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DIRECTLY DECOMPOSABLE CONGRUENCES 
IN VARIETIES WITH NULLARY OPERATIONS 

IVAN CHAJDA 

A class of algebras ^ has directly decomposable congruences if for any two 
algebras 21, 23 e <& and each congruence 0e Con(SH x 23) there exist congruences 
6>, GCon(21), 02eCon(93) such that 0 = 0, x 02. Varieties of algebras with 
directly decomposable congruences were characterized by a rather complicated 
Malcev condition in [4]. A simpler Mal'cev condition characterizing direct 
decomposability of congruences in the case of permutable or 3-permutable 
variety can be found in [2] or [3]. The aim of this paper is to show how the 
original Mafcev condition (derived by G. A, Fraser and A. Horn) can be 
simplified in the case of a variety with a nullary operation and what other 
varieties can satisfy the modified definition of decomposability. 

It was proved in [4] that a class ^ has directly decomposable congruences if 
and only if for any two 21, 23 e %> and any a,, a2 e 21, b}, b2 e 23, 

0{[al9bx]9 [a2, b2]) = 0iax,a2) x 0(bx, b2). 

In other words, ^ has directly decomposable congruences if and only if it 
has directly decomposable principal congruences. This property is used in the 
next definition: 

Definition. Let <% be a class of algebras of the same type containing the nullary 
operation c. %> has c-directly decomposable congruences if for each 21, 93 e^? and 
each x,G2I, x2

G®> 

6>([c> c], [xx, x2]) = 6>(c, x,) x 0(c, x2). 

Lemma. Let Ybe a variety with a nullary operation c. The following conditions 
are equivalent'. 

(a) V has c-directly decomposable congruences; 
(b) for every 21, 93 e "V and each a e 21, b, de 23, 

<[c,d\,[a,d\ye0([c,c],[a9b]). 
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Proof . (a)=>(b): Since 

<[c, d], [a, d])e0(c, a) x coB^ 0(c , a) x 0(c , b) = 0([c, c], [a, b]), 

the implication (a) => (b) is evident. 
(b)=>(a): Apply (b) onto S x 21; we obtain 

<[c9e],[b,e]}e0([c,c],[b,a]). 

Using the canonical homomorphism 93 x 21 -• 21 x 93, we have immediately 

<[e,c],[e,b])E0([c,c],[a,b]). 

From it and (b) we obtain 

<9(c, a) x coB .= 0([c, c], [a, b]) 
coA x 0(c , b) <= 0([c, c], [a, b]). 

The transitivity implies 

0(c , a) x 0(c , b) c 0([c, c], [a, b]). 

The converse inclusion is evident. 

Theorem. Let "T be a variety with a nullary operation c. The following con­
ditions are equivalent: 

(1) 'V has c-directly decomposable congruences; 
(2) there exist (2 + n)-ary polynomials px, ...9pm9 unary polynomials qx~ ..., 

qn and binary polynomials rx, ..., rn such that 
c=px(c, x, qx(x)..., qn(x)) 
x = pm(x, c, qx(x), ...9qn(x)) 
Pt(x, c, qx(x), ..., qn(x))=pi+x(c, x, qx(x), ..., qn(x)) 

for / = 1, ..., m — 1 
z=P\(c,y9 rx(y, z), ..., rn(y, z)) 
z = Pm(y, c, rx(y, z), ..., rn(y, z)) = 

Pi+ \(c, y9 rx(c, y, rx(y, z), ..., rn(y, z)) 
for / = 1, ..., m — 1. 

P roof . (1) => (2): Let V be a variety with a nullary operation c which has 
c-directly decomposable congruences. Let 21 = 5i(x) or 93 = 3f2(y> z ) be free 
algebras in y with free generators x oxy, z, respectively. By the Lemma, we have 
clearly 

<[c, z], [x, z]}e 0([c, c], [x, y]). 
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Then, by the Malcev Lemma (see, e. g., [5]), there exist (2 4- rz)-ary polynomials 
pX9 ...9pm s u c h t h a t 

[c, z] = p , ( [ c , c], [x9y]9 vX9 ...9v„) 
[x9 z] = pm([x9 y]9 [c, c], vx, ..., v„) 

Pi([x> y]> [c9 c]9 vx, ... v„) = p i + ,([c , c], [x9 y]9 vX9 ..., v„) 
for i = 1, ..., m — 1, 

where t>;E2i x 23 = 5,(x) x 52(y? z). Hence, there exist unary polynomials q, 
and binary polynomials r, such that 

«>/ = [?/(*)> '/(y> z)]-

Putting these terms instead of v, into the foregoing identities, we obtain (2). 
(2)=>(1): Let ir be a variety with a miliary operation c and satisfying 

identities (2). Let ae2I and b, de23. Putting a, 6, d into (2), we obtain 

<[c, d]9 [a9d]}e0([c9 c], [a9b]). 

By the Lemma, this implies (1). 
Clearly, every variety V with a nullary operation c which has directly 

decomposable congruences has also c-directly decomposable congruences. The 
following example shows that there are also varieties having c-directly decom­
posable congruences but have not directly decomposable congruences. 

Example 1. Let 'V be a variety of join semilattices with a nullary opera­
tion 0 (the lest element). Then "T has O-directly decomposable congruences. 

We can put n = m = 2 and px(xx, xl9 x3, x4) = xx v x3 

P2(XX , X2 , x3 , X4) = X2 V x4, 

q,(x) = 0, q2(x) = x9 rx(y9 z) = r2(y9 z) = z. 
Then 

p,(0, x9 qx(x)9 q2(x)) = 0 v 0 = 0 
p2(x9 0, q,(x), q2(x)) = 0 v x = x 

px(x9 0, ^,(x), q2(x)) = x v 0 = x = p2(0, x9 qx(x)9 q2(x)) 

Fi(0, y, ri(y, z), r2(y, z)) = 0 v z = z 
F2(y, 0, r,(y, z), r2(>>, z)) = 0 v z = z 
Fi(y, 0, ^i(y, z)9 r2(y9 z)) = y v z = p2(0, >̂ , r,(^, z), r2(>', z)). 

On the contrary, the variety "T has not directly decomposable congruences. It 
can be easily shown if we take, e.g., the two-element join semilattice 3 = {0, x} 
and put S = 3 x 3. Then clearly the principal congruence 0 = 0([O, x]9 [x, 0]) 
on S is not directly decomposable. 
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E x a m p l e 2. Let f be a variety of implication algebras, i.e. the variety 

with one binary and one miliary operation denoted by .and 1, satisfying the 

identities 

(a. b). a = a 

(a.b).b = (b.a).a 

a.(b.c) = b .(a.c) 

a.a = 1, 

see, e.g., [1]. Put n = m = 2 and 

P\(X\ , x2i x3? X4) = X\ ' x3> Pl(X\ , x2> X3-> XA) ~ x2 • x4 

qx(x) = 1, q2(x) = x, r}(y, z) = r2(y, z) = z. 

Clearly 

P\(h x, qiW, q2(x)) = 1.1 = 1 
p,(x, 1, q,(x), q2(x)) = x. 1 = 1 = x.x=p2(\, x, q,(x), q2(x)) 

p2(x, 1, q,(x), q2(x)) = 1 .x = x 

p,(l, y, rx(y, z), r2(y, z))=\.z = z 

p,(y, 1, rx(y, z), r2(y, z)) = y .z = p2(l, ;;, r,(y, z), r2(y, z)) 

Pi(y, 1, ^i(y, z), ^2(y, z)) = 1 . z = z. 

Hence, TT has 1-directly decomposable congruences. We can show that TT has 

in general no directly decomposable congruences. Take the three-element im­

plication algebra 3 = {a, b, 1} with a.b = b,b.a = a, 1 . x = x and x.y = 1 for 

any other combination of x, ye {a, b, 1}. Put 31 = 3 x 3 and let 0 = 0([a, 1], 

[1, b]). Clearly 0 is not directly decomposable. 
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ПРЯМОЕ РОЗЛОЖЕНИЕ КОНГРУЭНЦИИ В МНОГООБРАЗИЯХ 
С НУЛЯРНЫМИ ОПЕРАЦИЯМИ 

Ь̂ ап С1^с1а 

Резюме 

Дается условие Мальцева для многообразия У с нулярной операцией с, удовлетворя­
ющие следующему условию для главных конгруэнции: 

<9(с, х) = 6>, х 02 (6>, е Соп(<&\ 02 е Соп(Щ 

для каждово элемента .хеЗД х 93 и любых 91, ЗЗетГ. 
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