František Kmeť
The greatest Archimedean ideal in a semigroup

Persistent URL: http://dml.cz/dmlcz/136437

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
THE GREATEST ARCHIMEDEAN IDEAL
IN A SEMIGROUP

FRANTIŠEK KMET

Let S be a semigroup. By an ideal we mean a non-empty two-sided ideal of S. An ideal $Q \subseteq S$ is prime if for any ideals A, B of S, $AB \subseteq Q$ implies $A \subseteq Q$ or $B \subseteq Q$. An ideal $P \subseteq S$ is completely prime if for any $a, b \in S$, $ab \in P$ implies $a \in P$ or $b \in P$. An ideal $A \subseteq S$ is called completely semiprime if $a^n \in A$ for any positive integer n implies $a \in A$.

Denote by Q^* the intersection of all prime ideals of S and by P^* the intersection of all completely prime ideals of S (see [3]). It is known (see [4]) that P^* and Q^* may be empty.

An element $x \in S$ is nilpotent with respect to an ideal J if $x^n \in J$ for some positive integer n. An ideal I is called a nilideal with respect to an ideal J if any x of I is nilpotent with respect to J. Denote by $R^*(J)$ the Clifford radical with respect to J, i.e. the union of all nilideals of S with respect to J (see [5]).

A semigroup S is archimedean (see [2]) if for any $a, b \in S$ there exists a positive integer n such that $a^n \in SbS$. An ideal $I \subseteq S$ is called archimedean if the sub-semigroup I is archimedean.

Denote by U^* the intersection of all prime ideals $Q \subseteq S$ with the property $R^*(Q) = Q$.

M. Satyanarayana [3, Theorem 10] proved that if Q^* is a completely semiprime ideal, then Q^* is the greatest archimedean ideal of the semigroup S.

By M. Satyanarayana [3, p. 291] “It is an open problem whether this result is true in arbitrary case”.

In this note we have solved this problem. The result is as follows: If $U^* \neq \emptyset$, then it is the greatest archimedean ideal of S (Theorems 2 and 3). Concluding this result we give a new characterization of the Clifford radical $R^*(J)$ as an intersection of some (in general not all) prime ideals.

Theorem 1. Let S be a semigroup and $U^* \neq \emptyset$. Then $R^*(U^*) = U^*$.

Proof. Let $U^* = \bigcap_{A \in A} Q_A$. Evidently $U^* \subseteq R^*(U^*)$. Suppose that $U^* \subseteq R^*(U^*)$, $U^* \neq R^*(U^*)$. Let $x \in R^*(U^*) - U^*$. Since $x \notin U^*$, then $x \notin Q_a$ for
some \(\alpha \in A \). Then the principal ideal \((x) \not\subseteq Q_a = R^*(Q_a) \), hence there exists \(y \in (x) \) such that \(y^n \notin Q_a \) for all positive integers \(n \). Since \(Q_a \supseteq U^* \), \(y \) is not nilpotent with respect to \(U^* \), a contradiction to \(y \in (x) \subseteq R^*(U^*) \). Therefore \(U^* = R^*(U^*) \) holds.

Lemma 1. Let \(S \) be a semigroup, \(J \) an ideal, \(H = \{ x, x^2, x^3, \ldots \} \) a cyclic subsemigroup of \(S \) and let \(H \cap J = \emptyset \). Then there exists a prime ideal \(Q \) containing \(J \) such that \(H \cap Q = \emptyset \) and \(R^*(Q) = Q \).

Proof. Denote by \(T \) the set of all ideals which contain \(J \) and do not meet \(H \). The set \(T \) is non-empty since it contains \(J \). By Zorn’s lemma there exists a maximal element \(Q \in T \).

We prove that \(Q \) is a prime ideal. Suppose that for some ideals \(A \subseteq Q \) and \(B \subseteq Q \), we have \(AB \subseteq Q \). Then \(x^r \in Q \cup A, x^s \in Q \cup B \) for some positive integers \(r, s \). Since \(x^r, x^s \notin Q \), we have \(x^r \in A, x^s \in B \), thus \(x^r + x^s \in AB \subseteq Q \), which contradicts \(H \cap Q = \emptyset \). Therefore \(Q \) is a prime ideal.

We prove that \(R^*(Q) = Q \). Evidently \(Q \subseteq R^*(Q) \). Suppose that \(Q \subset R^*(Q) \), \(Q \neq R^*(Q) \). Then \(x^m \in H \cap R^*(Q) \) for some positive integer \(m \). However, \(x^m \in R^*(Q) \) implies \((x^m)^n \in Q \) for some positive integer \(n \). This is a contradiction to \(Q \cap H = \emptyset \). Therefore \(R^*(Q) = Q \).

Lemma 2. Let \(S \) be a semigroup, \(x \in U^* \) and \(A \) be any ideal of \(S \). Then \(x^n \in A \) for some positive integer \(n \).

Proof. If \(A = S \), then the statement holds. Suppose therefore that \(A \) is a proper ideal of \(S \) and \(x \notin A \) for all positive integers \(n \). By Lemma 1 there exists a prime ideal \(Q = R^*(Q) \) such that \(x \notin Q \). This contradicts \(x \in U^* \). Thus for any proper ideal \(A \) we have \(x^n \in A \) for some positive integer \(n \).

Theorem 2. Let \(S \) be a semigroup and \(U^* \neq \emptyset \). Then \(U^* \) is an archimedean ideal.

Proof. Let \(x, y \in U^* \). Then by Lemma 2, \(x^n \in (y) = S^1yS^1 \) for some positive integer \(n \). From this we have obtained that \(x^n \in xS^1yS^1x \subseteq U^*yU^* \). Thus \(U^* \) is an archimedean semigroup.

Theorem 3. Let \(S \) be a semigroup \(U^* \neq \emptyset \), and let \(A \) be an ideal of \(S \). Then \(A \) in an archimedean ideal if and only if \(A \subseteq U^* \).

Proof. Let \(A \) be an archimedean ideal of \(S \). Suppose \(A \not\subseteq U^* \). By Theorem 1, \(U^* = R^*(U^*) \) therefore \(A \not\subseteq R^*(U^*) \). Then we obtain that \(A \) is not a nilideal with respect to the ideal \(U^* \). Therefore there exists an element \(y \in A \) such that \(y^n \notin U^* \) for all positive integers \(n \). Let \(a \in A \cap U^* \). Then \(AaA \subseteq (a) \subseteq U^* \) and \(y^n \notin AaA \) for any positive integer \(n \). This contradicts the assumption that \(A \) is an archimedean semigroup. Therefore for any archimedean ideal \(A \) of \(S \) we have \(A \subseteq U^* \).

Conversely, suppose that \(A \) is an ideal of \(S \) and \(A \subseteq U^* \). Then for any \(x, y \in A \) we have by Theorem 2, \(x^n \in U^*yU^* \) for some positive integer \(n \). Then \(x^n + 2 \in U^*yU^*x \subseteq AyA \), which means that \(A \) is an archimedean semigroup.
We now give a new characterization of the Clifford radical $R^*(J)$.

Theorem 4. Let S be a semigroup, J an ideal, $\{Q_\lambda \mid \lambda \in \Lambda\}$ be the set of all prime ideals of S containing J with the property $R^*(Q_\lambda) = Q_\lambda$. Then $R^*(J) = \bigcap_{\lambda \in \Lambda} Q_\lambda$.

Proof. By the assumption $J \subseteq Q_\lambda$ implies $R^*(J) \subseteq R^*(Q_\lambda) = Q_\lambda$, hence

$$R^*(J) \subseteq \bigcap_{\lambda \in \Lambda} Q_\lambda.$$

Conversely, we show that $\bigcap_{\lambda \in \Lambda} Q_\lambda \subseteq R^*(J)$. If $R^*(J) = S$, then $\bigcap_{\lambda \in \Lambda} Q_\lambda \subseteq S$ holds. Suppose therefore that $R^*(J) \neq S$. It is sufficient to show that for any $x \notin R^*(J)$ there exists an $a \in \Lambda$ such that $x \notin Q_a$. Let $x \notin R^*(J)$. Then the principal ideal $(x) \nsubseteq R^*(J)$ and so there exists $y \in (x)$ such that $y^n \notin J$ for all positive integers n. Denote $H = \{y, y^2, y^3, \ldots\}$. We have $H \cap J = \emptyset$. By Lemma 1 there exists a prime ideal Q_a such that $H \cap Q_a = \emptyset$, $Q_a \supseteq J$ and $Q_a = R^*(Q_a)$. We have $x \notin Q_a$ since $x \in Q_a$ would imply $(x) \subseteq Q_a$, hence $y \in Q_a$ a contradiction with $H \cap Q_a = \emptyset$.

Next we shall show some relations concerning radicals and the sets Q^*, U^*, P^*.

Let S be a semigroup with an ideal J. The McCoy radical $M(J)$ with respect to J is the intersection of all prime ideals of S containing J. The Luh radical $C(J)$ with respect to J is the intersection of all completely prime ideals containing J.

If S is a semigroup with a zero 0, then $M(0) = Q^*$, $C(0) = P^*$ and by Theorem 4, $R^*(0) = U^*$.

The following examples show that there are semigroups with $Q^* \neq U^*$ and $U^* \neq P^*$.

Example 1. Let S_1 be a semigroup generated by a set $\{0, a_1, a_2, \ldots, a_n, \ldots\}$ subject to the generating relations $0 = x \cdot 0 = x^2$ for any $x \in S$. Then $M(0) = 0$ and $R^*(0) = S_1$ (see [1, p. 232]). Thus in S_1 we have $0 = Q^* \neq U^* = S_1$.

Example 2. Let $S_2 = \{0, e_{11}, e_{12}, e_{21}, e_{22}\}$ be a semigroup with the multiplication $e_{ik} \cdot e_{kn} = e_{in}$, $e_{ik} \cdot e_{jm} = 0$, $e_{ik} = e_{ik} \cdot 0 = 0$ for $i, j, k, n \in \{1, 2\}, j \neq k$. Then $U^* = R^*(0) = 0$, $P^* = C(0) = S_2$, thus $U^* \neq P^*$. Evidently U^* is not a completely semiprime ideal of S_2 since $e_{12}^2 \in U^*$, $e_{12} \notin U^*$.

We note that if P^* is non-empty then it is a completely semiprime ideal of S.

Theorem 5. Let S be a semigroup. Then $Q^* \subseteq U^* \subseteq P^*$. If $U^* \neq \emptyset$ and $U^* \neq P^*$, then U^* is not a completely semiprime ideal of S.

Proof. Let $U = \{Q_\lambda \mid \lambda \in \Lambda\}$ be the set of all prime ideals of S with the
property $R^*(Q_\lambda) = Q_\lambda$. Since U is a subset of the set of all prime ideals of S we have $Q^* \subseteq U^*$.

Let $P = \{P_\lambda | \lambda \in \Lambda_1\}$ be the set of all completely prime ideals of S. Evidently a completely prime ideal is prime. The inclusions $P_\lambda \subseteq R^*(P_\lambda) \subseteq C(P_\lambda)$ (see [5, Lemma 19]) and the equality $C(P_\lambda) = P_\lambda$ imply $R^*(P_\lambda) = P_\lambda$, for any $\lambda \in \Lambda_1$. Therefore P is the set of all such prime ideals of S which have the property $R^*(P_\lambda) = P_\lambda$ and are completely prime. Hence $P \subseteq U$ and so $U^* \subseteq P^*$.

An ideal $A \subseteq P^*$, $A \neq P^*$ cannot be completely semiprime, since the assumption that A is completely semiprime would imply $A = \bigcap_{\lambda \in \Lambda_2} P_\lambda$ (see [2, Theorem II. 3.7]) where $\Lambda_2 \subseteq \Lambda_1$ hence $P^* \subseteq A$, a contradiction.

Thus if $U^* \neq \emptyset$ and $U^* \neq P^*$, then U^* is not a completely semiprime ideal of S.

REFERENCES

Received December 6, 1984

Katedra matematiky PEF
Vysoká škola poľnohospodárska
Mostná 16
949 01 Nitra

НАИБОЛШИЙ АРХИМЕДОВ ИДЕАЛ В ПОЛУГРУППЕ

František Kmeť

Резюме

Пусть U^*-пересечение всех простых идеалов Q полугруппы S, обладающих свойством $R^*(Q) = Q$, где $R^*(Q)$-радикал Клиффорда относительно Q.

Доказано, что если $U^* \neq \emptyset$, то U^* является наибольшим архимедовым идеалом полугруппы.