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ON POINTS OF LOWER AND UPPER
QUASI—CONTINUITY OF MULTIVALUED MAPS

JANINA EWERT

A subset A of a topological space X is called [1, 2, 7]:
— semi-open if 4 < Int 4,
— semi-closed if X\A4 is semi-open.

If for some xe X and a semi-open set A = X we have xe 4, we say that 4 is
a semi-neighbourhood of x.

The union of all semi-open sets contained in A is called the semi-interior of
A. We denote it by s-Int A. The intersection of all semi-closed sets containing 4
is called the semi-closure of 4 and is denoted by 4.

In the sequel we will use the following properties of semi-open and semi-
-closed sets.

Lemma 1.
(@) The intersection of an open set and a semi-open set is semi-open.
(b) IntAcsIntdcAcAcA.
() IntAcA.
(d) A point x belongs to Aifandonly if Un A # 0 for every semi-neighbourhood
U of x.
(e) A set A is semi-closed if and only if A = A.
(f) The boundary of a semi-open (semi-closed) set is nowhere dense.
(g) s-Int A\Int 4 is a nowhere dense set.

Proof. Proofs of (a)—(f) are in papers [1, 2, 5, 7, 10]. Now we will show
(g). Let xe B =s-Int A\Int 4 and let U be an open neighbourhood of x. Since
U ns-Int 4 is a non-empty semi-open set, the set V' = Int (U N s-Int A) is non-
-empty. However V < Int A4, so ¥'n B =0 and B is nowhere dense.

Let (Y, d) be a metric space. For any ye Y, 4 < Y and ¢ > 0 we denote

K(y,e) ={xeY: d(x,y) < g},
K(A4,¢e) = U{K(y,€): y € A4}.

Moreover we use the symbol 2 (Y) to denote the class of all non-empty compact
subsets of Y. '
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For any multivalued map F: X - Z(Y) and a set 4 < Y we will write

FH(A) = {xe X: F(x) c 4},
F-(A) ={xeX: F(x)n A # 0}.

A multivalued map F: X - Z(Y) is said to be:

— upper quasi-continuous at a point x,€ X if for each &€ > 0 there exists a
semi-neighbourhood U of x, such that F(x) c K(F(x,), €) for xe U,

— lower quasi-continuous at x, if for each £ > 0 and y € F(x,) there exists a
semi-neighbourhood U of x, such that F(x) n K(y,€) # 0 for xe U.

By E,(F) and E,(F) we denote the set of all points at which F is upper or lower

quasi-continuous respectively. A map F is upper (lower) quasi-continuous if

E/(F)= X (resp. E,(F)=X), [4, 5, 8, 11]. Moreover by C,(F) and C,(F) we

denote the set of all points at which F is upper or lower semicontinuous,

respectively. The symbol Q. is used to denote the set of all positive rational
numbers. S

Using some modification of the Fort method [6] we give the characterization of
the set E,(F) (resp. E,(F)) for upper (lower) quasi-continuous maps.
Theorem 1. Let X be a topological space and let (Y, d) be a metric one. If F:

X - Z(Y) is an upper quasi-continuous multivalued map, then the set X\E,(F) is
of the first category.

Proof. Let N(Fx),€) = inf{n > 1: there exist points y,, ¥,, ...y, such that
F(x) U K(y, €)}. By H(n, ) we denote the set of all points x € X which satisfy
the followmg conditions (1) and (2):

(1) N(F(x),e)=2n

(2) for each £€(0,3¢) and for each semi-neighbourhood U of x there exists
x"e U such that F(x) ¢ K(F(x'),€). '
Let xe X and m = N(F(x), €). Then there exist points y,, ,, ... y,€ Y such that

F(x) = | K(y, €). By the upper quasi-continuity of F there exists a semi-neigh-
i=1
bourhood U of x such that F(x") = () K(y,, €) for x"e U. Hence
i=1
3) for any xe X there exists a semi-neighbourhood U
of x such that N(F(x"), &) < N(F(x),¢) for x’e U.

If N(F(x), €) < n, then according to (3) there exists a semineighbourhood U of
x such that N(Fx'), &) < N(F(x),&) < nfor x’e U. Hence Un H(n, &) = P and it
follows from Lemma 1 (d) that x¢ H(n €). Thus we have shown

() if xe H(n, ¢), then N(F(x),e) = n
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Let xe H(n, €), n = N(F(x), €) and let U be an open neighbourhood of x. Then
we can choose points y,, y,, ..., y,€ Y such that F(x) U K(y, €). The upper

quasi-continuity of F at x implies that there exists a semi-neighbourhood W of
n

x such that F(x") = () K(y,, €) for x" € W. it follows from Lemma 1 that Un W
i=1

is a semi-neighbourhood of x. According to (2) there exists a point x,e Un W

for which F(x) ¢ K(F(x,), 2¢) holds. Let y € F(x)\\K(F(x,), 2¢). Then y e K(y;, &)

for some j<n and it is easy to verify that F(x,)n K(y,¢) =0. Hence

F(x)) € U{K(y; €): i < n, i #j}, which implies N(F(x,), €) < n — 1. Therefore

— by virtue of (4) — we have U ¢ H(n, ). Thus

5) if N(F(x), &) = n, then xeFrH(n,¢).

For any xe H(n, €) we have (FN((x), &) = n + k for some k=0, 1, .... Using

analogous arguments as in the proof of (5) we can prove by the induction with

respect to k that H(n, £) = Fr H(x, €). Since the boundary of semi-closed set is

nowhere dense (Lemma 1), the set H(n, €) is nowhere dense. Take g€ Q ., a point
o 1

x¢ U U H(n, &) and y,€ F(x,). As for some n > 1 we have N(F(xo), 580) =n

ceQ n=1

and xo¢ H (n,%so), there exists a semineighbourhood U of x, and € < g, such

that F(x,) = K(F(x"), &) for x" ¢ U. It implies F(x") N K(yo, &) # Qforx eU,i.e.
F is lower quasi-continuous at x,. Thus we have shown the inclusion

(6) X\E,(F) = kg U. H(n,é).
Since H(n, €) is nowhere dense the set X\ E,(F) is of the first category, which
finishes the proof.

Theorem 2. Let X be a topological space and let Y be a metric one. If Y is
separable, then for each multivalued map F: X - % (Y) the sets E,(F)\ C,(F) and
E\(F)\ C\(F) are of the first category.

Proof. Let {y,: n > 1} be a dense subset of Y. We use the symbol « to
denote the set of all finite one-to-one sequences of natural numbers. Then
a={(m, M -, Mjy): k= 1} Let L, = {y,,k_l, Vngpp oo y,,k'm}. If x,e E,(F)\
\C,(F), then exists e Q, such that x,eInt F*(KFx,),2¢)). Since F(x,) is
compact we can choose L, such that F(x,) < K(L,, €) = K(F(x,),2¢). Hence
xoes-Int F* (KL, €))\Int F*(KL,,¢)). Lemma 1 implies that the set
s-Int F*(K(Ly, €)\ Int F*(K(L,, €)) is nowhere dense. Therefore the conclusion
follows from the inclusion
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e}

EMP\CF) = | U [-Int F*(K(Ly, e))\ Int F* (KL, 9))].

k=1¢eeQ,

The proof of the second part is analogous. It suffices to see

E®\C(® = ) U [sIntF (K 9)\Int F- (Ko, ).

j=1¢eeQ,

Corollary 1 [4]. Let X be a topological space and let Y be a metric one. If Y
is separable and F. X — % (Y) is an upper quasi-continuous map, then X\ C,(F)
and X\ C,(F) are of the first category sets.

Proposition. If a multivalued map F: X — Z(Y) satisfies at a point ye X the
following condition:

% for each & > 0 there exists a semi-neighbourhood
U of x such that F(x) c KF(x'),¢ for x'e U,

then F is lower quasi-continuous at x.

The simple proof is omitted.
The lower quasi-continuity does not imply the property ().

Example 1. Let X =Y be the space of real numbers with the natural
topology. The multivalued map given by the formula:

[1,2) forx <1
F(x) =< [1,3] forx =1
[2,3] forx > 1

is lower quasi-continuous but it does not satisfy (*) at x = 1.
A topological space X is called extremally disconnected if for every open set
U < X the closure U is open in X [3, p. 452].

Lemma 2. [9, p. 966]. A topological space X is extremally disconnected if and
only if the intersection of two semi-open sets is semi-open.

Theorem 3. A4 topological space X is extremally disconnected if and only if for
each metric space Y and for each lower quasi-continuous map F: X — Z(Y) the
condition (x) holds at every point xe X.

Proof. Susppose that X is extremally disconnected and F: X - Z(Y) is a
lower quasi-continuous map. We establish xe X and &£ > 0. Since F(x) is com-

m 1
pact we can choose points y;, ), ..., Y€ F(x) such that F(x) UK (y,,iz;‘).
j=1
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There exist semi-neighbourhoods U, of x such that F(x') n K <yj,; ) # @ for

xeU,j=1,2,...,m Thentheset U = m U, is a semi-neighbourhood of x and

F(x) € K(F(x"), &) for x’e U. Thus (x) i 1s satlsﬁed

Conversely, suppose that X is not extremally disconnected. Then there exists an
open set U = X such that U is not open. Hence § # U # X. Let Y be the space
of real numbers with the natural topology. We define the map F: X - Z(Y) by

[1,2] forxeX\U
F(x)=<11,3] forxeFrU
[2,3] forxelntU.

This map is lower quasi-continuous but is has not the property () at every point
xeFrU.

Theorem 4. Let X be an extremally disconnected space and let Y be a metric
one. If F: X —» Z(Y) is a lower quasi-continuous map, then X\ E,(F) is of the first
category.

Proof. Let M(F(x)),¢) =sup{m > 1: then there exist points y,, y,, ...,
Ym€ F(x) such that d(y,, y)) > efor i,h > m, i # j}. By G(n, &) we denote the set
of all points xe X at which the following conditions (7) and (8) are satisfied:

@) M(F(x),e) = n

@) for each £ €(0, 3¢) and for each semi-neighbourhood
U of x there exists x"e U such that F(x") ¢ K(F(x),€).

Let xe X, ee Q, and m = M(F(x), €). We can choose points y,, y,, ..., ¥,,€ F(x)
and r > 0 such that d(y,,y) > €+ 2r for i,j <m, i # j. The map F is lower
quasi-continuous at x, so there exist semi-neighbourhoods U,, U,, ..., U,, of x
such that F(x") n K(y,, r)i # 0 for x"e U, i < m. Since X is extremally disconnec-

ted, it follows from Lemma 2 that U = ﬂ U, is a semineighbourhood of x.
=1

Moreover f(x") N K(y;,r) # 0 for x"e U, i < m. Hence for yje F(x) n K(y;,r) we
have d(y;, y)) < 2r + d(y,, y;), which implies d(y;,y)) > ¢ for i #j.
Consequently M(F(x"), &) = m. Thus we have shown

©) for each x € X there exists a semi-neighbourhood
U of x such that M(F(x’), &) > M(F(x),¢) for xX’e U.

If for xe X we have M(F(x), €) > n then by (9) there exists a semi-neighbour-
hood U of x such that M(F(x’), &) > n for x’e U. Thus U G(n,€) = 0 and by
virtue of Lemma 1, x¢ G(n, £). Thus we obtain

(10) if xe G(n, ¢), then M(F(x),e) <n
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Now we will show that G(n, ) is nowhere dense. Let x,€ G(n, €), m = M(F(x,). €)
and let U be an open neighbourhood of x,. We can take points y,, y,, ..., y,,€

€ F(x,) and re(O,%s) such that d(y, y) > & + 2r for i,j < m, i # j. The lower

quasi-continuity of F at x,, Theorem 3 and (8) imply the existence of a point
x, € U such that F(x,) = K(F(x,),r) and F(x,) ¢ K(F(x,),2¢€). So we can choose
2y Zyy ...y Z,€ F(x,) such that d(z;,y) < r for i < m, and a point z,, . , € F(x,)\
\ K(F(x,),2¢). Then d(z;,z) > efori,j=1,2,...,m + 1,i # j, and consequently
M(F(x)),e) =>m+ 1. From the last inequality and (10) it follows that
Uc G(n,¢). Thus we have G(n, &) = G(n, &)\ Int G(n, €) = Fr G(n, ¢). Since the
boundary of each semi-closed set is nowhere dense (Lemma 1), the set G(n, ) is

nowhere dense. Let x¢ ( ) () G(n, ). For an established eeQ, we have

n=1eQ,

M (F (x), % 6‘) = n. Then (8) is not satisfied. Hence there exists a semi-neighbour-

hood U of x such that F(x") = K(F(x), €) for x"e U, i.e. the map F is upper
quasi-continuous at x. So we have

(1) X\E(F) = U‘ LQ) G(n,¢),
and the proof is completed.

Results obtained in Theorem 1 and 4 can be extended to the case when Y is
a uniform space (all notions concerning uniform spaces are used as in [3]). The
proofs are similar to the previousones; it suffices to consider a suitable family
of pseudometrics instead of a metric d on X. So we have:

Theorem A. Let X be a topological space and let (Y, U) be a uniform one. If F:
X - Z(Y) is an upper quasi-continuous multivalued map, then X\E\(F) =
U {A,:pe P}, where A, are of the first category sets and card P =w(),
and w(l) is the weight of the uniformity U.

Theorem B. Let x be an extremally disconnected space and let (Y, U) be a
uniform one. If F: X - Z(Y) is a lower quasi-continuous map, then X\ E(F) =
= U{D,: pe P}, where D, are of the first category sets and card P = w(l).
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TOYKHN KBA3U-HEITPEPBIBHOCTU CBEPXY 1 CHU3Y
MHOT'O3HAYHbIX OTOEPAXXEHUI

Janina Ewert
Pe3rome

IMycTts F Gynet kBa3sK-HeNpepLIBHOE CBEPXY (CHH3Y) MHOTrO3HaYHOE 0TOOpakeHHE onpenenén-
HOE Ha TOMOJIOrHYECKOM (IKCTPEMAJILHO HECBA3HBIM) NPOCTPAHCTBE W3 KOMIIAKTHBIMH 3HAYECHU -
MH B paBHOMePHOM npocTpaHctse (y, U). Toraa MHOXeCTBO BCeX TO4EK, B KOTOPBIX F He saBiseTcs
KBa3dH — HENPEPBIBHBIM CHU3Y (CBEPXY) €CThb OOBEAMHEHHME HEKOTOPOTO CeMEHCTBAa MHOXECTB
nepBoi kaTreropun. MOLIHOCTL 3TOro ceMeicTBa paBHa BeCy paBHOMEPHOii cTpykType! W. Bonee
TOrO €CJIH MPOCTPAHCTBO y €CTh cenapabesibHO, TO TAKOH ke CaMblii BUI HMEET MHOXECTBO TOYEK
pa3psiBa oToOpaxenus F.
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