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WEAK COMPACTNESS AND SUMMABILITY

WOIJCIECH CHOJNACKI

Let T = (Cp)n men b€ @ method of summability. In agreement with the ter-
minology employed in [2], we will say that T is almost regular* if the following
conditions are satisfied:

(i) lim Y ¢, =c;
n—»00 m=1
(i) lim ¢,, = ¢, for every meN;
(i) c# Y, ¢,
n=1
Here, of course, ¢ and c,(neN) are finite, and the series are supposed to be
convergent.

We will say that a subset of a Banach space has property s if for every
sequence in the subset there is an almost regular* summability method T such
that the T-means of the sequence converge weakly.

In [2] D. Waterman established a theorem which can be formulated as
saying that the unit ball of a Banach space having property s is weakly compact.
We shall prove the following generalization of this result.

Theorem. If a bounded subset of a Banach space has property s, then it is weakly
relatively compact.

Proof. Suppose that a bounded subset 4 of a Banach space E has
property s. Should not the weak closure of 4 be weakly compact, then, by a
result of Kadec and Pelczynski [1], there is a basic sequence (x,),.n in A for
which the origin is not a weak cluster point. By passing to a subsequence if
necessary, we can assume that there exists x* in E*, the dual space of E, such
that

Y Ix*(x,) — 1] < + oo.
n=1

Of course, D = inf{||x,]| :neN} > 0. Let C be a positive number such that, for
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every choice of n, me N with n < m and scalars A, (1 < i < m), we have

T Ax) <CI3 Ax,
i=1 i=1

Then

> /1.-| < 'i A (x) — 1)\ [T Axrx)

<D ' max {IAx ] 1 <i<m} S e*e) — 1
i=1

+ I x*|

Y Ax;
i=1

< <2CD" Z lx*(x;) — 1| + IIx*Il>

Y Aix;
i=1
This inequality jointly with the Hahn-Banach theorem shows that there is z*
in E* such that
z*(x,) =1 )

for all neN.

According to our hypothesis, there is an almost regular* summability method
T = (Cpm)n men and a point x in the closed linear span of {x,: ne N} such that the
T-means of (x,),.y converge weakly to x. Let (x¥),.n be a sequence in E* such
that

* _)l ifn=m
X2 (Xm) {0 ifn#m’

In view of (ii), for each ne N, the T-means of (x}(x,,)),..x converge to c,. Hence

and further, in view of (1),
*(x)= ) ¢,.
n=1

On the other hand, by virtue of (i) and (1), the T-means of (z*(x,)),.~ converge
to ¢. This and the above equality imply

o0
Y en=c,
n=1

which contradicts (iii).
The proof is complete.
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CJIABAA KOMITAKTHOCTb U CYMMUPYEMOCTb
Wojciech Chojnacki

Pe3swome

B paGoTe noka3sIiBaeTcs, YTO OrpaHHYEHHOE MOAMHOXECTBO 6aHaXOBOro NPOCTPAHCTBaA ciabo
OTHOCHTEJILHO KOMIIAKTHO, €CJIH [U1s 1060 MOCIeI0BaTEILHOCTH JIEMEHTOB 3TCI O TIOAMHOXECT-
Ba CyUIECTBYET MOYTH peryaspHbIii* Merox cymmupyeMoctH T Takoi, YTo T-CyMMBbI 3TOM moc-

JIeQOBaTeJIbHOCTH cy1abo cxonsaTcs.
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