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CRITERION FOR UNIFORM DISTRIBUTION OF
SEQUENCES AND A CLASS OF RIEMANN
INTEGRABLE FUNCTIONS

TIBOR SALAT

1. Introduction

In the paper [2] a criterion for the uniform distribution of sequences is in-
troduced. We shall show that a condition of this criterion formulated by using
the Lebesgue measure can be replaced by an analogous condition formulated by
using the Jordan measure. Further it will be shown here that the set of all
Riemann integrable functions which can be used in the mentioned criterion
contains all Riemann integrable functions with the exception of a “little’ set in
a topological sense.

2. A remark about the Horbowicz criterion

The following criterion for the uniform distribution of sequences of real
numbers is proved in [2]:
Let f be a complex Riemann integrable function on <0, 1). Let

(1) uz@mn =0
where
Z(f) = {x€{0,1): f(x) = 0} = f7'(0)

and u denotes the Lebesgue measure. Then a sequence {x,}*_, of numbers of the
interval <0,1) is uniformly distrubuted if and only if for each interval
{a, b) = <0, 1) we have

N b
N“P!o% 2 e tcan(x) = f £ (x)dx

(X<.»y stands for the charateristic function of the interval <a, b)).
S. Porubsky posed the question whether the condition (1) can be replaced by
the condition
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(1) m(Z(f)) = 0

where m denotes the Jordan measure.

Let us remark that each Riemann integrable function f: <0,1> — R is also
Lebesgue integrable and hence the set Z(f) is Lebesgue measurable [1, p. 270].

In what follows R(0, 1) denotes the set of all real Riemann integrable fun-
ctions on {0, 1). We restrict ourselves only to real functions, the results can be
easily extended for complex functions.

The closure of a set M < <0, 1) will be denoted by M.

Theorem 1.1. Let fe R(0,1). Then we have
H(Z()) = n(Z().

Corollary 1.1. The condition (1) is equivalent to the condition (1) (for Riemann
integrable functions f).

Proof of Corollary 1.1 Clearly (1’) implies (1). If (1) holds, then acc-
ording to the theorem 1.1 we have u(Z(f)) = 0. However, Z(f) is a compact set
and therefore m(Z(f)) = 0. From this we get m(Z(f)) = 0. L

Proof of Theorem 1.1. Since each of the sets Z(f), Z(f) is Lebesgue
measurable and Z(f) < Z(f), it suffices to show that the inequality

(2) wZ () > p(Z())

does not hold.

Let (2) hold. Choose an arbitrary x,€ Z(H)\Z(f) = W. Then f(x,) # 0 and in
every neighbourhood of x, there are points x with f(x) = 0. This implies that f
is discontinuous at x,. Since according to (2) we have u(W) > 0, the set of all
discontinuity points of the function f has a positive Lebesgue measure.
Therefore [1, p. 270] the function fis not Riemann integrable — a contradiction.
This ends the proof.

2. The class of functions satisfying (1)

The question arises how “large” the class H(0, 1) of all functions fe R(0, 1)
is satisfying the condition (1). These functions can be used in the criterion of J.
Horbowicz. The answer to this question is given in Theorem 2.1.

In what follows we shall consider R(0, 1) as a linear normed space with the
sup-norm:

Vi = sup If(].

This space is evidently a Banach space since the convergence in this space
coincides with the uniform convergence which preserves the Riemann integrabi-
lity.
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Theorem 2.1. The set R(0, 1)\H(0, 1) is a nowhere dense set in R(0, 1).
We shall use the following auxiliary result.

Lemma 2.1. The set H(0, 1) is dense in R(0,1).
Proof. Let

K(f,6) = {ge RO, 1): |f— gl < &}
be an arbitrary ball in R(0, 1) (fe R(0, 1), 6§ > 0). It suffices to prove that
(3) K(f, ) nH(O, 1) # 0.

Consider the fact that the sets f~'(&), 0 £ & < & are mutually disjoint and
Lebesgue measurable. Therefore it is impossible for each of these sets to have a
positive measure. Hence there is a §;, 0 < 6, < 6, such that

u(f~'(8)) = 0.
Put g(x) = f(x) — 6, for xe (0, 1). Then evidently we have ge K(f, §) and
g(x) =0 < f(x) = 6.

Hence u(Z(g)) = 0, ge H(0, 1) and so (3) holds.

Proof of Theorem 2.1. Let K(f, n) (fe R(0,1), n > 0) be an arbitrary
ball in R(0, 1). It suffices to prove [3, p. 116, Theorem 8] that there exists a ball
G < K(f, n) such that

“ G N (R0, 1)\H(0, 1)) = 0.

According to Lemma 2.1 we can choose a function ge K(f, n) n H(0, 1).
Further an 7, > 0 can be chosen in such a way that

(5 K(g, m) = K(f, ).

Define the function / in the following way:

h(x) =g(x)+% if g(x) 20,

h(x) = g(x) — % if g(x)<0.

Clearly, h is a bounded function and

(6) Y () = %

xe{0,1)

Denote by C(9) the set of all continuity points of the function ¢. Then we
have’
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(7 C(g) N (0, 1)\Z(g)) = C(h).

Indeed, let x,e C(g) N (<0, 15\ Z(g)). Then g(x,) # 0. Let, e.g., g(x,) > 0. If
x, — x, then on the basis of continuity of g at x, there exists an n, such that for
n > n, we have g(x,) > 0. Thus

h(x,) = g(x,) + —772—' for n > n,.

Since g(x,) — g(x,), we get

Mn%mﬂ&+%=hml

Hence /1 is continuous at x,.

We can similarly show also in the case of g(x;) < 0 that the function # is
continuous at x,. Hence (7) holds.

Since u(Z(g)) =0 and u(C(g)) = 1, according to (7) we get u(C(h)) = 1.
Therefore he R(0, 1),

®) I — gl < 2
and he H(0, 1) (see (6)).

Using (8) it is easy to see that
©) KOu%Qc:K@,m)

According to (5), (9) we get K(h, %) < K(f, n). Further for each we K(h, %)

and each xe {0, 1) we obtain (see (6)):

Mmzwm—wm—mmz%—w—w>%—%=a

Hence w¢ R(0, 1)\H(0, 1). Thus (4) holds if we put G = K<h, %) This ends the

proof.
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OAUH IMPU3BHAK [JI1 PABHOMEPHOI'O PACCIIPEJEJIEHUA
MOCJIEAJOBATEJILHOCTEN U OMNMPEAEJIEHHBIN KJIACC ®VHKLUN
WHTEIrPUPYEMBIX B CMBICJIE PUMAHA

Tibor Salat

Pe3rome

IMycts R(0, 1) 0603HauaeT MPOCTPAHCTBO BeeX PyHKIMM, HHTErPUPYEMBIX B cMbIciie PuMaHa Ha
untepsane <0, 1) ¢ merpuxkoii d(f, g) = sup |f(x) — g(x)|. B paboTe moka3zaHO, YTO MHOXECTBO
0sxs1

Bcex f€ R(0, 1), KOTOpble MOXHO MCTOJIb30BaTh B MPHU3HAKE JJISl PABHOMEPHOIO pacCrpeesieHust

nocieaoBaTeNbHOCTER u3 [2], umeer dopmy R(0, 1)\M, rae M HUrje He TIIOTHOE MHOXECTBO B
R(0, 1).
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