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THE GREATEST ARCHIMEDEAN IDEAL
IN A SEMIGROUP

FRANTISEK KMET

Let S be a semigroup. By an ideal we mean a non-empty two-sided ideal of
S. An ideal Q = S is prime if for any ideals 4, B of S, AB < Q implies 4 =< Q
or B< Q. Anideal P < S is completely prime if for any a, b € S, ab e P implies
aeP or be P. An ideal A€ S is called completely semiprime if a’e A for any
positive integer n implies aeA.

Denote by Q* the intersection of all prime ideals of S and by P* the
intersection of all completely prime ideals of S (see [3]). It is known (see [4]) that
P* and Q * may be empty.

An element xe S is nilpotent with respect to an ideal J if x"eJ for some
positive integer n. An ideal I is called a nilideal with respect to an ideal J if any
x of I is nilpotent with respect to J. Denote by R* (J) the Clifford radical with
respect to J, i.e. the union of all nilideals of .S with respect to J (see [5]).

A semigroup S is archimedean (see [2]) if for any a, b € S there exists a positive
integer n such that ¢"e SbS. An ideal 7 < S is called archimedean if the sub-
semigroup I is archimedean.

Denote by U* the intersection of all prime ideals 0 = S with the property
R*(Q) = Q.

M. Satyanarayana [3, Theorem 10] proved that if O* is a completely
semiprime ideal, then Q* is the greatest archimedean ideal of the semigroup S.

By M. Satyanarayana [3, p. 291] It is an open problem whether this result
is true in arbitrary case”.

In this note we have solved this problem. The result is as follows: If U* 3 @
then it is the greatest archimedean ideal of S (Theorems 2 and 3). Concluding
this result we give a new characterization of the Clifford radical R*(J) as an
intersection of some (in general not all) prime ideals.

Theorem 1. Let S be a semigroup and U* # (. Then R*(U*) = U*.
Proof. Let U* = () Q,. Evidently U* = R* (U*). Suppose that U*
< R*(U*), U* # R*(A;JA*). Let xe R*(U*)— U*. Since x¢ U*, then x ¢ O, for
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some aeA. Then the principal ideal (x) &£ Q,= R*(Q,), hence there exists
ye(x) such that y"¢Q, for all positive integers n. Since Q,2 U*, y is not
nilpotent with respect to U*, a contradiction to ye(x) & R*(U*). Therefore
U* = R*(U*) holds.

Lemma 1. Let S be a semigroup, J an ideal, H = {x, x*, x*, ...} a cyclic
subsemigroup of S and let H ~J = (. Then there exists a prime ideal Q containing
J such that Hn Q = § and R*(Q) = Q.

Proof. Denote by T the set of all ideals which contain J and do not meet
H. The set T is non-empty since it contains J. By Zorn’s lemma there exists a
maximal element Qe T.

We prove that Q is a prime ideal. Suppose that for some ideals 4 &€ Q and
B & Q we have AB = Q. Then x"eQ uUA, x*eQ UB for some posi tive integers
r, 5. Since x’, x*¢ Q, we have x" €4, x’eB, thus x"**eAB < Q, which con-
tradicts H N Q = . Therefore Q is a prime ideal.

We prove that R*(Q) = Q. Evidently Q < R*(Q). Suppose that Q < R*(Q),
0 # R*(Q). Then x"eH nR*(Q) for some positive integer m However,
x" e R*(Q) implies (x™)"e Q for some positive integer n. This is a contradiction
to O n H = (. Therefore R*(Q) = Q.

Lemma 2. Let S be a semigroup, xe U* and A be any ideal of S. Then X" € A
for some positive integer n.

Proof. If 4 =S, then the statement holds. Suppose therefore that 4 is a
proper ideal of S and x"¢ A for all positive integers n. By Lemma 1 there exists
a prime ideal Q = R*(Q) such that x ¢ Q. This contradicts xe U*. Thus for
any proper ideal 4 we have x"e€ 4 for some positive integer n.

Theorem 2. Let S be a semigroup and U* # (. Then U* is an archimedean ideal.

Proof. Let x, ye U*. Then by Lemma 2, x"e(y) = S'yS' for some pos-
itive integer n. From this we have obtain that X" *?e xS'yS'x < U*yU*. Thus U*
is an archimedean semigroup.

Theorem 3. Let S be a semigroup U* # 0, and let A be an ideal of S. Then A
in an archimedean ideal if and only if A < U*.

Proof. Let A be an archimedean ideal of S. Suppose 4 & U*. By Theo-
rem 1, U* = R*(U*) therefore 4 ¢ R*(U*). Then we obtain that 4 is not a
nilideal with respect to the ideal U*. Therefore there exists an element y € 4 such
that "¢ U* for all positive integers n. Let ae A n U*. Then Aad < (a) < U*
and thus y"¢ AaA for any positive integer n. This contradicts the assumption
that A4 is an archimedean semigroup. Therefore for any archimedean ideal 4 of
S we have 4 = U*.

Conversely, suppose that 4 is an ideal of S and 4 = U*. Then for any x, ye 4
we have by Theorem 2, x"e U*yU* for some positive integer n. Then
x"*?2exU*yU*x = AyA, which means that 4 is an archimedean semigroup.
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We now give a new characterization of the Clifford radical R*(J).

Theorem 4. Let S be a semigroup, J an ideal, {Q;/ A€ A} be the set of all prime
ideals of S containing J with the property R*(Q)) = Q. Then R*(J) = (" Q,.
AeA
Proof. By the assumption J = Q, implies R*(J) = R*(Q ) = @, hence

R*(J)=() Ox

AeA

Conversely, we show that (1) Q; < R*(J). If R*(J) =S, then () Q, =S
AeA AeA

holds. Suppose therefore that R*(J) # S. It is sufficient to show that for any
x¢ R*(J) there exists an ae A such that x¢Q,. Let x¢ R*(J). Then the
principal ideal (x) € R*(J) and so there exists ye(x) such that y"¢J for all
positive integers n. Denote H = {y, y*, y*, ...}. Wehave HnJ = (. By Lemma 1
there exists a prime ideal Q, such that HnQ,=0, Q,2J and Q,= R*(Q,). We
have x ¢ Q, since xeQ ,would imply (x) =Q,, hence y €eQ , a contradiction
with HnQ,= 0.

Next we shall show some relations concerning radicals and the sets Q*, U*,
P*,

Let S be a semigroup with an ideal J. The McCoy radical M(J) with respect
to J is the intersection of all prime ideals of S containing J. The Luh radical C(J)
with respect to J is the intersection of all completely prime ideals containing J.

If S is a semigroup with a zero 0, then M(0) = Q*, C(0) = P* and by
Theorem 4, R*(0) = U*.

The following examples show that there are semigroups with Q* # U* and
U* # P*.

Example 1. Let S, be a semigroup generated by a set {0, a,, a,, ..., a,,
...} subject to the generating relations 0.x = x.0 = x* for any xeS. Then
M@0)=0 and R*(0) =S, (see [l, p.232]). Thus in S, we have
0=0*#U*=3S,.

Example 2. Let S, = {0, e,,, €15, €51, €} be a semigroup with the multi-
plication e, .e,, = e,,,¢e;.¢;, =0.e;, =e,.0 =0for i, j, k,ne{l, 2}, # k. Then
U* = R*(0) =0, P* = C(0) = S,, thus U* # P* Evidently U* is not a com-
pletely semiprime ideal of S, since e},e€ U*, e,,¢ U*.

We note that if P* is non-empty then it is a completely semiprime ideal of S.

Theorem 5. Let S be a semigroup. Then Q* < U* < P*. If U* #0 and
U* # P*, then U* is not a completely semiprime ideal of S.
Proof. Let U={Q;/ Ae A} be the set of all prime ideals of S with the
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property R*(Q;) = Q. Since Uis a subset of the set of all prime ideals of S we
have Q* < U*.

Let P= {P,| Ae A,} be the set of all completely prime ideals of S. Evidently
a completely prime ideal is prime. The inclusions P, = R*(P;) = C(P,) (see |5,
Lemma 19]) and the equality C(P,;) = P, imply R*(P,) = P,, for any A€ A,.
Therefore P is the set of all such prime ideals of S which have the property
R*(P,) = P, and are completely prime. Hence P < U and so U* < P*.

Anideal A ¢ P*, A # P* cannot be completely semiprime, since the assump-

tion that 4 is completely semiprime would imply A = (") P, (see [2, Theorem
leA,
1. 3.7]) where A, = A, hence P* < A, a contradiction.
Thus if U* # 0 and U* # P*, then U* is not a completely semiprime ideal
of S.
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HANBOJILIIUI APXUMEJOB UJEAJI B ITOJIYTPYIIINE
FrantiSek Kmeft

Pe3romMme

Ilycte U*-nepeceyenne BCex MpOCThIX UAea1oB Q MOMYrpynmsl S, 06/1a1alOLKUX CBONCTBOM
R*(Q) = Q. rne R*(Q)-panukan Knudpdopna orHocurensHo Q.

Joka3aHo, uto ecnd U* # (), To U* sBnseTcs HAWOONBIINM apXHMEI0BbIM UAEATOM TMOJIY-
TpyMIbI.
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