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ON THE OSCILLATION OF A CLASS OF NONLINEAR
DIFFERENTIAL SYSTEMS WITH DEVIATING
ARGUMENTS

BOZENA MIHALIKOVA

1. Introduction

Much attention has been paid recently to the oscillatory properties of non-
linear functional differential equations with deviating arguments. However,
most of the published papers dealt with scalar differential equations; com-
paratively little is known about the properties of systems of differential equa-
tions.

Fundamental results concerning the oscillatory properties of two-dimension-
al systems of differential equations have been obtained by Varech, Gritsai,
Sevelo, Kitamura, Kusano. The oscillatory properties of n-dimensional
systems were studied by Foltynska, Werbowski and MaruSiak.

The aim of the present paper is to extend certain results from [4, 7, 8] to a
differential equation system

@@ xD)) = fi(t, x\(0), ... %, (0, Xy (1:(D), ., X (7)) i=1,....,n (A)

under the assumption that the following conditions hold:

@ peC(la; ), R), p() > Oand %=oo,i=1,...,n;
AN

(b) @eC(R,R)and g(u).u>0foru#0, |pw)l<aju,i=1,...,n;
a; > 0, const.
(© f,eC(la;0) x R*,R), i=1,...,n and

>0ifi=1,..,n—1
(tuyy sty Uy ooty UY; e > for v,.u; > 0;
f( 1 1 ")’+1{<Olfl=n(vn+|=vl) i %

(d) r1,eC(a;o),R)and limz(f) = c0,i=1,...,n.
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The term “‘solution x(¢) = (x,(?), ..., x,(#)) of (A)” will be understood in the
sequel to refer to a solution of (A) which exists on an interval [T,:00) < [a; o0)
and satisfies the condition

sup{i [x(O);t > T} >0 forevery T>T,.

A solution x(¢) of (A) is said to be (weakly) oscillatory if each (at least one)
of its components has a sequence of zeros tending to oo.

A solution x(#) of (A) is said to be (weakly) nonoscillatory if each (at least
one) of its components has a constant sign for sufficiently large values of ¢.

2. Oscillatory theorems

Lemma 1. If x = (x,, x, ..., X,) is a weakly nonoscillatory solution of (A), then
X is nonoscillatory.

Proof. Suppose that x,(¢) is a nonoscillatory component of x(¢) = (x,(¢),
x3(2)y .oy x,(1)) and x () #0fort > T>a.

1) Let 1 <i < n. Owing to (c), (d) we obtain from (A)
@i 1 (O@i 1 (x{_ (1)) #0 for t > T,

with ¢, such that 7(¢f) > T for ¢ > ¢,. From (a) and (b) we see that x,_,(¢) is
monotonic and therefore there exists ¢, > ¢, such that x;_,(f) # 0 for ¢t > ¢,
This shows that x;_,(¢) is a nonoscillatory component of x. Analogously it can
be shown that the components x;_,(¢), ..., x,(t) are nonoscillatory.

2) Let i = 1. From the nth equation of (A) we see that

DO W)Y #0for 1> T > T

where 7] is such that 7,(¢) > T for ¢ > T,. The function is monotonic and from
(a) and (b) it is evident that there exists ¢; > T, such that x,(¢) # 0 for t > T;.
Using the same method as that we used in 1) starting with i = n we prove that
all the components are nonoscillatory.

Now let us consider the system (A) assuming that

j;(t’ ul! cens Upy Uls ...,U")Sgn vi+1 2 ai(t)qi(vi+|)sgnvi+| 2 0 i= 1, R (R 1 (1)
./;l(t’ U .oy um vl’ ...,U,,) Sﬂg vl S an(t)qn(vl) Sngvl < 0

where a,€C([a; ©),R), a(t) =0,i=1,...,n,
a,eC(R;R)and g¢;(v).v>0,i=1,...,.n—1,¢,).v<0,v#0.
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I.emma 2. Let the conditions (1) and

lllim inflg(v) #0,i=1,...,n—1 2)
hold. If
I a(t)ydt=o fori=1,...,n—1, 3)

then for a nonoscillatory solution x = (x;, x,, ..., x,) of (A) we have

1) x,(6).x() >0 fort = ty=a,i=1,..,n;
2) there exists ke{l,...,n} and t, > a such that for t > t,
xDx(H)>0,i=1,.. .k, x\(O)x(t) <0, i=k+1,...,n;

3) there exists a finite limit lim p, ()@, (x(9)) = ¢;
t— 0
4) lim x,(t) = lim p,()@(x(1)) =0, i=k + 1,...,n, k <n;
t— o t—=

5) limx(t) = + 0 (— ), i=1,...,k
e ifc,#0,k>1.

lim p()e(x/(1)) = + 0 (— ), i=1,....k—1

11— ©

Proof. Let x(¢) = (x,(?), ..., x,(t) be a nonoscillatory solution of (A) on
[a; 0). Without loss of generality we may suppose that x,(f) > 0) for ¢t > ¢, >
= a (the proof is analogous if x,(¢) < 0). Owing to assumption (d) there exists
t, = t, such that x;(7,(1)) > 0 for ¢ > ¢t,. The last equation of (A) leads to the
inequality

Pr(.(x,(D) < pa(1)@,(x,(1)), £ 2> 1. “4)

We shall show that there exists ¢, = ¢, such that x,(¢) > 0 for ¢t > t,. For suppose
that this were not true. This implies the existence of T > ¢, such that x,(7) <0
and x,(¢) < 0 for t > T;. From (4)

ds
Pi(s)

— — oo for t - 0,

t
ax,(1) < a,x,(T) + p(T)p.(x,(T)) L
and therefore x,(f) » — oo for t - 0. By condition (2) for i = n — 1 there must
exist a constant K > 0 and 7, > 7T, such that
qn - l(xn(tn(t))) < —-K< 0 for ¢ = ];

Using this relation and integrating the (n — 1)th equation of (A), we see that
275



Pu 1 (00, _1(x, - 1(0) < P (D)@, _1(x, - (L)) — KL a,_(s)ds - — o0 )
for t - o0,

and therefore there eixsts 7; > T; such that x, _,(f) < 0 for t > T,. From (5),
integrating and taking into consideration (b), we get

ds

T3pn-ls
fort - o0,

a, X, l(t) a, X, ](T)+pn—l(T)¢n—l(x-—l(T))

- —

and therefore x,_,(f) > — oo for ¢— 0. Analogously we show that
x(t)—» — o0, x() <0 for t—> o0, i=n—2, ..., 1, which contradicts the
assumption that x,(¢#) > 0 for ¢ > ¢,. Therefore x,(t) > 0 for t > t,. Two cases
may now obtain for x,():

i) there exists t; > ¢, such that x,(¢) > 0, x,(7,()) > 0 for t > t;;

i) x,(1) < fort>1t,.

Suppose that i) obtains. This means that x,(¢) is a positive increasing function
which either has an upper bound or is unbounded as ¢ — co. In the first case
there exist constant ¢ > 0 and ¢, > ¢, such that 0 < ¢ < x,(z,(¢)) for t > ¢, and
owing to the continuity of ¢,, this means that

O<m<gq,_(x,(t,() < M, m,M — const., t > t,. 6)

In the second case because of the condition (2) there exist a constant K > 0
and ¢; > ¢, such that

Gu_1(x,(7,() = K>0fort>1t. 7N

Integrating the (n — 1)st equation of (A) and using (6) and (7), we have

P 100, (X7 1 (1) = o1 (1)@, _ 1 (X, 1(85)) + LJ{ a,_(s)ds — oo
for t -

where L is a suitable positive constant. From this inequality we see that
x,_,(f) >0 for t > t, > t; and by suitably transforming and integrating we see
that x,_,(¢) > 0 for t > t; > t, as well. Analogously it can be shown that
x(t)>0,x/(t) >0fori=n-—2, ..., 1and a sufficiently large ¢. This proves that
1) holds for i =1, ..., n and 2) hold for k = n.

Suppose now that ii) obtains. From (n — 1)st equation of (A),

P 1(0@n 107 _ (D) < o 1(8) @ (X7 1 (1)), £ 2 1. ®)
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We shall show that x, _,(#) > 0 for ¢ > t; = t,. We suppose that this is not true
and that there exists #, = t, such that x; _(f)) < 0. Then by (7) x,_,(#) < 0 for
t>=1t,and

t

@, X, () S @1 X, 1(t)) + Pp_ (1) Pn 1 (X7, 1(10)) ds

‘4pn— |(S)
for t » o0,

- —

so that x, _,(f) » — oo for t > 0. Repeating the procedure used in the first part
of our proof we arrive at contradiction with the assumption that x,(f) > 0 on
[ty: ©). Thus x, _,(¢) > 0 for ¢ > t; and two cases may obtain for x, _,(?):

i,) there exists ¢, > t; such that x,_,(#) > 0, x, _ ,(7,_,(9)) > 0 for ¢t > ¢,;

i) x,_,(t) <O0fort>1t.

For 1,) we use the same method as for i) to prove that x(r) > 0, x/(¢) > 0 for
i=1,...,n— 1and ¢ sufficiently large, which is exactly what statements 1) and
2) of the Lemma state for k =n — 1.

For ii,) we prove analogously as for ii) that x, _,(¢) > O for ¢ > ¢, > t; and that
the following two possibilities exist for x, _,:

i,) there exists ¢, > ¢, such that x,_,(#) > 0, x, _(7,_5(#)) > 0 for ¢t > ¢;;

i) x,_,(t)<O0fort>=1t,.

The method used in i,), ii,) is now used repeatedly to prove statements 1) and
2) of the Lemma fork=n-—2, ..., 1.

By hypothesis, x,(f) > 0, x,(7;()) > 0 for ¢ > ¢, and therefore the functlon
P.(D)@,(x,(0) is positive and decreasing and thus has a finite limit. Statement 3)
holds for k = n.

If k has the property 2) then p,(9)@.(x;(?)) is a positive decreasing function and
has a finite limit. If

rlirgpk(t)(pk(xllc(l))) =¢>0,
then there exists T > ¢, sufficiently large and such that

ap()x(1) = p(DP(x(1))) = > ck,

whence we see by integrating that llim x;(#) = c0. Using (3), (2) and (a) it is easy
to prove from the first k — 1 equations of (A) that lim x,(f) = o0 fori=1, ...,
-

k and lim p()9,(x{(t)) = oo fori =1, ..., k — 1. This proves statement 5) of the
t— o0

Lemma.

2717



Statement 4) will be proved by contradiction. Assume that there exists

jet{k + 1, ..., n} such that lim p(0)@/(x/(t)) = ¢; > 0. Using the preceding part of

our proof this leads to lim p,;(£)@(x;(£)) = co which contradicts 3). Analogously

assume t' _ existence of je{k + 1, ..., n} such that lim x;(f) # 0. Since x;(f) is a
t—oc

negative increasing function there exist constants c;, d; and T sufficiently large
such that

< x(1())<d<0,t>T
and the continuity of ¢,_, implies that there exist constants m, M such that
m<qg_(x(g()<M<Ofore>T.

From the (j — 1) equation of (A) we have

1

P10 (x;_ (1) < p (Do, _ 1 (x]_ (1)) + Mf a;_(s)ds - — oo

T
fort— o0,

which again yields a contradiction to 3). This completes the proof of the Lemma.
Theorem 1. Suppose that, in addition to the assumptions of Lemma 2,

J ‘a,,(t)dt = o 9
and

lim |,)] #0, (10)

then every solution of (A) is oscillatory.

Proof. Suppose that (A) has a weakly nonoscillatory solution (x,(¢),
...;X,(1)). By Lemma 1 this solution is nonoscillatory. Suppose that x,(¢) > 0,
x,(7,(¢)) > 0 for t > t, > a. By Lemma 2, x,(¢) is a positive increasing function
and there exists lim x,(f) = d, such that either d, < o0 or d, = co0. In both cases,

t—
owing to (10) and the continuity of g,, there exist a constant L >0 and T
sufficiently large so that

g (x (ry () < —Lfort>T.

By Lemma 2, p,(¢)@,(x,(?)) is a positive decreasing function. Using these proper-
ties, we see after integrating the last equation of (A) that
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Pa(0)0,(x,(1) — (D) @,(x(T)) < — LL a,(s)ds,

which contradicts (9).

Remark 1. Theorem 1 is a generalization of Theorem 2 of [8]. If 7,(f) = ¢
fori=1, 2, ..., n, we obtain the results formulated in Theorem 1 of [7] under
weaker assumptions about f,.

The following example shows that the assumption (10) of Theorem 1 is
indispensable. .

Example 1. The system

Exi(0) = gr“(xz(t‘))’
1 5 1
5 -= 3
A —éz (1 + n—3E)

I+ (x(P))
satisfies all conditions of Theorem 1 except (10), but the system has a nonoscil-
31
latory solution (x,(?), x,(t)) = (¢4, £) for t > 0.
Remark 2. The assumptions of Theorem 1 are rather strong in the sense
that the deviating arguments 7,(¢) have no influence on the oscillatory properties
of solutions of (A).

Theorem 2. Suppose that, in addition to (1) and (3),

|}1m qu’( v) # 0, Illlmoqu’( v) #0fori=1,..,n—1 (11)
v — 00 v v =
holds. If

19.(0)] < 1g.()| for [v] < |u] - (12
and

1 o0 o0 1 (oo}
00 = J a,(vy) ——_‘j A1 (V61 1) —_f
%100 Pry 1 (U 1) e s T+ 204 0 Pie 4 2t 4 2) Sk 12

© 7y(v) uy () U
1 1
J; a0, <CJ; pi(uy) J; a(oy) fr DPa(ur) .L

n

Ug |
..L a (0 _)dog_y...duy)|dv...dy,

Sfor every ¢ # 0 and k = 1, ..., n; then every solution of (A) is oscillatory.
279



Proof. Suppose that (A) has a weakly nonoscillatory solution. By
Lemma 1 it is nonoscillatory; assume that x,(f) > 0 for ¢ > ¢, > a. The first part
of (11) implies the validity of (2) and therefore by Lemma 2 there exist ke
e{l,...,n} and T > ¢, such that for t > Ty and i = 1, ..., k all x,(¢) are positive

and increasing and lim x,(f) = co. Owing to (11) there exist positive constants
t—+xC
K. and T > T, such that
gi(x;i 1(1,1(0) = Kxi (i () for e > T, i=1, .., k—1. (14)

By transforming the first (k — 1) equations of (A) as follows

t

apx(t) = p(Ne(xi(0) = p(D)e.(x(T)) + J a/(5)q(x; + 1 (7 1(5))) ds >

T
>4 J a(s)gi(x; 4 (74 1(5)))ds > 0,t>T,i=1,..,k—1
T .

and integrating we obtain

t

x> % —I—J a(s)x;, (5 () dsdu, i=1, .., k=2  (15)

a; Jr pi(u)JT
dK, (' “

X1 () == *“j ! Jak_l(s)dsdu. (16)
@y ITp_(u)Jr

Since the kth component of the solution is an increasing function there exists a
constant d, > 0 such that x,(7.(¢)) > d, fort > T. After a transformation of (15),
(16) we have

! b 1y uy 1,(vy)
1 = AN |
x(1) CLP|(“|) EACON o ) o) |

T — ot~ 2) 1 U~ (17)
..J‘ ——J ak_|(vk..])dvk_lduk_]...dvzduzdvldu],
T Pi—1 (1) JT

k=1
K
i=1q

where ¢ = d,

By Lemma 2, lim x,(¢) =0, 'linlp,(t))¢i(x{(t) =0 for i=k+1, ..., n;

11— X

therefore the (k + 1)st to the nth equation of (A) yield

x 1 x
(o)l > 5 J o N (@)l dodu, (8)
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Further, owing to (11) there exist constants M; > 0 and 7; > T such that
g% (T O = Mlx (i O, e 2 T, i=k+1,...,n—1.

Using this property, we can transform (18) to obtain

ka+l(t)|>DJ __J a1V 4 1) ——f
C Pro (e g 1) Jus %y 2040 Pr 4 20Uk 4 2) S s
- 1 o (19)
f f aO)lg (e H@)I dvdu, ... do, ,  du
rn(')"—l)pn(un Un
n—1 M
t=>2T,D= —1— —L,
a"i=k+] ai

Now by Lemma 2 there exists a finite limit lim p,(¢))@.(xi(¢) = L. Integrating the
t— :

kth equation of (A) we have after some manipulations

IL — p(T)@(xi(T))] = M, J; a ()i 4 1(Te 11 (5)) ds . (20)
1
Using the fact that |g,(v)| is nondecreasing we substitute (17) into (19). The
resulting expression is then substitued into (20) and this yields a contradiction
to (13).
Corollary 1. If in addition to the assumptions of Theorem 2 with the excep-
tion of the second condition in (11)

900 5 4 gor 1 < o, i =1, — 1
v

b

holds, then every solution of (A) is oscillatory.
Example 2. The system

3 e 1-DNLY .3 3
((Ez w1 )x.(r)) = 2 (el D)) + 2D

N[ =

(20 = — %r T ONEY

12 1,(1) = * has an nonoscillatory solution

with the deviating arguments 7,(¢) = ¢
1
(x,(0), x0)) = (£, ) for t > 0 (since for k = 1 the asumption (13) does not

281



1
hold), but for the deviating arguments 7,(¢) = £, 7,(f) = t* every solution of the
system is oscillatory. -

Example 3. For the system
1

== e-Ye0) (o3

all the conditions of Theorem 2 are satisfied and therefore every one of its
solutions is oscillatory on [r; c0).
3 _1
(x,(1), x:(1)) = (£°sint, t *cost) is one such solution.
We shall now study the behaviour of (A) under the following assumptions:

N

Sty .. w0, ., 0,) 8800, = alt)g () sgny; ., =0, i=1,...,n—1

@n

fituyy eyt vy,...,0,) 8800, < g, (t,v)sgno, <0,
where
a;eC([a; 0),R),a(t) =20,i=1,...,n—1;
g€CR;R), g(v)v>0forv#0,i=1,...,n—1;
g2,€C([a; ©0) x R;R), g, (t,v).v <O forv#0.
Let ;e{l,2,...,2n— 1}, 1 <k <2n—1and ¢, se[a; ). Define
In(t,5) = Jo(t,5) = 1

t
Ik(I’S;yi‘} ---,J’i,) = J~ yik(x)lk— l(x9S;yik_,’ ""yil)dx’

t

(6,855 s ¥i) = J Vi e x5y, .0 ) dx.
Further let us introduce the following notation

1 1 1 1 1
Rk(t, T) = IZn—l<t’ T)—a Ay, —, Ayy ooy ™, Ay _ s s an—la ‘--5ak)_)
P P> Pk -1 Pn P

Ri(t,a) = Ry()
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Lemma 3. Suppose that, in addition to (21),
|llim inflgu)| # fori=1,...,n—-1, (22)

and
J‘ a()dt=o0 fori=1,...,n—1. (23)

Then for any nonoscillatory solution x = (x,, ..., X,) the statements 1) to 5) of
Lemma 2 hold.

The proof of the Lemma is analogous to that of Lemma 2.

Lemma 4. Suppose that, in addition to (21) and (23),

80

g—-'(ng()r |u|<|vl,i=1,...,n—l. (24)
u v

Then for any nonoscillatory solution x = (x,, ..., x,) of (A) and a < s < t we have

POk = [1 '—gf-’f——(“-‘l"—f 1941 )] X

i=|a,-+]lx,~+](5)| (25)
1 1 1 .
xJy_ | busa,—,—,...,—q du, 1 <j<g<k-1;
P2 D3 Pj
and
’ / lxi t ‘ ’
PoLis) > [] 'i(—(—”—'f 19415 )] X
i=k @ |x; 4 (D] s
. . ' (26)
X Loty 41 (u,s;aj,—, A ak>du, k<jsn-1,
Dj Pr+1

where k = 1, ..., n — 1 is determined according to Lemma 3.

Proof. Let x = (x,, ..., X,) be a nonoscillatory solution of (A) defined on
[a; 00) and suppose that x,(f) > 0, x,(7,(¢)) > O for ¢ > ¢, > a. The condition (24)
implies the validity of (22). Thus by Lemma 3 there exist T > t,and ke{l, ..., n}
such that x{f) >0 fori=1,...,n x() >0forj=1, ..., k, x(t) <0 for j = -
=k+1,..,nand t>T.

To prove (25), we shall use the monotonicity of the first k components of the
solution, the relations (21) and (24), the first (k — 1) equations of (A) and
integration by parts.
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Suppose that T'< s < . Then

p(0oi(xi(0) = pi(s)pu(xi(9) + f @/(2ei(xi(2))) dz >

f (g (x(2) dz > & '("(2(;” a,(2)xfz) dz =

st 5

= gn(s). (153 a) + g—("T(;ﬂ XNtz a)dz >

xZ S s
8O | o (1, a0 dz,
az.xZ R) A}
which is (25) for j = 1. Integrating the last integral we have
1
P00 (xi(0)) > B ”pz(sm(xz(s»h(t siant)+
@, s) D>

n gi1(x,(5) ay(2)g>(x3(2))], (t, z; a,,l> dz >
a,X,(8) Vs D2

> 81(xx(5))  g:(x5(s)) ay(2)x,(2)], (t z;a,, )dz
a,x5(5) x;(s) Js ) 2}
By the above transformations and (2j-2) integrations we obtain (25).

To prove (26), we use the last (n — k + 1) equations of (A), the relations (21)
and (24) and the properties of the last (n — k + 1) components of the solution
as well as the fact that they are negative increasing functions.

For T < s < t we have

P8 P(xi(5)) = (D)@ (xi(1)) — J. P (o (xi(w)) du >

&0 [

Xe () s a(u)x; , (u)du =

= —J a (g (x, 4 (W) du = —

= — g (O s;a) + B O) [ )5 0 du >
Q4 1 X 4 I(t) s

I(u,s;a,)du,

M))— pk + I(u)¢k+ |(x[: + l(u))
ak+lxk+]() Pres

which is (26) for j = k. Again integrating by parts and using the above properties
(n-1-k) times we obtain (26).
For x,(¢) < 0 the proof is analogous.
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Theorem 3. Suppose that, in addition to the assumptions of Lemma 4, the
following conditions hold:

I =0

1) lim infg‘—(“—);r&Ofori= l,...,n—1;
T u

2) [ AUL)IY:(UL))] forlul <Jol, B> 1:
|l |vf?
3) There exists a function h(f) continuous and differentiable on [a; ), such that

0 < h(f) < (1), (1) = 0, lim h(r) = ..

If

J R (A())Igt,0)ldt =0 forallc #0 andk =1, ...n, (27

then all solutions of (A) are oscillatory.

Proof. Suppose that (A) has a weakly nonoscillatory solution x=
= (x, ..., x,). By Lemma 1 this solution is nonoscillatory and without loss of
generality we may assume that x,(f) > 0, x,(h(t)) >0 for t > t, > a. By
Lemma 3, lim x(¢f) =0 for i =k + 1, ..., n and by the assumption 1) there

t—

exist constants &; > 0 and T > ¢, such that
gdxi 4 1(1)
X 41(1)

Since p,(1)@.(x.(1)) is decreasing, we have the following relation from (26) for
j=n-—1:

>8,i=k+1,...n—1,t>T.

n—1
PiS)xi(s)) = P, (x,(0) [] 5

=k,

I (t S; I a ! a)
n— 99y T s lp_ 150y s Yk |
=0o\""p, Pt

T<s<t. (28)
Substituting (28) into (25) fors=T,j=k — 1 we have

! 1 1
t xi(t Za,,t "x,,,t '[I n— (tau;—,an—ls'"s_’ ak>x
P(D@(x(() = ap,(D@,(x(1) Y 0 e

1 1 1
X J2k..3 tLu,a,—,..., s Ay du,
pr(u) P2 P

"1:1' 4%+ (7)) "l—’l‘ 5

i=1 @ X (T)i=k @y

where a =

b
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and therefore

x(t) > —“—pn(z)q»"(x;(t»i) x

a, P

! 1 (29)
X Izn‘z(t, T;al,p—, ...,ak_l,p—,a"_ 19 eoes ak, p_)-
2 n

Taking ¢, = T such that A(¢) > T for ¢ > t,, calculate the following derivative

using the nth equation of (A), the relation (29) and assumption 2) of the
theorem:

[Ru(h(t), Dp D@D PO <
< [Ry(A(), T B (p D@ (x(O)x7 (h(D)) +
+ Ry(h(0), T)x (g (t, x,(w(1)) <
< %x;(h(z»h'(oxrﬂ(h(t» + Ry(h(), Tg,(1, K) . K*,

where K = x(T).
Integrating the last inequality yields after necessary manipulations

] 18
- K-"L Ry(h(s), Dgils, K ds < a.xj—.o';(f—(—’;gl +

+ Ry (h(1)), Dp, (1)@, (8 )xi A(h(2))) .

The right-hand part of this inequality is a finite positive number.
Therefore the integral is convergent, which is a contradiction to (27).

Example 4. The system
-1
(7 2xi(1)) = 4t *xy((D))
49 _»

=3(AY = ___Z 2 2 xi(‘tl(t))
(17°x5(0) 4(1 +t )_l ()

1
with 7,(f) = 7,(t) = t has a nonoscillatory solution (x,(2), x,(#)) = (¢, #) for
1

t>0. For 7(f) = &, o,(1) = £ every solution is oscillatory.
The following theorem presents a sufficient condition for the oscillation of all

solutions of (A) if 0 < f < 1 in condition 2) of Theorem 3.
Let

7.(f) = min(7,(¢), 1)
P, T) =1
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1 1 1
P;J(t, T) = Izj(t, T)_y al’ T aZa cesy Ty aj)
P P> Pj

1 1 1
P;j+l(t’].)= IZj+|(t’ T;"“, a], - 02,...,aj, >

P P> Pr4j
Pi(t,a) =Py(1), 0 <k <2n-—2.

Theorem 4. If in addition to the assumptions of Lemma 4

1) limin
lu| -0

fg—‘(-u—);é fori=1,...,n—1;
u

2) lga(2, )l < lgx(t, v) Sorlul < v, 0<B<1
|uf? |vf?

and
®( Rz Y ,
J (PL: < (t))) lg.(t, Py _(n()))Idt = o for all ¢ # 0, k = 1,...,n.(30)

Then every solution of (A) is oscillatory.

Proof. The proof will be indirect. We start by repeating the proof of
Theorem 3 up to and including the inequality (29). Integrating this inequality
from T to ¢t > T we have

x(0) = aﬁp"(t)wn(x;u»Rk(t, 7). G1)
1

By Lemma 3 x,(¢) is increasing and p,(#)@,(x,(¢)) decreasing. Using this, it is
possible to transform (31) as follows:

PO > PP P )
B B
> (ﬂ) R (.00, TIxi ) > (ﬁ) RE(5.(1), T A (1)

Q a

where ¢ > t, > T such that 7,(t) > T for t > ¢,.
Starting with (25) for j = k — 2, s = T, integrating by parts and using the
(k — 1)th equation of (A) and the monotonicity of x; leads to

PO@(x](1) = 8- 1(x(T)) x
T _8xi(D) (,T.ai s )
xi='ai+l(xi+l(T)) *o\” IPz “ ,pk_,’aknl '
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Integrating the last inequality from T to ¢ > T we have

_ 8k- 1(x(T)) kl-_]z gi{x; (7)) . (33)

x,(t) = cP _,(t, T), where ¢ =
Q =10 1%, 4(T)

Using the nth equation of (A), the relations (33) and (32) and condition 2)
we see that
[@AD@x () A = (1 = PP @(x,() AP DPu(x(1))) <
a

B
<l - ﬁ)(—) RE(2,(1(5.00), TIxi )il xi(5(1) <

a;

B
<(- m@) R0, TP o(5i(0), T)g.(t, Pl (5.

a,

Integrating the last inequality yields a contradicition to (30). This completes

the proof.
Remark 4. For the case when (A) is equivalent to a differential equation

with deviating arguments of order 2n the theorem yields a result proved in [35].
Example 5. If for some ke{l, ..., n} the assumption (30) is not satisfied,
then there may exist nonoscillatory solutions of the system. The system

_2 1
3x,(8)

Exiy =31
t

| N 2 .
(Fxl(t)) = _Fxl(t)

does not satisfy (30) for k£ = 2 and has a nonoscillatory solution (x,(?), x,(?)) =
= (£, ) fort>0.
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