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Math. Slovaca 37, 1987, No. 3, 273—289 

ON THE OSCILLATION OF A CLASS OF NONLINEAR 
DIFFERENTIAL SYSTEMS WITH DEVIATING 

ARGUMENTS 

BOZENA MIHALIKOVA 

1. Introduction 

Much attention has been paid recently to the oscillatory properties of non­
linear functional differential equations with deviating arguments. However, 
most of the published papers dealt with scalar differential equations; com­
paratively little is known about the properties of systems of differential equa­
tions. 

Fundamental results concerning the oscillatory properties of two-dimension­
al systems of differential equations have been obtained by Varech, G r i t s a i , 
Sevelo, K i t a m u r a , K u s a n o . The oscillatory properties of n-dimensional 
systems were studied by F o l t y n s k a , Werbowski and M a r u s i a k . 

The aim of the present paper is to extend certain results from [4, 7, 8] to a 
differential equation system 

iPi(t)(Pi(x](t))y =fi(t,xx(t), ...9xn(t)fxx{Tx{t)9 ...9xn(Tn(t))) i = 1, ..., n (A) 

under the assumption that the following conditions hold: 

(a) />,eC([a;oo),R),p,{t) > Oand •—--•= oo, / = 1,...,/.; ds_ 

PІ(.S) 

(b) ç>,eC(R, R) and <pt(u).u > 0 for u # 0, \q>t(u)\ ^ a,|w|, i = 1, ...,w; 
a, > 0, const. 

(c) feC([a;oo) x R2",/?), i = l , . . . ,n and 

*••"•••••"•••"•••••">- {"oif!:^;;":»!) «* *••»<>; 
(d) TteC([a; oo), R) and lim r,(t) = co, i = 1,...,n. 

reoo 
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The term "solution x(t) = (xi(t), ..., xn(t)) of (A)" will be understood in the 
sequel to refer to a solution of (A) which exists on an interval [Tx:oo) c_ [a; oo) 
and satisfies the condition 

sup] JZ \Xi(t)\\t> T\>0 for every 7 > Tx. 

A solution x(t) of (A) is said to be (weakly) oscillatory if each (at least one) 
of its components has a sequence of zeros tending to oo. 

A solution x(t) of (A) is said to be (weakly) nonoscillatory if each (at least 
one) of its components has a constant sign for sufficiently large values of t. 

2. Oscillatory theorems 

Lemma 1. If x = (xl9 xl9 ..., xn) is a weakly nonoscillatory solution of(A)9 then 
x is nonoscillatory. 

Proof. Suppose that xt(t) is a nonoscillatory component of x(t) = (xx(t)9 

x2(t)9 ..., xn(t)) and xt(t) 7- 0 for t ^ 7 > a. 

1) Let 1 < i ^ n. Owing to (c), (d) we obtain from (A) 

(Pi. x(t)<Pi_ i(x;_,((/)))' # 0 for t > Tx, 

with t, such that r,(t) ^ T for t ^ tx. From (a) and (b) we see that xt_ x(t) is 
monotonic and therefore there exists t2 ^ t, such that x,_,(t) # 0 for t ^ t2. 
This shows that x, _ ,(t) is a nonoscillatory component of x. Analogously it can 
be shown that the components x,_2(t), ..., xi(t) are nonoscillatory. 
2) Let i = l . From the nth equation of (A) we see that 

(pn(t)(pn(x'n(t)))' ± 0 for t > Tx > T 

where Tx is such that r,(t) ^ T for t ^ Tx. The function is monotonic and from 
(a) and (b) it is evident that there exists t3 ^ Tx such that x„(t) 7- 0 for t ^ Ty 

Using the same method as that we used in 1) starting with i = n we prove that 
all the components are nonoscillatory. 

Now let us consider the system (A) assuming that 

f(t9uX9 ...9un9vX9 ...9vn)sgnvt+x ^ ai(t)qi(Vi+x)sgnvi+x ^ 0 / = l , . . . , n - 1 (1) 

fn(t9uX9...9un9vX9...9vn)sngvx ^ an(t)qn(vx)sng\x ^ 0 

where a,eC([a; 00),R)9 a,(t) ^ 0, 1 = 1, . . . ,n , 
alGC(R;R)andq/(t;).t;>0, / = l , . . . , n - 1, qn(v).v < 0, t ; # 0 . 
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Lemma 2. Let the conditions (1) and 

lim inf|«7,(»)l # 0, / = 1, ...,#. - 1 (2) 
|»| — 00 

hold. If 
/ •OO 

afa)dt=cofori=\,...,n-\, (3) Í 
then for a nonoscillatory solution x = (x,, x2, ..., xn) of (A) we have 

1) x,(t).x;(t)>Ofor t^ t0^ a, i= l , . . . ,n ; 
2) there exists ke{l, ...,n} and t0 ^ a swch that for t ^ t0 

xMXi(t) > 0, i = 1, ...,k, x,(t)x,(t) < 0, i = k + 1, . . . ,n; 

3) fhere exists a finite limit lim Pk(t)(pk(x'k(t))) = c*; 
. * - > oo 

4) lim x,(t) = limp/W^XxXt)) = 0, i = k + 1,...,n, k < n; 
t-» 00 t-> 00 

5) lim x,(t) = + oo (— oo), i = 1, ...,k 
i f c , # 0 , k> 1. 

\\mpi(t)(pi(x'i(t)) = + oo ( - oo), i = 1, ...,k - 1 
/ - • 00 

Proof. Let x(t) = (x,(t), ..., xn(t) be a nonoscillatory solution of (A) on 
[a; oo). Without loss of generality we may suppose that xj(t) > 0) for t ^ t0 ^ 
^ a (the proof is analogous if x,(t) < 0). Owing to assumption (d) there exists 
t, ^ to such that jc,(r,(l)) > 0 for f ^ *,. The last equation of (A) leads to the 
inequality 

Pn(t)<pn(x'n(t)) ^ pn(tx)(pn(x'n(tx)), t>tx. (4) 

We shall show that there exists t2 ^ t, such that xn(t) > 0 for t ^ t2. For suppose 
that this were not true. This implies the existence of T ^ t2 such that x'n(T) < 0 
and x;(t) < 0 for t ^ T{. From (4) 

f d 
a„x„(t) ^ a„xn(T) + pn(T)q>n(x'n(T)) \ -?- - - oo for t -» oo , 

and therefore x„(t) -> — oo for t -» oo. By condition (2) for i = n — 1 there must 
exist a constant AT > 0 and T2^ T} such that 

q.-i(^(^(t)))^~^<0fort^r2. 

Using this relation and integrating the (n — l)th equation of (A), we see that 
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A- i (0%- i ( ^ - i (0 )^A- i (2DW.- i ( ^ - . (3D) -^ | a„-i(s)ds-+-oo (5) 
JT2 

for t -» oo , 

and therefore there eixsts T^ T2 such that xn_ ,(t) < 0 for f ^ 7 .̂ From (5), 
integrating and taking into consideration (b), we get 

-,.A.,(o<«,-A-,TO+A-,(J3-.-1«-,(JD)r-4--.-oo 
j 7 3 p „ - l ( 8 ) 

for t -> oo , 

and therefore x„_x(t)-* — oo for t->oo. Analogously we show that 
x,(0 -• — oo, x-(0 < 0 for t-> oo, i = n — 2, ..., 1, which contradicts the 
assumption that x,(t) > 0 for t ^ t0. Therefore x^(t) > 0 for t ^ t2. Two cases 
may now obtain for x„(t): 
i) there exists t3 ^ t2 such that x„(t) > 0, xn(Tn(t)) > 0 for t ^ t3; 

ii) x„(t) < for t ^ t2. 

Suppose that i) obtains. This means that x„(t) is a positive increasing function 
which either has an upper bound or is unbounded as t -+ oo. In the first case 
there exist constant c > 0 and t4 ^ t3 such that 0 < c ^ x„(r„(t)) for t ^ t4 and 
owing to the continuity of q„, this means that 

0 < m ^ qn_ x(xn(Tn(t))) ^M,m,M- const., t ^ t4. (6) 

In the second case because of the condition (2) there exist a constant K > 0 
and t5 > t4 such that 

qn.](xn(Tn(t))^K>0{ovt^t5. (7) 

Integrating the (n — l)st equation of (A) and using (6) and (7), we have 

p„_ x(t)(pn.,(x;_,(0) >pn-i(ts)9n-i(xn-y(t5)) + L an_x(s)ds -> oo 
J / 5 

for t -• oo 

where L is a suitable positive constant. From this inequality we see that 
x„_ i(0 > 0 for t ^ t6 ^ t5 and by suitably transforming and integrating we see 
that xn_,(t) > 0 for t ^ t7 ^ t6 as well. Analogously it can be shown that 
x,(t) > 0, x-(t) > 0 for i = n — 2, ..., 1 and a sufficiently large t. This proves that 
1) holds for i = 1, ..., n and 2) hold for k = n. 

Suppose now that ii) obtains. From (n — l)st equation of (A), 

A - i(0fl«- i(*i-1(0) ^ P „ - i ( ^ - . K - i W ) , / > '2. (8) 
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We shall show that x'„ _,(,) > 0 for t ^ h ^ f2. We suppose that this is not true 
and that there exists tA ^ t3 such that x'„- i(t4) < 0. Then by (7) x'„_ ,(t) < 0 for 
/ ^ /4 and 

f d5 

for t —> oo , 

so that x„ _ x(t) -• — oo for t -• oo. Repeating the procedure used in the first part 
of our proof we arrive at contradiction with the assumption that x,(t) > 0 on 
[t0: oo). Thus x'n_ ,(t) > 0 for t ^ t3 and two cases may obtain for xn_ x(t): 
i,) there exists t4 3* t3 such that xn_ x(t) > 0, xn_ X(TH_ x(t)) > 0 for t ^ t4; 

iij) xn_x(t) < 0 for t ^ t3. 
For i,) we use the same method as for i) to prove that xt{t) > 0, x-(t) > 0 for 

i = 1, ..., n — 1 and t sufficiently large, which is exactly what statements 1) and 
2) of the Lemma state for k = n — 1. 

For ii,) we prove analogously as for ii) that x'n _ 2(t) > 0 for t ^ t4 ^ t3 and that 
the following two possibilities exist for xn _ 2 : 
i2) there exists t5 ^ t4 such that xn_2(t) > 0, xn_2(Tn_2(t)) > 0 for t > t5; 

h2) ** - 2(0 < 0 for t ^ t4. 
The method used in if), ii,) is now used repeatedly to prove statements 1) and 
2) of the Lemma for k = n — 2, ..., 1. 

By hypothesis, x,(t) > 0, xx(Tx(t)) > 0 for t ^ t0 and therefore the function 
Pn(t)<Pn(

x'n(t)) is positive and decreasing and thus has a finite limit. Statement 3) 
holds for k = n. 
If k has the property 2) then pk(t)<Pk(x'k(t)) is a positive decreasing function and 
has a finite limit. If 

\impk(t)(Pk(xk(t))) = Ck>0, 
/ - > 00 

then there exists T ^ t0 sufficiently large and such that 

akPk(t)x'k(t) > Pk(t)<Pk(
x'k(t))) >~ck, 

2 

whence we see by integrating that lim x^(t) = oo. Using (3), (2) and (a) it is easy 
/ - • 00 

to prove from the first k - 1 equations of (A) that lim x((t) = 00 for i = 1, ..., 
/ - » 0 0 

k and lim A(0<P,(*,'(0) = 00 for i = 1,..., k - 1. This proves statement 5) of the 
/ - > 00 

Lemma. 

277 



Statement 4) will be proved by contradiction. Assume that there exists 

je{k + 1, ..., n} such that lim Pj(t)<Pj(xj(t)) = c, > 0. Using the preceding part of 

our proof this leads to lim pk(t)<Pk(xk(t)) = oo which contradicts 3). Analogously 
t-* cc 

assume V . existence ofje{k + 1, ...,«} such that lim xfjt) # 0. Since Xj(t) is a 
t -* cc 

negative increasing function there exist constants cp dj and T sufficiently large 
such that 

cj^xJ(Tj(t))^dj<0, t> T 

and the continuity of q._ j implies that there exist constants m,M such that 

m < q7_ i(x,(r;(t)) ^ M < 0 for t ^ T. 

From the (yr — 1) equation of (A) we have 

Py- i ( 0^y - i ( ^ ;_ i (0 ) ^ Py- i (^9?r- I(AT;_ I ( 7 ^ ) H- Af J ay_ , ( j )ds — — oo 

for t -• oo , 

which again yields a contradiction to 3). This completes the proof of the Lemma. 
Theorem 1. Suppose that, in addition to the assumptions of Lemma 2, 

a„(t)dt=oo (9) 

and 

lim to-(tO|#0, (10) 
|v| -» oo 

then every solution of (A) is oscillatory. 
Proof. Suppose that (A) has a weakly nonoscillatory solution (xi(t), 

...,xn(t)). By Lemma 1 this solution is nonoscillatory. Suppose that x,(t) > 0, 
x\(T\(t)) > 0 for / ^ t, ^ a. By Lemma 2, x,(t) is a positive increasing function 

and there exists lim x,(t) = d} such that either d, < oo or d, = oo. In both cases, 
/ - • X 

owing to (10) and the continuity of qn, there exist a constant L > 0 and T 
sufficiently large so that 

qn(
x\(h(t))) ^ -Lfort^T. 

By Lemma 2, pn(t)<pn(x'„(t)) is a positive decreasing function. Using these proper­
ties, we see after integrating the last equation of (A) that 
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!""< Pn{t)(pn(x'n(t)) -pn(T)q>n&H{T))^ - L | a„(s)ds, 

which contradicts (9). 
R e m a r k 1. Theorem 1 is a generalization of Theorem 2 of [8]. If r,(t) = t 

for i = 1, 2, ..., n, we obtain the results formulated in Theorem 1 of [7] under 
weaker assumptions about f. 

The following example shows that the assumption (10) of Theorem 1 is 
indispensable. 

E x a m p l e 1. The system 

2 

І.v/Лv_ - .-!/• • A *i(Å (/^(O)-_----/ 3(i + /) 1 o 

l+(*,(>3))2 

satisfies all conditions of Theorem 1 except (10), but the system has a nonoscil-
3 1 

latory solution (x,(t), x2(t)) = (t2, t3) for t > 0. 
R e m a r k 2. The assumptions of Theorem 1 are rather strong in the sense 

that the deviating arguments r,(t) have no influence on the oscillatory properties 
of solutions of (A). 

Theorem 2. Suppose that, in addition to (1) and (3), 

lim i n f - ^ # 0 , l i m i n f - ^ # 0 / o r i = 1, . . . , n - 1 (11) 
H-oo v \v\->0 v 

holds. If 
\qn(v)\ ^\qn(u)\ for\v\^\u\ (12) 

and 
/%00 

00 = 

/%00 /%00 /»00 /%OD t /»00 

= a*0>*) 0* + l(l>ifc + l ) 
JT J*k + iWPk +\(Uk+\)Juk+l J*k + 2&k + l ) A + 2ÍW)k + 2) Juk + 2 

- ^ (» ) l „ (c — - „,(»,) — - ... 
J-. \ J«" PÁU,)JT JT PAUJJT 

í Ű*-i(f*-i)df*_,...dм,)|dt>...diъ 

for every e 7* 0 and k = 1, ..., n; then every solution of (A) is oscillatory. 
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P r o o f . Suppose that (A) has a weakly nonoscillatory solution. By 
Lemma 1 it is nonoscillatory; assume that xx(t) > 0 for t ^ t0 ^ a. The first part 
of (11) implies the validity of (2) and therefore by Lemma 2 there exist ke 
e { l , ..\,n} and T0^ t0 such that for t > T0 and i = 1, ..., k all x,(0 are positive 

and increasing and lim x{(t) = oo. Owing to (11) there exist positive constants 
t - > oo 

AT, and T^ T0 such that 

q.(*/+iU + ,(0)) ^ ^ / + i(r, + 1(0) for t^ T, i = 1, ..., k - 1. (14) 

By transforming the first (k — 1) equations of (A) as follows 

ap^i(t) > Pi(t)(Pi(x\(t)) ^ A W P M - O ) + a,(s)q,(x,+ ,(r/+ ,(s)))ds > 
JT 

> J ai(s)qi(xi+](Ti+,(s)))ds>0,t^ T, i = 1, ..., k - 1 

and integrating we obtain 

a;(s)x, + 1(r /+1(s))dsdw, / = 1, . . . , k - 2 (15) 
ff, JTPi(U) ì) т 

4 A - . Ґ 1 Г 
«*-i Jг/?*- i(") Jr 

^ - i W ^ - ^ - ^ — a.-i(s)dsdW. (16) 

Since the kth component of the solution is an increasing function there exists a 
constant dk > 0 such that x*(r*(t)) > 4 for t ^ r. After a transformation of (15), 
(16) we have 

/•' - r"» /•Tl(t'l ) p W 2 /• r2<^2) 

* i ( 0 > * — - - ^(t;,) - — a2(.2) ... 
JTPX(UX)JT JT P2(U2)JT JT 

*Tk_2(vk_2) -«*_, (17) 

.. ' ak-\(vj(-\)dvk_]duk_]... dv2du2dvx dw,, 
JT pk_x(uk_x)JT 

k~ l K 
where c = dk f ] — . 

i = i a, 

By Lemma 2, lim x,(0 = 0, lim A ( 0 ) % - M 0 = 0 for i = * + l , . . . , n; 

therefore the (k + l)st to the nth equation of (A) yield 

Wr,<0)l - * - , - / " ; aMMxl+ ,(T/+ ,(V)))|dt7dM. (18) 
ff(J r/')/),<«) J« 
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Further, owing to (11) there exist constants Mt > 0 and 7J ^ T such that 

1q.{*, + i(r. + i(0))l > Mi\xi+](Ti+](t)))lt^Tu i = k+ 1 »— 1. 

Using this property, we can transform (18) to obtain 

\xk + ](t)\>D _i_r t s _L_r 
% + i ( ^ + i ) 

^ + \(UK + l) J"* +1 Jr* + 2 ^ + OPk + 2 ^ + 2) Juk + 2 
|.oo /-00 (19) 

—— a«(")lqX*i(r,(iO))l dv dun... dvk + lduk+l, 
Jrn(vn_x)Pn(un)Jun 

rr, ~ 1 W Mi 

a n / = A: + i a, 

Now by Lemma 2 there exists a finite limit lim pk(t))(pk(xk(t) = L. Integrating the 
t-+ oo 

kth equation of (A) we have after some manipulations 
\L-pk(Tx)<Pk(x'k(Tx))\>Mk ak(s)\xk + x(Tk + x(s))\ás. (20) 

Using the fact that \qn(v)\ is nondecreasing we substitute (17) into (19). The 
resulting expression is then substitued into (20) and this yields a contradiction 
to (13). 

Corollary 1. If in addition to the assumptions of Theorem 2 with the excep­
tion of the second condition in (11) 

^ ) ^ ^ f o r | M K M , /=! , . . . ,„_, , 
V u 

holds, then every solution of (A) is oscillatory. 
Example 2. The system 

((n'""+ 3 '~')x'lit)) = 2 /"5^(r2(0))5 + x2(h(t))) 

(t"2m)' = -\r\Xl(rm\ t>o 
2 
± 

with the deviating arguments r,(t) = t12, r2(t) = t2 has an nonoscillatory solution 
1 

(x,(t), x2(t)) -= (t4, t2) for t ^ 0 (since for k -= 1 the asumption (13) does not 
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i 
hold), but for the deviating arguments r,(t) = t2, r2(t) = t4 every solution of the 
system is oscillatory. «* 

Example 3. For the system 

all the conditions of Theorem 2 are satisfied and therefore every one of its 
solutions is oscillatory on [n; oo). 

3 _ _ 

(xx(t),x2(t)) = (r sin t, t 2cost) is one such solution. 
We shall now study the behaviour of (A) under the following assumptions: 

/</,«„...,u„,v],...,v„)sgnv i+l >a,(t)gi(ui+i)sgnui+] >-0, i= 1, ..., n - 1 

(21) 
f„(t,ul,...,u„,v],...,v„)sgxxvi ^ g„(t, v,) sgn «, s ,0 , 

where 

a,eC([a;oo),R),a,<0^0, /'= 1 , . . . , « - 1; 

_r,eC(R;R), g,<t;)t; > 0 for t; # 0, i = 1,...,« - 1; 

g„eC([a; oo) x R;R), g_(/, v). v < 0 for v # 0. 

Let /'_e{l, 2, ..., 2/i — 1}, 1 ̂  k <. In — 1 and t, se[a; oo). Define 

l0(t,s) = 30(t,s)= 1 

-j.('.*;.v_>—..V/,) = J J ' i / 4 - f c i ; ) ' , , . , - ...,y,)dx, 

h(',s;yik,...,yi)=\ yi](x)5k_l(t,x;ylk,...,yi2)dx. 

Further let us introduce the following notation 

Rk(t, T) = I 2 n - i ( l . T—. fli, —. «2. •••. . a * - 1 , — , a „ - i , . . . , « _ , — ) 

^ Pi />2 />*-i A, _ V 
1 < k<. n. 

Rk(t,a) = Rk(t) 
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Lemma 3. Suppose that, in addition to (21), 

lim inf \g,(u)\ # for i = 1, ...,n - 1, (22) 
|w|->ao 

and 
/•OO 

a,(t)dt = oo for i = 1, ...,n - 1. (23) r 
Then for any nonoscillatory solution x = (x„ ..., xn) the statements 1) to 5) of 
Lemma 2 hold. 

The proof of the Lemma is analogous to that of Lemma 2. 

Lemma 4. Suppose that, in addition to (21) and (23), 

zM^zMfor\u\^\vl i = 1 #i — 1. (24) 

Then for any nonoscillatory solution x = (x„ ..., *„) of (A) and a < s < t we haue 

ІP,(.)Я(*Í(-)) > П % т l í tø+tø+.(«))! x ł-1«-/+ik+i(*)lJ' 

, / i i M л 
x Jÿ_,(/,и;fl|,—,—,...,-ay)dи, 

\ P2 Pз Л / 

(25) 

/, 1 ^a-l; 

and 

\pk(s)<Pk(x'k(s)) > n tefa+iW í |^.+ , (x;+ l(M))| x 

'-*«. + .I**+i(OIJ* 

x l2{j-k) + Á"^;aj,-, aj_i,..., , aAdu, k ^j^ n - 1 
V Pj Pk + \ ' 

(26) 

where k = 1, ..., n — 1 is determined according to Lemma 3. 
Proof. Let JT= (x„ ..., xn) be a nonoscillatory solution of (A) defined on 

[a; co) and suppose that x,(t) > 0, x^T^t)) > 0 for t ^ t0 ^ a. The condition (24) 
implies the validity of (22). Thus by Lemma 3 there exist T ^ t0 and ke{l,..., n) 
such that x'&t) > 0 for i = 1, ..., n, Xj(t) > 0 forj = 1, ..., k, Xj(t) < 0 forj = -
= k+ l , . . . ,n and t^ T. 

To prove (25), we shall use the monotonicity of the first k components of the 
solution, the relations (21) and (24), the first (k — 1) equations of (A) and 
integration by parts. 
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Suppose that T s$ s < t. Then 

Pi(t)Vi(x\(t)) = Px(s)<Pi(x\(s)) + j (pl(z)q>l(x[(z))y dz > 

> f a,(z)gx(x2(z))dz > *&M f a,(z)x2(z)dz = 
Js X2(S) Js 

g\(x2(s)) [' , 
I x2 

X2(s) Js 

J (Pi(x'2 

= gÁx2(s)) • J,(l, J; a,) + ^̂ ^ ^ | ^(z)J,(t, z; a.)dz ^ 

.g\(x2(s)) | ^,„vT1u/- ř •-.„ .,^-"'~ 2(z))J 1(t^z;ť}' 1)dz, 
a2x2(s) 

which is (25) forj = 1. Integrating the last integral we have 

P.(0Pi(*.(0) ^ i^^P2(s)<P2(x2(s))J2(t,s;a],-) + 
a2x2(5) V /V 

+ ^ ^ v f a2(z)g2(x3(z))J2(t,2;a„-)dz > 
a2x2(s) Js \ p2J 

> ^ - » . *J*m ("fl2(zMz)J2ft,z;a„l)dz. 
tf2x2(8) x3(8) Js \ p2/ 

By the above transformations and (2j-2) integrations we obtain (25). 
To prove (26), we use the last (n — k + 1) equations of (A), the relations (21) 

and (24) and the properties of the last (n — k + 1) components of the solution 
as well as the fact that they are negative increasing functions. 

For T ^ 8 < t we have 

Pk(s)<Pk(x'k(s)) = Pk(0<Pk(x'k(t)) - J (Pk(u)<Pk(xk(u))y du ^ 

> - f dk(u)gk(xk + \(u))du > - &(*' + '('» f ak(u)xk+](u)du = 
Js x*+,(t) J' 

= - gk(xk + ,(0)I,(>, s;ak)+ *'(*» + '('» f <pk + ,(*; +,(,0)1,(11, 5; a,) d* ^ 

<** + ,**+ ,(')•>* 

> gk(Xk * M \ f Pk + ,00 ft+,(4 +,(*)) —^—I,fr, *; ak) du, 
which is (26) forj = k. Again integrating by parts and using the above properties 
(n-l-k) times we obtain (26). 

For x,(t) < 0 the proof is analogous. 
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Theorem 3. Suppose that, in addition to the assumptions of Lemma 4, the 
following conditions hold: 

1) l i m i n f ^ ^ O / o r / = l , . . . , n - 1; 
M-0 u , 

?-^<-^Jl»W,H»li 
l«r w 

3) There exists a function h(t) continuous and differentiable on [a; oo), such that 
0 < h(t) <. r,(t), h'(t) >- 0, lim h(t) = 00. 

If 
/•00 

Rk(h(t))\g„(t, c)\át = coforallcфOandk=\,...,n, (27) í 
then all solutions of (A) are oscillatory. 

Proof. Suppose that (A) has a weakly nonoscillatory solution jr = 
= (x„.. . , x„). By Lemma 1 this solution is nonoscillatory and without loss of 
generality we may assume that x{(t) > 0, xx(h(t)) > 0 for r >- r0 >- a. By 

Lemma 3, lim x,(t) = 0 for i = k + 1, ..., n and by the assumption 1) there 
<-» 00 

exist constants 8t > 0 and T>- tQ such that 

£j(__±!___.^ 5h / s_ j . + ! , . . . , „ _ i > / 5 , T. 
*,+i(0 

Since pn(t)^„(;c^(t)) is decreasing, we have the following relation from (26) for 
j = n-\: 

"" ' 8 ( 1 1 \ 
M*)%(**(*)) > Pn(t)(Pn«(t)) 0 -~- I2 ( n-*)( f " S ' - ' a « - l ' - » „ '«*)» 

< = *a1 + 1 \ />„ P* + i / 
T^s<t. (28) 

Substituting (28) into (25) for s = T,j = k - 1 we have 

PMVI&M) > ap„(t)<p„(x'n(t)) I 1^ ( / ,« ; -p a „ _ „ . . . , — - , a J x 
Jr n ' \ pn pk + i / 

x J2t_3(/,M;a1,—,..., ,aA_,)dM, 
/J*(M) \ />2 A - . ' 

wh«.eo_
,n,_4i___i"n,__., 

/=i aI + 1x1 + 1(T)/ = *a1 + 1 
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and therefore 

x'M > -p„(t)(pn(K(t))—- x 
a, p,(0 

(29) 

Pl Pn pj 
T (t T- X l X \ 

X 1 2 W _ 2 \ *' 1 > a l > ' ""*ak- 1> 5 a « - 1> -">ak> I-

\ ^2 Pn PJ 

Taking t, ^ Tsuch that h(t) ^ Tfor t ^ t„ calculate the following derivative 
using the nth equation of (A), the relation (29) and assumption 2) of the 
theorem: 

[R,(h(t), T)pn(t)<pn(x:(t))xx\h(t))Y ^ 

< [Rk(h(t\ T)\ h\t)pn(t)(pn(x'n(t))x^(h(t)) + 
+ Rk(h(t), T)x^(h(t))gn(t,xx(rx(t))) < 

^ ^x\(h(t))h\t)xx\h(t)) + Rk(h(tl T)gn(t, K).K~e, 
a 

where K = xx(T). 
Integrating the last inequality yields after necessary manipulations 

-K-' f Қ 
Jř, 

к(h(s),T)gn(s,Юds < a x ^ Ш + 
i a(ß- 1) 

+ Rk(h(Ul T)pn(tx)<pn(x^tx))x^(h(tx)). 

The right-hand part of this inequality is a finite positive number. 
Therefore the integral is convergent, which is a contradiction to (27). 

Example 4. The system 
__i 

(t-V,(0)' = 4t~5x2(T2(0) 

( r 3 x 2 ( 0 ) ' = - - ( t 2+t 2y 
4 1 + X,(T,(0) 

1 

with r,(0 = T2(0 = t has a nonoscillatory solution (x,(0» ^(0) = (r\ ^) f°r 

t ^ 0. For T,(0 = t*, r2(t) = f2 every solution is oscillatory. 
The following theorem presents a sufficient condition for the oscillation of all 

solutions of (A) if 0 < P < 1 in condition 2) of Theorem 3. 

Let 

T.(0 = min(T,(0,0 

K(t,T)=\ 
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Px
2j(t, T) = lyit, T;-, a„ - a2,...,-, a,) 

\ P\ Pi Pj J 

P-+ \(t, T) = I v + , (t, T;-, a„ - a2, ...,a,, ) 
v P\ Pi P\+JJ 

P\(t,a) = P[(t),0 ^k ^2n -2. 

Theorem 4. If in addition to the assumptions of Lemma 4 

1) l im in f^# fori = l , . . . ,n-l; 
M->0 u 

2) j ^ < j s ^ / o r M < W f 0 < / - < 1 
M» \vf 

and 

f ( ^ T T ^ T W « c P * - -<TiW»l dt = co /or a// c # 0, A: = 1,...,«.(30) 
J \Pik-i(h(0)J 

Then every solution of (A) is oscillatory. 
Proof . The proof will be indirect. We start by repeating the proof of 

Theorem 3 up to and including the inequality (29). Integrating this inequality 
from T to t ^ T we have 

*i(0 > -Pn(t)(Pn(x'n(tWk(t, T). (31) 
a\ 

By Lemma 3 xx(t) is increasing and p„(t)<pn(x'„(t)) decreasing. Using this, it is 
possible to transform (31) as follows: 

(P„(t)<Pn(x'„(t)))-p > (p„(rXt))<Pn(x'n(rt(t))))-
p > ( 3 2 ) 

5* ̂ ' R f t r . ( 0 , T)*fV.(0) > (£j Rftr.(0, 7>rV>(0), 

where t ^ t, 2s T such that r.(t) ̂  T for f& tx. 
Starting with (25) for j = k — 2, s = T, integrating by parts and using the 

(k — l)th equation of (A) and the monotonicity of xk leads to 

P\(t)9\(x'\(t))>Sk-\(xk(T))x 

' = '«, + . (xi+\(T)) \ Pi pk.\ J 
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Integrating the last inequality from T to t ^ T we have 

*,(') > cP\k_2(t, 7), where c = Sk-^k(T))k^ gl(xi+l(T)) ( J 3 ) 

a, /=i «,+ ,*,-+,(7) 

Using the nth equation of (A), the relations (33) and (32) and condition 2) 
we see that 

[(Pnitrnmyf-y = (i - P)(p„(t)9n(K(t))rp(pn(t)(P„(x'n(t)))' < 
a 

^ 0 - / ^ - J R£U(.*(r.(0, DxrtíM/^i(.,(0)) ^ 

^ ° ~ 4 f ) Rftr-(ř)'̂ (P-*--(T|(/)'7))"/ -̂(ř'cP-*--(r'(/)))|-
Integrating the last inequality yields a contradicition to (30). This completes 

the proof. 
R e m a r k 4. For the case when (A) is equivalent to a differential equation 

with deviating arguments of order 2n the theorem yields a result proved in [5]. 
E x a m p l e 5. If for some ke{\9 ..., n) the assumption (30) is not satisfied, 

then there may exist nonoscillatory solutions of the system. The system 

(-x\(t)y = 3.t~KJ) 
t 

2 
ť t2 

(-*\(t)Y = --xx{f) 

does not satisfy (30) for k = 2 and has a nonoscillatory solution (xi(t),x2(t)) 
= (t\ t2) for / ^ 0. 
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О КОЛЕБЛЕМОСТИ РЕШЕНИЙ НЕЛИНЕЙНЫХ СИСТЕМ 
С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ 

Вогепа М^па1^коVа 

Резюме 

В статье приведены достаточные условия колеблемости решений сыстемы (А). 
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