

kbk, ckh = g\ck 

for each O^h^N- I. 
Proof. Let F be the quotient field of D. According to 3.6 the statement 

(a) follows immediately from (b). 
Let A, B, C support circular convolution. According to 3.6 there exist ak, bk, 

ck., gk G F(0 ^ k ^ IV — 1) fulfilling the conditions (a) — (5) in the statement (b). 
We must show that these elements ak,bh, ck, gk belong to D. 

Put h = 0 in (5). Then ak = akQeD and analogously bkeD and ckeD. For 
h = 1 we have akx = gkak and by multiplication of this equality by the element 
Nbkck we get gk = Nakbkckgk = Nbkckak] eD. 

The Theorem is proved. 
The paper [1] deals with the case when A = B = T is a regular matrix and 

C* = T_1. The following theorem (slightly adapted) is given in this paper: 

21 



4.2. Theorem. (Agarwal, Burrus). Let T = (t0) (0 ^ /,j ^ IV — 1) be a regular 
matrix of order N over a (commutative) field F. Let L and L~x be linear transforms 
with matrices T andT~\ respectively. Then the following statements are equiv­
alent: 

(a) The 3-tuple (L, L, L~]) supports circular convolution. 
(b) For 0 ^ k ^ N — 1 there exist different gkeF such that gk = 1 and for 

O^h^N- 1 

hh = 8k > 

and char F does not divide N. 
Then for T"1 = (tkh) (0 ^ k, h ^ IV - 1) we have 

tkh = N-'g~k. 

Proof. Recall that the condition "char F does not divide N" is equivalent 
to the condition "N has an inverse in F". Then this inverse will be denoted by 
N~\ 
_ Put A = B = T = (t^ C = (Cij) = (T"1)* = (Ij)* (0 ^ i, j ^ N - 1), hence 
hj = cjid) where /(/) = —/(mod IV), 0 ^ /(/) ^ N — 1. The statement (a) is equiv­
alent to the statement: "A, B, C are SCC-matrices". If this holds, then accord­
ing 3.6 there exist ak = bk, ck, gkeF (O^k^N—l) with the properties 
(a) — (8) from 3.6 (b). We must show that ak = bk= 1. 

According to 3.3 (a) there exists feFwith g* = 1 and a permutation/? of the 
set {0, 1, 2, ..., N - 1} such that gk = t*k) (0 ^ k ^ N - 1). 

We get for A. C* = (xfj) according to 3.3 (c) 

N-I _ N-i N-I 

Xy= Z tihhj= Z tihcm= Z SflaiSfh)cj = 
k = 0 k = 0 /» = 0 

h = 0 

\Nafi for i=j_ 
|0 otherwise 
11 for i = j 
[0 otherwise. 

Therefore Naff = 1 = Naf ct and then a{ = b{= 1. 
The implication "(b) -• (a)" follows directly from 3.6 because the matrix 

(N~]g~k) (0 ^ k, h ^ N - 1) is the inverse matrix of T (3.3 (c)). 

4.3. Remark. This Theorem and Theorem 3.6 do not hold in a general case 
of the ring R. 
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Example. Let R be the residue classs ring Z/15Z modulo 15. Put 

T - , - . - [ ; ,;]. c-(r-r-[|,?]. 
(The integers in matrices A, C mean the corresponding residue classes modu­
lo 15.) 

The elements in the matrix T have not the form from 4.2 (b), but the matrices 
A, B, C support circular convolution. 

In the following Theorem we give complete solution of the case N = 2. 

4.4 Theorem. Let A = (a/y), B = (b;>), C = (ciy) (0 < i, j < 1) be quadratic 
matrices of order 2 over the ring R. Then the following statements are equivalent: 

(a) The matrices A, B, C support circular convolution. 
(b) There exist ak, bk, ck, £eR (0 ^ k ^ 1) such that 

(«) <?=i , 
(fi) 2akbkck=\for0^k^\, 
(r) akk = g\ak, bkh = g\bk, ckh = g\ckfor 0 ^k,h^\, where {g0, g,} = 

= { £ - # • 
Proof. Clearly the statement (a) follows from (b). Let the matrices A, B, 

C support circular convolution. For simplicity put 

A -<«> - [ • * ] , . - < *> - [>« ] . 

C = (c„ 

where a, ..., weR. 
Then there holds 

apx + crz = 1 
apy + crw = 0 
aqx + csz = 0 
aqy + csw = 1 
bpx + drz = 0 
bp>> + drw = 1 
bqx + dsz = 1 
bqj + dsw = 0. 

The elements a, ..., w are not zero-divisors. We show this for the element a. 
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(For the other elements it is shown analogously.) If a is a zero-divisor, then there 
exists aeR, a # 0 such that aa = 0. Since apx + crz = 1, we have a = acrz, and 
since apy + crw — 0, there holds acrw = 0, which implies aw = 0. From the 
equality aqy + csw = 1 we get a = 0. 

Let Fbe the total quotient ring of R (analog of the quotient field (see, e.g., 
[5] p. 12), each non zero-divisor of R has an inverse element in J) . 

From (1) we get 

_ c r w u _ drz 

py ' px 

and 

cr(zy — wx) = y 
szpy = rwqx 

n , cswp — crwq = p 
dr(wx — zy) = x 
dszp — drzq = p 

swpx = rzqy. 

Since y is not a zero-divisor, we get from the first equality of (2) that the 
element zy — wx is not zero-divisor either. Then we obtain from (2) 

v , x rwqx 
c = i , d= , p = —^~ 

r(zy — wx) r(wx — zy) szy 
and 

ys(wx - zy) = xr(zy - wx) 
(3) zs(wx - zy) = wr(wx - zy) 

It follows that 

and 

иrV - z2y2. 

ys zs 
x = — —, r = — 

4 4 

z = w . 

Then zy — wx = ^- (z2 + w2), thus the element z2 + w2 is not a zero-divisor. 
rw 

Then the equality z4 — w4 follows z2 = w2. The element 2 is not a zero-divisor 
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because 2vv2 = z2 + w2. Put £ = . Then f2 = 1 and we obtain by successive 
z 

substitution of r, x, p, c, d into derived formulas 

1 u l r l
 A

 l r 
a = , b = Q, c = —- , a = - -— £ 

2qy 2qy 2sw 2sw 

p = q£, r= -s£, x = y£, z = - w£ 

Put 
a0 = —, b0 = q£>, c0 = y£, ax = —, 6, = - J £ c ,= - i v £ 

2qy 2sw 
go = £ gi = - c 

Then a0, b0, c0, a,, bl9 ^ e i ? , f = — 2szaxeR and we can see easily that (b) 
holds. 

The proof is complete. 

4.5 Remark. The case IV = 1 is quite easy, but the case N ^ 3 is open. 
However, we can give the following sufficient condition. 

Let g0,gi, ..., gN-1 eR and let gk = 1 for each 0 ^ k ^ IV — 1. We call the 
s e t {go, g\, • ••- £N-i} a regular system of the Nth roots of unity (in R) if 
N- i 

X gjfc = 0 for every integer s, s =£ 0(mod IV). 
k = 0 

Clearly this holds. 

Proposition. Let ak, bk, ckeR andNahbkck = 1 (0 ^ k < N — 1). Let {g0, gx, 
•> £N-i} be a regular system of the Nth roots of units in R. Put A = (akh), 

B = (bkh), C = (ckh) (0^k,h^N-\), where 

akh = gkak> bkh = gk bk, ckh = gkck. 

Then the matrices A, B, C support circular convolution. 

5. SCC-Matrices over Residue Class Rings 

According to 2.6 the study of S'CC-matrices over the residue class rings 
modulo m (m is an integer ^ 2) is reduced to the case when m is a prime power. 

In this paragraph we denote by 

p a prime 
n a positive integer 
cpn the canonical homomorphism from the ring Z of rational integers onto the 
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residue class ring Z/p"Z modulo p'\ i.e. for zeZ we have zecpn(z)eZ/pnZ, 
Zp the ring of p-adic integers, hence each element aeZp has the form 

a = a0 + aj) + a^p1 + ..., where 0 ^ ax ^ p — 1 (0 ^ / < oo) are rational 
integers, 

Q^ the p-adic number field, hence the quotient field of the ring Zp. 
The basic properties of the p-adic numbers are mentioned in the book of Z . 

J. Borevich and /. R. Shafarevich [2] or in the book of H. Koch and H. Pieper 
[7]. In the latter (Satz 3.5) the following Hensel Theorem is mentioned: 

Theorem (Hensel). The multiplicative group of the field Qp is isomorph to the 
direct sum of additive groups 

(Z, + ) ® ( Z p , + ) ® ( Z / ( p - l ) Z , + ) f o r p ^ 2 , 
(Z, + ) ® (Z2, + ) ® (Z/2Z, +)forp = 2. 

This Theorem states that there exist N different Nth roots of unity in the field 
Qp if and only if N divides p-1 for p odd and N = 1 or N = 2 for p = 2. Then 
these Nth roots of unity belong to the ring Zp because this ring is integrally 
closed (inQ^). 

From 3.6 and 4.1 we get the Existence Theorem for SCC-matrices over Q^ and 

-v 
5.1 Theorem. There exist SCC-matrices A, B, C of order N over the field Qp 

if and only if N divides p — 1 or N = 2. 
There exist SCC-matrices A, B, C of order N over the ring Zp if and only if N 

divides p — 1. 
(The case of N = 2 is excluded for the ring Z2 because the equation NX = 1 

has no solution in this ring.) 
The description of these matrices is given by Theorems 3.6 and 4.1. 
From SCC-matrices over the ring Zp we can construct SCC-matrices over the 

residue class ring Z/p"Z modulo pn by means of the following Proposition, which 
follows immediately from 2.7. 

5.2. Proposition. Let A = (ag), B = ($,), C = (y^ (0 ^ i,j ^ N - 1) be SCC-
-matrices over the ring Zp. Let aij9 by, ctj be rational integers with the properties: 

atJ = atj, by = P(j, ctJ = Yy (mod pn) 

(0 ^ /, j ^ N - 1). Then the matrices A = (q>n{a^))y B = ((pn(bt^ C = ((pn(ctj)) 
(0 ^ /, j ^ N — 1) over the ring Z/pnZ support circular convolution. 

The following Theorem states an equivalent condition when, by construction 
of 5.2, all SCC-matrices over the ring Z/p"Z are described. 

5.3. Theorem. The following statements are equivalent: 
(a) For every positive integer n and rational integers aij9 bij9 ctj such that the 
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matrices 

{<p„(ayj), (p„(6,)), (9ll(cv)) (0 <iJ<N- 1) 

over the ring Z/pnZ support circular convolution, there exist p-adic integers aij9 PtJ, 
yiJ such that the matrices 

K ) , (fit), (r9)(o^ij^N-i) 

over the ring Zp support circular convolution and 

atJ = aiJS btJ = fly, cfJ = yiJ(modpn) 

forO^ i,j^N- 1. 
(b) For every positive integer n and rational integers a(J, btJ, ctJ such that the 

matrices 

(<Pn(a„)), (cpn(bi)), (q>n(cq)) (0 ^iJ^N- 1) 

over the ring Z/pnZ support circular convolution, there exist rational integers af
ij9 

by, c[j such that the matrices 

(<PnU«d\ (<Pn+.Q>d\ (?« + l(4)) (0 <iJ<N- 1) 

over the ring Z/pn + ]Z support circular convolution and 

aij = afiJ, bu = by, c{J = c\, (mod pn) 

forO^ i,j^N- 1. 
Proof. The implication (a)->(b) follows from 5.2. Let (b) hold and let 

atJ, by ,ctJeZ and the matrices (q>n(ay)), ((Pnib^), (tpn(c^l) (0 ^ i,j < IV - 1) over the 
ring Z/pnZ support circular convolution. 

Then there exist rational integers af, bf, cf (0 ̂  i,j ^ IV - 1, // = 0, 1,2, 
...) with these properties: 

<> = a„ bf = bv, cf = cv, 

(<Pn + ,«)) , {9n + 0f)\ Wn + Jiff)) (0 < ij ^ N - I) 

are SCC-matrices over the ring Z/pn + ̂ Z, 

a(f = a(^+]), bf = b<?+l), cf = c^+l)(modpn + ̂ ) 

for every JJ, = 0, 1, 2, ... . 
Put 

a , = Um<|W>, / j f ^ l i m ^ , 7iJ= Mm cf, 
/i—>00 H~*QO /i->00 
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where lim denotes the p-adic limit. Then the p-adic integers aij9 (3ij9 Y,J have 
/ i - O G 

properties required in (a). 
The Theorem is proved. 
Further suppose that aij9 bij9 ctJ are rational integers and 

(<Pn(*v)\ (<P.(b,j))> (<pn(Cij))(0^i,j^N-\) 

are SCC-matrices over the ring Z/p"Z. 
Then we have for 0 ^ u9 v9 w ^ N — 1: 

N- 1 

Z akJ>bfkw = s(w> v> w)+Pns(u, v9 w)9 
k = 0 

where 
f 1 for u + v + w = 0(mod N) 

s(u9 v9w) = < 
(0 otherwise 

and s(u9 v9 w) is a rational integer. 
Then for the integers a-j9 b'ij9 c'i}- from 5.3 (b) we have 

< = «,>• + P%j> bf
ij^bij + pnyij9 c\j=cij + pnzij9 

where xtj, yv, ztJ e Z and 

N-i N-i N-

(*) Z bkvckwxku+ Z akuckwykv+ Z akubkvzkw= - s(u9 v9 w) (mod p) 
k=0 k=0 k=0 

for 0 ^ u9 v9 w ^ N — 1. 

zt 

The system (*) is a system of N linear equations with 3N2 unknowns xku, ykv, 
kw over the field Z/pZ. Since the matrices (<Pi(a,y)), (<Pi (£,>))> (<Pi(c,y)) over the field 

Z/pZ support circular convolution, we have for 0 ^ /, j ^ N — 1 according to 
3.6: 

afj = g,tf,, 6iy = g'A-, c;/ = ^c ;(mod p), 

where a,, b;, c;, g; are rational integers, Najbfi = 1 (mod/?) and 

(Pifeo). <P\(g\)> •••> <PiteN-i)} = {<PiO), Pife), <P\(g2), •••, ^ife" -1)}, 

g is a rational integer, p does not divide g and g has order N mod/?. 
This implies that the rank of the system (*) is equal to the rank of the matrix 

(mod p) of size N3 x 3N2: 

28 



vku 

(u, v, w) " . . . J ^ + ^ 

(u, v, w') Jt(v + O 

(u, v', w) Zk(v' + w) 

(u', v, w) _...o 

u' Фu 
v' фv 
w' Ф w 

Уkv 

Mu + w) 

çk(u + w') 

0 
Mu' + w) 

...g 

. . .0 

...g 

Zkw 

Л(u + v) 

.k(u + v') 

,k(u' + v) • ë 

0 < u, v, w, k < N — 1. 

For N = 1 we can put g = 1 and then this matrix has the form: 

[1, 1, 1]. 

Hence the system (*) is solvable. 
For IV = 2 we can put g = — 1 and the given matrix has the form: 

U V W •*oo ^10 •^oi xu ôo ^ю Joi Уw ~"oo 
z\o Z 0 1 2 . 

0 0 0 " 1 1 0 0 1 1 0 0 1 1 0 0 
0 0 1 1 - 1 0 0 1 - 1 0 0 0 0 1 1 
0 1 0 1 - 1 0 0 0 0 1 1 1 - 1 0 0 
0 1 1 1 1 0 0 0 0 1 - 1 0 0 1 - 1 
1 0 0 0 0 1 1 1 - 1 0 0 1 - 1 0 0 
1 0 1 0 0 1 - 1 1 1 0 0 0 0 1 - 1 
1 1 0 0 0 1 - 1 0 0 1 - 1 1 1 0 0 
1 1 1 ( 0 0 1 1 0 0 1 1 0 0 1 1 

The determinant chosen from this matrix for columns x00, x]0, x0l, xu, y^, 
y]0, z0o ^ z\o has the value 64, from which it follows that the system (*) is solvable 
for any odd prime p and N = 2. Thus we have shown 

5.4 Proposition. Let N = 1 or N = 2. Let atj, btj, c/yeZ and the matrices 

( f t M , {<Pn(bi)\ (<Pn(Cij))(0^i,j^N-l) 

over the ring Z/pnZ support circular convolution. Then there exist p-adic integers 
aij -> Ptj -> Yij such that the matrices 

K). (P„), (r„)(o^i,j^N-\) 
over the ring Zp support circular convolution and 

av = ay, by = py, Cy = jy (mod p") 

for each 0 < i, j < At — 1. 
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5.5. Remark. We can also obtain the proof of 5.4 by means of Theorem 4.4. 
For N ^ 3 the description of /SCC-matrices over the ring Z/p"Z of order N in the 
way from Proposition 5.4 is an open question. 
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ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ И КОНВОЛЮЦИЯ 

ЕасК$1ау 8ки1а 

Резюме 

Изучаются линейные преобразования, которые удовлетворяют «свойствам конволю-
ции». Скажем, что три линейные преобразования удовлетворяют свойствам конволюции, 
если мы можем вычислить круговою конволюцию двух последовательностей при помощи 
этих преобразований по формуле, известной в теории дискретного преобразования фурье. 
Это изучение развито для коммутативных колец с единицей. Эта проблема решена 
полностью для полей, областей целостности и в случае, когда длина изучаемых пос­
ледовательностей равна 2. Для колец вычетов используется понятие /?-адических чисел. 
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