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DIRECTLY DECOMPOSABLE CONGRUENCES
IN VARIETIES WITH NULLARY OPERATIONS

IVAN CHAJDA

A class of algebras € has directly decomposable congruences if for any two
algebras U, B € € and each congruence @ Con(A x B) there exist congruences
0,eCon(A), O, Con(B) such that @ = O, x O,. Varieties of algebras with
directly decomposable congruences were characterized by a rather complicated
Malcev condition in [4]. A simpler Malcev condition characterizing direct
decomposability of congruences in the case of permutable or 3-permutable
variety can be found in [2] or [3]. The aim of this paper is to show how the
original Malcev condition (derived by G. A, Fraser and A. Horn) can be
simplified in the case of a variety with a nullary operation and what other
varieties can satisfy the modified definition of decomposability.

It was proved in [4] that a class € has directly decomposable congruences if
and only if for any two U, Be ¥ and any a,, a,eU, b,. b,eB,

a,, b\, [ay, b)) = Ka,, a,) x &b, b)).

In other words, ¢ has directly decomposable congruences if and only if it
has directly decomposable principal congruences. This property is used in the
next definition:

Definition. Let € be a class of algebras of the same type containing the nullary
operation c. € has c-directly decomposable congruences if for each W, B € € and
each x,e U, x,eB,

O(lc, ¢}, [x1, x2]) = Oe, x1) x Oc, x)).

Lemma. Let ¥~ be a variety with a nullary operation c. The following conditions
are equivalent:

(@) ¥ has c-directly decomposable congruences;
(b) for every U, Be ¥ and each acU, b, de B,

e, d), [a, dly € O, cl, [a, b)).
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Proof. (a)=>(b): Since
le, d), [a, d]> € Oc, a) x wz = O(c, a) x Oc, b) = (e, c], [a, b)),

the implication (a) = (b) is evident.
(b)=(a): Apply (b) onto B x A; we obtain

{le, €], [b, e]> € Oe, c, [b, a]).

Using the canonical homomorphism B x A - A x B, we have immediately
(le, c, [e, b]) € O(c, c], [a, b]).

From it and (b) we obtain

O(c, a) x wz < O([c, cl, [a, b))
w, X O(c, b) < Oc, c], [a, b)).

The transitivity implies
O(c, a) x O(c, b) = O([c, ¢}, [a, b]).

The converse inclusion is evident.

Theorem. Let ¥~ be a variety with a nullary operation c. The following con-
ditions are equivalent:
(1) ¥ has c-directly decomposable congruences,
(2) there exist (2 + n)-ary polynomials p,, ..., p,,, unary polynomials q,7 ...,
g, and binary polynomials r,, ..., r, such that
¢ =pile, %, ¢1(%)..s gu(x))
X =pm(x’ G ql(x)’ e qn(x))
pi(x’ C ‘h(x), tee qn(x)) =Di+ l(cs X, ‘h(x)’ e q,,(X))
fori=1, .., m—1
z=plc, y, n, 2), ..., r,(y, 2))
z=p, ¢, n, 2), ..., r,(, 2)) =
Diy I(Ca Y rl(c’ Vs rl(y’ Z)a vy rn(_Va Z))
fori=1,..,m—1.

Proof. (1)=>(2): Let ¥~ be a variety with a nullary operation ¢ which has
c-directly decomposable congruences. Let A = §,(x) or B = §,(y, z) be free
algebras in ¥~ with free generators x or y, z, respectively. By the Lemma, we have
clearly

{le, z], [x, 2> e (e, ], [x, y]).
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Then, by the Malcev Lemma (see, e. g., [5]), there exist (2 + r)-ary polynomials
Pi» ---» P Such that

le, z21 = pi(le, <], [x, ), vy oo 0)

[X, Z] =pm([x9 y]a [C, C]’ Upy oooh vn)

pi([x’ J’], [C’ C], Uy vee U,,) =Pi+ l([c’ C]’ [X, Y], Upy ooy vn)
fori=1,..,m-—1,

where ;e U x B = F,(x) x & (y, z). Hence, there exist unary polynomials g,
and binary polynomials r; such that

v, = [qi(x)’ ri(y’ Z)]

Putting these terms instead of v, into the foregoing identities, we obtain (2).
(2)=(1): Let ¥ be a variety with a nullary operation ¢ and satisfying
identities (2). Let ae U and b, deB. Putting a, b, d into (2), we obtain

{le, dl, [a, d]> € Oc, c], [a, b)).

By the Lemma, this implies (1).

Clearly, every variety ¥~ with a nullary operation ¢ which has directly
decomposable congruences has also c-directly decomposable congruences. The
following example shows that there are also varieties having c-directly decom-
posable congruences but have not directly decomposable congruences.

Example 1. Let ¥~ be a variety of join semilattices with a nullary opera-
tion O (the lest element). Then ¥~ has 0-directly decomposable congruences.
We can put n =m = 2 and p,(x,, X,, X3, X3) = X; V X3
PaXy, Xz, X3, Xg) = X3V Xy,

ql(x) = 0’ ‘h(x) =X, rl(y» Z) = rZ(y’ Z) =Z.
Then

pl(o’ X, ql(x)a %(X)) =0v0=0

Pz(x, 0, g,(x), 42(3‘)) =0vx=x

pl(xs 0, CII(X), ‘12()‘)) =XV 0 =X =p2(0’ X, ‘II(X), ‘h(x))

20, y, iy, 2), (0, 2))=0vz=1z

Pz(y, 0’ rl(y’ Z), r2(y9 Z)) = O Vz=2Z

Py, 0, 1(y, 2), (¥, D)) =y v z = py(0, y, (. 2), 12(y, 2)).
On the contrary, the variety ¥~ has not directly decomposable congruences. It
can be easily shown if we take, e.g., the two-element join semilattice 3 = {0, x}

and put S = J x 3. Then clearly the principal congruence @ = ([0, x], [x. 0])
on S is not directly decomposable.
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Example 2. Let ¥~ be a variety of implication algebras, i.e. the variety
with one binary and one nullary operation denoted by .and 1, satisfying the
identities

(a.b).a=a

(a.b).b=(b.a).a

a.(b.c)=b.(a.c)
a.a=1,

see, e.g., [1]. Put n = m =2 and

Pi(X1s Xay X3, X4) = X1. X3, Py(X), Xy, X3, Xg) = X,. 0
g(x)=1, g(x)=x, rny, z)=rz)==z

Clearly

2L x, qi(x), g(x)=1.1=1
pilx 1 qi(x), H(x)=x.1=1=x.x =py(1, x, ¢,(x), q:(x))
l.x=x

pax 1, qi(x), g5(x)) =

pl(] y’r(y") rZ(ys )) ] zZ=
P 1, n(y, 2), ry(y, Z)) y.z= pz(l,y, rn(, 2), r(y, z))
pZ(y’ 1, r (y’ ‘-) rz(y’ Z)) 1.z

Hence, ¥~ has I-directly decomposable congruences. We can show that ¥~ has
in general no directly decomposable congruences. Take the three-element im-
plication algebra 3 = {a, b, 1} witha.b=b,b.a=a,1.x =xand x.y = 1 for
any other combination of x, ye{a, b, 1}. Put A = I x J and let @ = O([a, 1],
[1, b]). Clearly @ is not directly decomposable.
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MPSIMOE PO3JIOXKEHUE KOHI'PY3HLIUI B MHOIOOBPA3UAX
C HVJIAPHBIMHU OINEPALIMAMMU

Ivan Chajda

Pe3iome

Haetcs ycnosue Manbuesa 1uis MHOroo6Gpa3ust ¥~ ¢ HyJspHOH onepauued ¢, yAOBJIETBOPS-
FOLIIHE CNIEAYIOLIEMY YCJIOBHIO JUIS TJIABHBIX KOHIPY3HIMIA:

O, x)=60,x @, (60,eCon(N), O, Con(B))

VIS XaxaoBo ieMeHTa XA X B u mobuix A, Be ¥ .
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