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GRAPH ISOMORPHISMS OF PARTIALLY
ORDERED SETS

MARIA TOMKOVA

All partially ordered sets considered in this paper are assumed to be of locally
finite length. Each such partially ordered set is a multilattice in the sense of [1].
In the formulation of results and proofs below the multilattice terminology will
be useful.

In the present paper a theorem on graph isomorphisms of lattices established
in [2] will be generalized for the case of directed partially ordered sets.

Let us recall some basic concepts and denotations.

A partially ordered set # = (P; <) is said to be of a locally finite length if each
bounded chain in 2 is finite. For elements a, be P we write a < b (a is covered by
b) if a < b and there does not exist any element ce P such that a < ¢ <b. If a,
be P, a < b, then the ordered pair (a, b)e P x P is said to be the prime interval
[a, b]. We denote by P~ the partially ordered set dual to 2.

A multilattice (cf. Benado [1]) is a poset M = (M; <) in which the con-
dition (i) and its dual are satisfied: (i) If a, b,he M, a < h, b < h, then there exists
v €M such that (@) a<v,b<vandv=h(b)zeM,a<z b=z v2zimplies
z=v.

Leta, b,ce M and let a < ¢, b < ¢, the symbol (a v b), designates the set of

all elements ve M satisfying (i) and v < ¢, the symbol (a A b), has a dual
meaning.

Wedenoteavb=1|)@vb),anb=_)(@anb),
asc axd
bse b2d

In what follows all multilattices are supposed to be directed.

By a graph G(4) of a multilattice M/ is meant an unoriented graph whose
vertices are elements of M ; two vertices a, b are joined by the edge (a, b) iff either
a<borb<a.

Let M,=(M,, £), M,=(M,; Z) be multilattices. If g: M, > M, is a
bijection such that (x, y) is an edge in G(M ) iff (g(x), g(y)) is an edge in G(M,),
then g will be called a graph isomorphism of the multilattice M, onto M, .
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Let u, v, Xy, X5, ooy Xpps Vi Vas ---y ¥, be distinct elements of M such that (i)
Uu<x;<x5... <x,<v, u<y, ... <y,<v and (ii) either vex, vy, or
uex, A y,. Then the set C = {u, v, X\, ...y X1y Vi» -y Yo} I8 said to be a cell in
M.

A cell Cin M is called proper if either m = 2, or n = 2.

A cell Cin M such that m = 1, n = 1 will be called elementary square.

Let g be a graph isomorphism of the multilattice M, = (M,, <) onto the
multilattice M, = (M,; <). We shall say that an elementary square C = {u, v, x,,
i} in M, is broken by g if either g(u) <g(x)), g(u) <g(), gv)<glx,),
g(v) < g(y) or g(x)) <gu), g(y) < gw), g(x,) <g), g(r1), <g().

A cell Cin M, is called regular under g if either for each prime interval [x;, x; , |]
of C the relation g(x;) < g(x; . ) is satisfied, or for each prime interval [x;, x;, ]
of C the relation g(x; ) < g(x,) holds.

Let us assume in the sequel that # = (M; <), 4, = (M; <)) are multilat-
tices such that the identity mapping 4 on M is a graph isomorphism of .# onto
M, . If ¢, de M and ¢ £,d, then the interval of .#, with the endpoints ¢, d will
be denoted by [c, d],. Let P and P, be the set of all prime intervals in .# and
in ./, respectively.

We denote Q = Pn P,, Q" = P\Q. The above notions can be applied for
g = h. Thus a cell Cin .# is regular if each prime interval of C belongs to Q or
if each prime interval of C belongs to Q’.

An elementary square C = {u, v, x,, y,} in M is broken iff either u<,x,,
U<y, v<ux;, v<yyyor x; <, y, <, x; <0,y <,v.

Let us consider the following conditions:

(a) There exist multilattices of = (A; <), B = (B; £) and a bijection f:
M — A x B such that f is an isomorphism of M onto o/ x % and at the same time
fis an isomorphism of M, onto o/ x B~.

(b) The identity mapping h on M is a graph isomorphism M onto M | such that
no elementary square of M and M , is broken.

(c) All proper cells of M and all proper cells of M, are regular under the
identity mapping h.

Lemma 1. Let (a) be valid. Then (b) and (c) hold.
Proof. The implication (a) = (b) was proved in [6, Theorem 1]. The im-
plication (a) = (c) can be proved analogously to the lemma 2.1 in [2].

Lemma 2. (Cf. [6] lemma 1.) Let C = {u, v, x,, y,} be an elementary square in
M. Let (b) hold. Then [u, x,)€ Q ([u, x,]€Q") iff [y, v] €Q ([y,, v] Q).

Now let us assume that the conditions (b) and (c¢) are valid.

By the same method as in the proofs of lemmas 2.3—2.6 in [2] the following
lemmas can be proved:
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Lemma 3. Let u, v, X, ..., X,,, V|, ---» Vo be distinct elements of M such that
(i)u-<xl-<x2< -<x,,,<v,u<,x|<1 <Ixm<lv9 (”)u<y|<y2<
vee <Pp<v.Thenu<,y,<,... <, Y.<V

Lemma 4. Let u, 0, X;, Xy, ..., Xy, V1» V25 o> be distinct elements of M such
that (u<x, <x,< ... <x,<v,u<y; <0< ... <y,<v, (i) there are
ie{l,2,...,m},je{l,2,...,n}such thatuex; A Y, VEX; V y;,u <, x, < ... <,
xou<,y<y... <,y Thenwe have x; <, Xj+1 <1 ... <1 X,<,vandy;<,
Vi1 <y <jp... <3<

Lemma 5. Let u, 0, X;, Xy, ooy Xy V1> V2s ---» Yo D€ distinct elements of M such
that the condition (i) from lemma 4 is valid. Assume that there are i€ {1, 2, ..., m},
Je{1,2, ..., n} such that uex; A y;, VEX; V Yj, U | X1 > | voo > Xjs U .oe
> 1 y;- Then all prime intervals of [x,, v] and of y;, v] belong to Q.

Lemma 6. Let u, 0, X, Xy, «.es Xpus V) Va» ---» Va b€ distinct elements of M such
that the condition (i) from lemma 4 is valid. Assume that there are i€{1, 2, ..., m},
je{l,2, ..., n} such that ue x; Ay;, Ve x; v y;, all prime intervals of [u, x;] belong
to Q and all prime intervals of [u, y}] belong to Q'. The all prime intervals of [y,
v] belong to Q and all prime intervals of [x;, v] belong to Q.

(The main idea of the modification of the proofs is as follows: the assertion
x, v y; <v is replaced by the assertion there exists v, e(x, v y,), such that
v, <v.) ‘

Let x, ye M. We put xR,y (xR,Y) if there exists an element ve x v y such that
all prime intervals of [x, v, [y, v] belong to Q (Q").

The relations R{, R, on M are defined analogously (by taking the relation <,).

From lemmas 2,4 and the dual of lemma 4 it follows that xR,y (xR,y) is
equivalent to each of the following conditions:

(a)) If uex Ay, then all prime intervals of [u, x] and [u, y] belong to Q (Q’).

(a,) If vex v y, then all prime intervals of [x, v] and [y, v] belong to Q (Q’).
A similar equivalence is valid for the relation R (i = 1, 2).

It is easy to verify that R, coincides with R] and R, coincides with Rj.

Lemma 7. R, and R, are equivalence relations on M.

Proof. Let ie{l, 2}. Evidently R, is reflexive and symmetric. The tran-
sitivity of R; can be verified by the same method as in [3, lemma 7].

Lemma 8. The relations R,, R, satisfy the following conditions:
() R R, =R;R,
(il) RRAnR, =0, RiUR,=1(0, Iis the least (the greatest) element of the
lattice of all equivalence relations on M).
(i) If a, b, c,deM,a<c,aR b, bR,c, thena b < c.
(iv) Leta,b,c,deM,aR,b, cR,d, aR,c, bR,d. Then from a < b it follows
that ¢ < d and from a < c it follows that b £ d.
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Proof: (i) This condition can be proved in the same way as in [3, lemma 10].

(ii) Since for each a, b e M such that [a, b] is a prime interval one of the cases
aR, b, aR,bis valid we get RRnR,=0, RRUR,=1I.

(iif)y Let uea v b, veb v c. From aRb, b R,c it follows that all prime
intervals of [a, u], [b, u] belong to Q and all prime intervals of [, v], [¢, v] belong
toQ’. Letwea A b. If re(b A ¢),, then all prime intervals of [r, ] belong to Q
by lemma 3 and according to the assertion dual to lemma 5 they belong to Q’.
Hence r =band b < c. If se(a v b),, then we get s =b and b = a.

(iv) Let us choose uea v c,vebvd wecandandletaR, b, cR,d, aR;c,
b R,d. Then all prime intervals of [w, c], [w, d] belong to Q in view of (,) and
all prime intervals of [a, u], [c, u], [, v], [d, v] belong to Q’ by [@,). Let a < b and
peu v b. Then all prime intervals of [a, b] belong to Q. It follows that aeu v b.
In view of lemma 6 all prime intervals of [b, p] belong to Q’. Choose tep v v.
According to lemma 5 all prime intervals of [v, 7] belong to Q’. If se(c v d),,
then all prime intervals of [, s] belong simultaneously to Q and Q’. Hence s = d.
Thus ¢ £ d. Similarly we can get b < d in view of a < c.

The following assertion (K) was proved in [4, Thm. 3.4.2].

(K). Let M be a quasiordered set. There exists a one-one correspondence
benween the nontrivial direct decompositions of the quasiordered set M into two

Jactors and pairs (R, , R,) of nontrivial equivalence relations R,, R, on M satisfy-
ing the properties (i), (ii), (iii), (iv) from lemma 8. To each couple (R, , R,) with the
mentioned properties there corresponds the decomposition M ~ M/R, x M R,
and to each element ae M there corresponds the element (a,, a,) where a; is the
equivalence class under R;, (i = 1, 2) containing a.

Let R,, R, be the equivalence from lemma 7. From lemma 8 it follows that
the equivalences R, R, and R}, R; satisfy the conditions of the Theorem (K).
Denote .#/R,=(A, £)= o, M|R, =B, =)=RB, M,|R=(A, £) =,
MO IRy = (B, £,) = #'. Then there exist isomorphisms:

V.M > A XAB
W]:J%I_’M’XQ/

defined in the same way as in (KX).

Since .#, #, are multilattices of locally finite length then the partially
ordered sets o7, 4, /', #’ must be of locally finite length as well and thus .o/,
A, o', A are multilattices.

Lemma 9. Let u, veA. Thenu<vin o iff u<,vin o’ .

Proof. Let b€ B. Denote A, = {b,}.

Let fi: A - o/ x %,
fii A > A x B,
be such mappings that to each ae A4 there coresponds the element («, b,). Then
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/i, f, are isomorphisms. Let u, ve 4. Then u <vin o iff y~'fi(u) < y~'fi(») in
M .1t follows that in ., either y~'f,(u) <, v~ 'f1(v) ory~'f,(v) <, 'f,(u). In the
second case we have y~'f,(u) R,y 'f,(v). Since y is an isomorphism and
fiw) = (u, by), fi(v) = (v, by), we obtain (u, by) Ry(v, by) in A x B. Therefore
u = v, because (a, b) R,(a,, b)) iff a=a,. But u=v is impossible. Hence
v fiw) < v i) in A, and £ vy i) = u <o = £y i) in o
The converse implication follows by symmetry.
Analogously we can prove the following lemma:

Lemma 10. Let u, veB. Then u<vin B iff v<,u in #'.
From lemmas 9 and 10 the following lemma follows immediately.

Lemma 11. The multilattice of is isomorphic to o/’ and the multilattice B is
dually isomorphic to %#’.

Corollary. Let 4/ =M, £), M, = (M, £,) be multilattices fulfilling the
conditions (b) and (c). Then M and M, satisfy the condition (a).

Now if we consider the multilattices # = (M, <), #, = (M,, <)) and the
bijection h: M — M,, then according to lemma 1 and lemma 11 the following
assertion is valid.

Theorem. Let /4 = (M, <), M, = (M,, <) be directed multilattices of locally
Sinite length and let h: M — M, be a bijection. Then the following conditions are
equivalent.

(B)) h is a graph isomorphism of the multilattice M onto M, such that no
elementary square of M, M, is broken under h or h™", respectively and all proper
cells o M, M, are regular under h or h™', respectively.

(B,) There exist multilattices of = (A, <), B = (B, <) and direct representa-
tions f: M — oA x B, g: My~ A x B~ such that h = g~ 'f.

This theorem generalizes the theorem of [2].
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'PA®OBBLIE U3OMOPDPU3IMbBI HACTUYHO YITOPAAOYEHHLIX MHOXECTB
Maria Tomkova

Pe3omMme

M. SIky6ux [2] a0ka3am HECKONBLKO YTBEPXJIEHHH OTHOCHUTENLHO rpadoBbIX H3OMOPHU3IMOB
PELICTOK, KOTOPbIE He TOKHBI ObITh MOAYJIApHBIE. B cTaThe 0606111€HA OHA U3 ITHX TEOPEM s
Cyyasi YACTUYHO YNMOPANAOYEHHBIX MHOXECTB JIOKAJIbHO KOHEYHOM JUIMHBI.
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