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EXISTENCE AND UNIQUENESS OF SOLUTIONS OF
QUASILINEAR HYPERBOLIC SYSTEMS OF PARTIAL
DIFFERENTIAL-FUNCTIONAL EQUATIONS

JAN TURO

1. Introduction

In the present paper we take into consideration the following Schauder
canonic form of quasilinear hyperbolic systems of differential-functional equa-
tions

3 Ay, 3. 2059, (V02 (x, )z, )0 +

+ ki] 0u(x, ¥, z(x, ¥), (V?2) (x, ) 0z)(x, p)/Oy] =

= fi(x, y, z(x, »), (VO2)(x, »)), (x,y)eD,=1I,x R™, i=1, ..., n,

where I, =0, a], a=0, y=[y, ..., VWER", m=2 1, z(x, y) = [z,(x, }), ...,
- Za(x, ), and (V¥2) (x, y) = [(VP2) (x, ), ..., (FP2) (x, p)), k= 1,2, 3, are
operatortors of the Volterra type.
For matrices B=1[b)], C=[c¢], i, j=1, ..., n, we define BxC=d, d=
=[d,, ..., d]" where d;= ) b,c;, i =1, ..., n, and T means transposition of a
j=1 '

vector or matrix.
We can write such systems in the matrix form

A(x, 3, 2(x, y), (V02) (x, y)02(x, y)/Ox + A(x, y, 2(x, »), (VV2) (x, ) *
*[0(x, ¥, 2(x, ), (V2) (x, )0z (x, y)/0y]" = (1)
= f(x, y, 2(x, ), (V2)(x, y)) _
where 4 =[4,], i, j=1, ..., n, 8z/0x = [0z, /0x, ..., Ox, ..., 0z,,/0x]", @ = [0u],

i=1,..,n k=1, .., m 0z0y =[0z;/0y], i=1, ..., m, j=1, ..., n, and
=1, ... £

In this paper we consider the existence and uniqueness of a local generalized
solution (in the sense ‘“‘almost everywhere”’) of the Cauchy problem obtained by
adding to systems (1) the following initial condition
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2(0,y) = 0(y), yeR" 2)

where ¢ = [¢,, ..., ¢,] is a given function.

Quasilinear hyperbolic systems in the “second canonic” form which have
been considered by L. Cesari [5], P. Bassanini [1—3], and M. Cin-
quini-Cibrario [7], are the special cases (4, ¢ and f do not depend on the
" last variable) of systems (1).

Systems of differential equations with a retarded argument [10—11], and a
few kinds of integrodifferential systems (cf. for instance [4]) can be obtained
from systems (1) by specializing the operators V® (see Section 4).

System (1) is a generalization of the systems considered in [12] where the
matrix function 4 does not depend on the last variable.

Classical solutions (belonging to C') of nonlinear and quasilinear hyperbolic
systems with a retarded argument were discussed by Z. Kamont [8—9].

The method used in the present paper is based on the Banach fixed point
theorem and it is close to that used in [5].

2. Bicharacteristics

Let |y|,, = max [y and |z|, = max |z]|, denote the norms of y in R™ and z
1<k<sm 1<i<n

in R", respectively. We denote by |(x, y)|,,,, = max(|x|, |y|,) the norm of
(x, )in R"*.IfD=[d}), i=1,..,nj=1, .., m,is anxm matrix, then
D, =[d,, ..., d,,). If D an nx n matrix, then |D|| = max Y |d;|. We shall use

I<i< nji=1
the symbol € to denote the interval [—Q, 2]" < R", 2> 0.
Let us denote by # the class of all continuous functions ¢: R™ — R", such

that, for all y, ye R™, we have

leWl, < @, 1) — @O, < Aly — Jls

where o, 0 < w < 2, and A > 0 are given constants.

We denote by K the set of all continuous functions z: D, - R", such that
lz(x, Y. < £, (x, y)eD,.

For every pe # let us consider the set K, of all functions z € K satisfying the
following conditions:

@) z(0, y) = o(»), yeR™;

(ii) there are constants P, Q = 0, such that, for all (x, y), (X, y)e D,, we have

IZ(X, y) - Z(.X-f, .)7)|n < Plx - )E' + Qly _lea
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where the constants P and Q will be defined by (4). Here, K, is the closed
(convex) subset of the Banach space (4(D,) N £ (D,))" with norm

lzl.= sup (%, Yl
(x yeD,

We shall denote by K, the set of all functions z: D, — R" satisfying the

following conditions:
(i) z(-, y): I, > R" is measurable for every ye R™;

(@ii) z(x, -): R™ - R"is continuous for a.e. xel,;

(iii) |z(x, Y)l, < 2, (x, y)eD,.

Assumption H,;. Suppose that

1° VYK, -K VY K,>K,k=23,j=1,..1

2° thereare constantsp(") g,k =1,2,3,j=1,...,]such that, forall ze K,
we have

[P (O < PPz + 4 (9D & 1 < pPla(x, ]+ 4,
k=23 j=1,..1 ae. xel,
where
ﬂ:z('):ﬂ — Sup IZ(x, .V) - Z(x, y)ln [[Z(x, -)]] — Sup IZ(X, y) - Z(x, y)ln

b

< & 9ED, (X, ¥) — (Fy P s »yeR™ [y = Plm

xel,, and q, is a given positive constant;
3° there are constants M >0, k=1, 2, 3, j=1, ..., /, such that, for all
z, ZeK,, ye R™, and a.e. xel,, we have

(K92 (x, ») = 9D (x5, DL < MPlz =2l k=1,23,j=1 .1

where ||z]|, = sup |z(x, p)l,, Do = I x R™.

Remark 1. It follows from 3° of H, that ¥/®, k=1, 2,3,j=1, ..., |,
satisfy the following Volterra condition: if z, Ze K, and z(t, y) = Z(t, y) for tGI
y€R™, then (V¥2)(x, y) = (©2)(x, y), k=1, 2 3,j=1,.... 1L

Assumption H,. Suppose that

1° the matrix function (-, y, z, U) = [x(-, y, 2z, U)]: [,, > R, i=1, ..., n,
k =1, ..., m, is measurable for every (y, z, U)e D = R™ x 2x &', where U =

= [ul’ sy u[];
° o(x, -): D— R™ is continuous for a.e. erao;

3° there is a function /: I, > R, =[0, +0), /e Z,[0, 4], and a constant

b > 0, such that, for all (y, z, U), (5, z, O)eD, i=1, ..., n, a.e. x€l,, we have
|Qi(x’ Ys 2z, U)‘m s b’
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— - - [ -
|Qi(x’ Y, Z, U) - Qi(x5 ys Z_a U)lm < l(X) I:Iy - ylm + |Z - z‘n + Z ‘u/ - ujln:I’

Jj=1
where U = [,

We shall use I?O’ tlz;];ienote the set of all continuous vector functions 4: A,
= I,xI,x R™ — R™ satisfying the following conditions
h(x, x, y) =0, (x, y)eD,,
(S, x, y) = h(&, x, Y)I, < bIE — &,
1h(S, x, ¥) — h(&, x, P < 51y — Fl,

for all (&, x, ), (& x, ¥), (& x, P)€A4,, and some constant 5, 0 < 5 < 1.
Let us consider the set K defined by

KO = {g g(és X, }’) =)y + 11(59 X, )’), (éa X, y)EAas ]16120}'

Consequently, for all (&, x, y), (£, x, /)€ 4,, and ge K,, we have
1g(& x, ¥) — 8(& X, D < (L + )|y — .

Note that K, is a closed (convex) subset of the Banach space (4(4,) N
N .(4,))" with norm

o= _sup h(Z X, -

S X 1)E

For further properties of 4 and g we refer to [5—6].
Let us define the following constants

! !
p= Z (pj“)P + ‘]j“)), Q(k) = Zl (pj(k)Q + qj(k))’
j=1 j

P=1+P+p’ Q-(k)=1+Q+Q(k)a k=1,293

Lemma 1. If Assumptions H, and H, are satisfied and a, 0 < a < a,, is suf-

ficiently small such that L,(1 + s) Q) < s, ihen jg)r every fixed ze K,, and for
each i, i=1, ..., n, the transformation T : K, — K, defined by

(T'h) (&, x, ) = —J o1, g(t, x, y), 2(t, (1, x, y)), (VP2) (1, g(t, x, y))) dt,

>

X

(& x,y)€A,, i=1, ..., n, has a unique fixed point h;[z] € K,. Furthermore, for all
z, ze K, we have

lg,lz] — g2l = A2, < Lo[1 + M®) exp(L,Qp) |2 — ],
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where g;[z] (&, x, y) = (2] (&, x, y) + y. It means that z — h[z] (z > glz]) is a
continuous map of K, into Ky (K,— K,), i=1, ..., n.

Proof. Note that, for every he K,, and i, i = 1, ..., n, the function Tk is
obviously continuous, and that

(T'h) (x, x, ) =0, (x,y)eD,,
(Th) (&, x, y) — (TR (&, x, Y)l,, < bIE = &,

(Th) (&, x, y) — (TR (&, X, Pl <

L (D) Qg (t, x, y) — gt X, P, de| <

<La(l_|'_‘s‘)Q_(Z)Iy-.}-JlmSsly_.}jlmi i=1,'-'5 h.

Hence we conclude that T;'i belongs to K,.
In order to prove that T is a contraction we introduce norm

'[ [(¢) dt
5

j (1) dt|:| J (1) exp [/1
4 14

Ol — Al s%@ Wh—Rloy i=1,.n.

] Ih(E %, P, 3)

} dr

IAlly = sup exp [—1

with 1 > Q.
Now, we have

J:x I(s) ds

ITh — TR, < sup exp [—l

Hence and by the Banach fixed point theorem it follows that, for every ze K,
and i, i = 1, ..., n, the transformation T has a unique fixed point 4,[z] € K,,.

Let us prove that z — h[z] is a continuous map. Indeed, for any two z, Ze K|,
and corresponding A, A;, or fixed points h; = T'h;, h; = T'h;, and for & > x, we
have

4
Ihi(g’ X, J’) - h—:(g’ X, Y)Im < J l(t) Q—(Z)lhi(ta X, J’) - ﬁi(ta X, J’)lm dt +
+L(1+M|z-zZ|, i=1,..,n
Hence and by Gronwall’s inequality we have

(&, x, y) = hi(&, X, )l < Lo(1 + M) exp(L, Q) |1z — 2|,
By the definition of norm | 4|, we get

I — Ally < L1 + M®) exp(L,Qp) Iz = Zl,, i=1, ..., n.

If £ < x, by introducing a new variable 7, where £ = 2x — 1, we obtain the
same estimate as above. This ends the proof.
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Remark 2. By introducing norm (3) in K, we can improve the estimate
of the slab width a (by which the existence and the uniqueness are proved)
(cf. [5, 1, 10)]).

Remark 3. Note that, for each i, i =1, ..., n, the function 4,[z] of the
variables (£, x, y) is absolutly continuous in x for every (£, y). Indeed, for i€ K,
and any two (&, x, ), (&, X, y)eA,, for £ > x, we have

13
Ihi(€9 X, y) - hi(g’ -fa J’)|m < blx - -fl +J [(t) Q-(Z)lhi(ti X, y) - hi(t’ )E, y)lm dts

i=1, ..., n. Hence and by Gronwall’s inequality we have

|h;(E, x, y) — hi(&, X, Y)|.. < b exp (LaQ(z)) [x — x].

For £ < x, similarly as in the proof of Lemma 1, we get by change of the variable
the same estimate.

3. Lemmas and the main result

Assumption H,. Suppose that

1° A =[A4,]: I, xD— R™, i, j=1, ..., n, is continuous;

2° det A(x, y, z, U) 2 » > 0 in [, x D, for some constant x;

3° there are constants H > 0, C > 0, such that, for all (x, y, z, U), (%, 7,
z, O)el, x D, we have

IA4(x, y, z, U)l| < H,
”A(x’ Y, Z, U) - A(i’ .}79 Z-, U)” <

!

Jj=1

Since det A(x, y, z, U) 2 » > 0 in [, x D, the relations of Hj, yield analogous

relations for the inverse matrix 4~'. Thus, there are constants H” and C’, such
that, for all (x, y, z, U), (%, y, Z, U)eIaD x D, we have

147'(x, y, z, Il < H',
”A_](.X, Y, Z, U) - A_l(i’ .)7’ Z_, 0)” <
/
< c’ l:lx—-f|+|y—)7|m+|z_z_|n+ z |uj—ﬁj|n]'
j=1
Assumption H,. Suppose that

1° f(-, y, z, U): I, = R" is measurable for every (y, z, U)e D;
2° f(x, -): D - R" is continuous for a.e. xel, ;
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3° there is a constant N > 0 and a function /,: [, - R, L€ Z,[0, a,] such
that, for all (y, z, U), (7, Z, U)eD, a.e. in 1,,, we have

f(x, ¥, 2, U)l, < N,
!
Sx, , 2, U) = fix, 3, 2, O)l, < h(x) [Iy — Pz =2+ Yy — a,.|,,];
j=1

4° the vector function ¢: R™ — R" belongs to #.
For every fixed ze K, and corresponding g; = g;[z]€ Ky, i = 1, ..., n we con-
sider now the transformation F defined by
(F2) (x, y) = () + A7'(x, y, z(x, ), (VP2) (x, y))-
[A'(x, ) + A(x, p) + A(x, y)]
where A = [AY, ..., A k=1, 2,3,

X

Al(x, y) = J flt, g1, x, ), 2(¢, g(t, x, ), (VO2) (1, g(t, x, y))) d,

0
AY(x, y) = A(0, g(0, x, y), z(0, g(0, x, ), (V2)(0, g(0, x, ))) *
* [(p(g(os X, y)) - (p(g(xs X, ,V))], :

A(x, y) = J; % [, g@, x, y), 2(8, g(t, x, ¥), VO2) (¢, g(t, x, Y))I*

*[Z(t, g(ta X, y)) - (p(g(x’ X, y))] dta
and

[, g(t, x, y), 2(8, g(1, x, ), (VO2) (1, g(t, x, ) =
=[h(t &t x, p), 28, &1, %, ), (VO (@, 810 X, ), -
oo oty 841, x, ), 2(8, 8,(8, X, ), (VO2) (1, ga(8, %, YD),
A1, g(t, x, y), 2(1, g(t, x, »)), VO2) (1, 81, x, ) =
= [4,(t, g(t, x, ), 2(t, g(t, x, »)), VO) (¢, &(t, x, Y], i, j=1, ..., m,
(p(g(O, X, y)) = [(pi(gj(oa X, y))]’ Z(t, g(’s X, )’)) = [zi(t’ gj(t’ X, y))],
i,j=1,..,n
Lemma 2. Let Assumptions H—H, hold. Then for sufficiently small a, 0 <
< a < ay, the transformation F maps K, into itself.
Proof. Let us denote by
Z([, gi(’a X, J’)) - q’(gi(x’ X y)) =
= [zl(t9 gi(ts xs y)) - (P](t, gi(xa x, J’)), EREE] Z,,(t, gi(ts xa J/)) - wn(gi(xs x, y))]T -
the vector of the ith column of the matrix z(t, g, x, y)) — o(g(x, x, ).
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By applying the Chain Rule Differentiation Lemma (4.ii) of [6] we have
(cf. [SD

0

% A, g(1, x, y), z(t, g(t, x, ), (VV2) (1, g(1, x, ) H dr <

< aC(P + bQ,),

%Z(t’ gi(ta xa J’)) <P+ Qb,

n

lz(¢, gi(t, x, y)) — o(gi(x, x, Y)), < a(P+ Qb), (1, x,y)eA,, i=1,..,n,

and hence
|A'(x, )|, < Na,

|4Cx, y)la < 1400, g(0, x, y), 2(0, g(0, x, )), (V"2)(0, (0, x, Y)II-
- max (g0, x, y)) — ¢()l, < HAba,

I<i<n

I d
|A3(x’ y)ln < f o A(t’ g(t’ X, J/),
o Il dt

- max |z(t, g(, X, y)) = @(&i(%, X, YDl < C(P + b0y (P + Qb) a’.
Thus
(FDy(x, ., <o+hSa<o+ (2—-o0)=

provided a is assumed sufficiently small in order that H'Sa < 2 — o, where
S=N+ HAb + C(P + bQ,)) (P + Qb)a.

For any two points (x, y), (X, )€ D,, we see that the difference (Fz) (x, y) —
— (Fz)(x, y) can be written as the sum of the terms

(F2)(x, y) — (F2) (X, )) = 0(») — 0(9) + & + 6, + 6, + &,
where
=[47'(x, y, 2(x, y), VYD) (x, y)) — AT, 3, 2(%, ), (VV2) (%, 7))]-
[A'(x, y) + A(x, y) + A(x, y)],

S = AT\, 3, 2(%, ), VO2) (%, P [A(x, y) — AF D) k=1,2,3,

and estimate below one by one:
18l, < aC’PS|x — x| + aC’ Q1) S|y = Flm>
6ils < H'[L1,03yb exp (L, Q) + NlIx — x| + H' Ly, Q5 (1 + )|y — Flm>
|8,], < H'A[CQ5ba + H] exp (L, Q) |x — X| +
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+ H'A[CO,(1 + )ba + H2 + )|y — P>
18], < H’Ca{2Q-(l)b(P + Qb) exp (L, Q-(z)) +
+ (P + bQ(l)) [P+ Qb(1 + exp (LaQ-(Z))]} lx — x| +
+ H'Ca[2Q0(1 + 5) (P + Qb) + (P + b01) (A + Q(1 + sy — V-
Combining the previous estimates we have
(F2) (x, y) — (F2) (%, §)|, < [H'N + HH'Ab exp (L, Q) +
+ 0,L,, + 0ya]|x — X| + [A + HH'AQ + 5) 4+ 6, Ly, + G,a)ly — Plu>
where _ _
0, = H'Q(s)b eXp (LaQ(Z))9
0, = C'S + H'Cb exp(L,00) [0 3bA + 20, (P + Qb)) +
H'C(P + b0 ) [P + Qb(1 + exp (L, Qo))
o = H’Q-(s)(l + 3),
G, =C'QuS + H'COy) (1 + 5)(Ab + 2(P + Qb) +
+ H'C(P + bQy) (A + Q(1 + ).
Let us choose constants P and Q such that
P> H'N+ HH Ab exp(L,0p), Q> A(l + HH'(2 + 5)). 4)
Suppose that a is sufficiently small so that
oL, + c,a<P— (H'N+ HH Ab exp(L,0)),
6,L,+6a<Q—A(l+ HH' 2+ 5)).
Then, for all (x, y), (X, )€ D,, we have
I(F2) (x, y) — (F2) (%, P)l, < Plx — X + Qly — -
This completes the proof.

Lemma 3. If Assumptions H—H, are satisfied, then for sufficiently small a,
0 < a < ay, the transformation F: K,— K, is a contraction.
Proof. We first prove the following estimate

|Fz — Fz|l,<[1 + 2HH' + H'C(P + b0y al | — ¢ll, + 6lz — Zll. (5)
where
§=[C'01+MD)S+ HAb + H'C(1 + MDY P + 2H'C(P + Qb) +
+ C(P +bQy)a+ H'L,+ {H Qs + M®) + H[C( Oy + M) ba +
+2H]A + 2H'C(P + Qb) Q) + MP)a + C(P + b0y Qa}-
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L, (1 + M®) exp(L,0),
and [l¢|, = sup lo()l,-
yER™

Let ¢, ¢ be any two elements of #, z, 7 any two elements K, and K,
respectively, and let g = g[z], & = g[Z] be the corresponding elements in K. Then
we can derive

(F2)(x, y) — (FD) (x, ) = 00) — 00) + & + & + & + &,

where

& = [A_l(x9 s z(x, y)’ (V(l)z) (x9 y)) - A_l(xa ) Z-(x’ y)’ (V“)E) (X, y))]
'[Al(x’ Y) + Az(x’ y) + A3(X, y)]a

&=A"'(x, y, Z(x, y), V") (x, Y [A(x, y) = H(x, p)), k=1,2,3,

and
&0l < aC’(1 + MD) S|z — z],,

el < H'Ly () + MO)(1 + MP) L, exp(L, Q) + 11|z — 2,

led, < 2HH'| 9 — G|, + H'[C(Oy) + M©) ba + 2H].
-A(L+ MO L, exp (L0, + CAba} |z — 2,

l&sl, < H'Ca(P + b0 o — ¢ll, + H{C(1 + M™) Pa +
+2C[(Quy + M) (1 + MP) L, exp(L,0) + 1](P + Qb)a +
+ aC(P + bQ_(l))(l + M(z)) L, exp (LaQ_(Z))) lz — Z|l,.

Here A%, k =1, 2, 3, can be obtained from A%, k = 1, 2, 3, by replacing ¢, z
and g with ¢, Z and g, respectively.

Thus, combining the estimates above, we get estimate (5).

Now we shall take a sufficiently small so that § < k < 1. Then from (5), for
fixed pe # and for every pair z, Ze K, corresponding g, g€ K,, we find

IFz — Fzll, < klz — 2],

where k < 1. Thus, the transformation F is a contraction.

Theorem. If Assumptions H—H, are satisfied then for a sufficiently small,
0 < a < ay, there is a vector function z: D, — R", ze K, which satisfies (1) a.e. in
D, and (2) everywhere in R™. Furthemore, z is unique in the class K, and depends
continuously on @.

Proof. From Lemmas 2 and 3 and by the Banach fixed point theorem it
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follows that there exists a unique fixed point ze K, Fz =z, such that the
following integral equations hold:

gi(é’ X, )’) =)y - (7;1 i)(g’ X, y)’ (é’ X, y)EAa’ i=1,..,n,

z(x, y)=(Fz)(x, ,V)» (X, y)eDa'

We can show similarly as in [5] (see also [11]) that the fixed point z = z[¢] is
the (unique in the class K) solution of the Cauchy problem (1), (2).

It remains to prove that z{¢p] depends continuously on ¢. Indeed, if ¢, ¢ ¢
and z = z[¢], Z = z[@], then from (5) we have

Iz = 2, = llz[¢] — z[@ll < (1 — &)~'[1 + 2HH' + H'C(P + bQy)al llp — @ll.-

The Theorem is thereby proved.

4. Examples. We list below a few particular cases of systems (1) which
can be derived from (1) be specializing the operators V®, k =1, 2, 3.

(i) Let

(92) (x, y) = (z° ) (x, y) (6)

where (z0a®) (x, y) =[(zoa)(x, y), ..., (zo @) (x, )], (zoa®) (x, y) =
=z2(a(x, »)), ¢x, y) =[x, »), &%, Y, dOx, y) =[gP(x, y), ...,
o @x, M, k=1,2,3,j=1, ..., I. Then problem (1), (2) reduces to the
Cauchy problem for quasiliniear hyperbolic systems of partial differential equa-
tions with a retarded argument (cf. [11])

¥ Ay(x, 3. 2(x, ), (2o a) (x, ») [az,-(x, »)fox +

+ kgl Qik(x, Ys Z(X, )’), (zo a(Z)) (x’ Y)) azj(x’ y)/ayk] =

=f;’(x9 Y 2(x, }’), (zo a(S)) (x’ y)), i=1,..,n, (x’ y)EDw
z(0, ) = 0(»),  yeR™

Let us suppose that

1° g I, x R" > I, x R™, j = 1, ..., I, are continuous, a{(x, y) < x (x, y)€
el,xR", j=1, ..., I, and there constants ¢ > 0, such that, for all (x, y),
(%, p)el, x R™, we have

lgV(x, ¥) — &%, Dy < VX ¥) = (% Pl 1

2° a®¥(-, y): I > I,xR", j=1, ..., I, k=2, 3, are measurable for every
YER™, aP(x, y) < x, (x, »el, xR", k=2,3,j=1, .., I, and there are
constants ¢/ > 0, such that, for all y, e R™, a.e. xel,, we have
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‘a'(k)(x9 Y) - a'(k)(x’ .}7)|m+1 = C(k)ly _.}l”ﬂ i= 2 3 -] = l 1

Then Assumption H, is satisfied for the operators ¥ defined by (6) with
p=cD, g =0, p® =c® ¢¥ =0, k=2, 3, and MO=1,i=1, 2, 3,
j=1, .., l

(i) As a particular case of (1), (2) we get the initial problem for systems of
partial integrodifferential equations if we put

(k)
Y (x,»)
VO =| Kt x )z 1) ds de ()
[?,» (x,»)

where KM, k=1, 2, 3,j=1, ..., [, are n x n matrices.

Let us assume that

1° g, 1 I, x R™ - I, x R™ are continuous, BR(x, ) < X, ¥(x, ¥) < X
(x, y)el, x R'" and there are constants dV, d > 0, such that, for all (x, ),
(%, ») e, x R™, we have

1BV, ¥) — BOGE, Pl 1 < O, ) — (& DT
YO, ») = 7OF, Plpsr < AN ) = E P =101
2° B9, »), (-, ) : 1, = I, x R™ are measurable, BR(x,») < x, (%, ) <
<x,(x,y)el, xR", k=2,3,j=1, ..., ], and there are constants d®,d"* >0,
such that, for all y, je R™, a.e. xel,, we have
1B9(x, y) — B, Plmsr < dPly — A",
1700, ) = 700 Pl @Ry =70 k=23, j=1,.., 1

3° there are constants e{® > 0, such that, for every (x, y) € I,,x R™, we have
m

H YO, y) — B, M <e®,  k=1,2,3,j=1,..,1;

4° the matrix functions K\'(-, x, ): I, ><R"‘—>R"2 K®(-5 y): I, x R™ %
x1, — R", are measurable for every (x, y)e[,,oxR’" k=23,j=1,...,1 and
there are constants ¢ > 0, r(", r2 > 0, such that, for all (x, y), (%, Y)EI X R",
(s, t, x)eloxR'"xI,,o, we have
IK®G, ¢, x, p)l <@, k=1,2,3,j=1,..,1
1KV, 1, x, y) ~ KV, t, % DI < 1Pl(x, y) = (5, Pl s,
IIK;‘([)(Sa t x, J’) - I(;'(i)(s’ t X, .}7)" < rj(l)ly ‘flms i= 2’ 39 ‘]= 1’ e L
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Then Assumption H, is satisfied for the operators V' defined by (7) with
(k) =0, (k) = Q{e“"r"‘) (k)[(d(k))mH + (c-i'"‘))’"“’ l]} dnd M(k) = e(k)c(k) k =
—1231—1 lprov1dede""c“‘)<lk—123/—1 , 1.

(iii) Let(Vj“"z)(x,y)—j KOy — 0)z(x, 1) dt,k = 1,2,3,j=1,.... . Then

systems (1) are systems of integrodifferential equations of which the particular
case (I =1, A(x, y, z, u) = A(x, y, 2), o(x, y, z, u) = 3(x, y, z) and f(x, y, z, u) =
= f(x, y, z) + u) were considered by P. Bassanini, M. C. Salvatori [4].
(iv) We denote by 4,, the set of all elements y = (g, 4, ..., ,), such that
wi=0o0rp=1fori=0,1,...,mand | < |yl =y + ... + p,. It is easy to see
that the number of elements of 4,,is equal to 2" *' — 1. Let N, = {i: y; = 1}. For
(s, t)e D, we define p-(s, t) = (oS, i 11, ..., Hnt,) (We shall often write u(s, ¢)).
Let 1 —pu=0—py, 1—p, .., 1—p,) and (1 —p)(s, )= (1 — s,
a—wu)ty, ..., 1 — u,t,). Suppose that
ds dt,»l ...dt,-k if 0eN,, 1i,.., €N,
dt4 dy, - dry if 0EN,, piy,...,keN, k=1,..,.m

and B, v$): D, — R™, where
(5) (5) () — (/) (5)
B = By - Bii)s 73 = (Yorig> ++> Vi)

0<i0<l',...<l'kSm, i(), il’ ey ikeN, k=1 N UN S=1, 2, 3

,udsdtz{

We define the operators V¥ in the following way

7 »)

(V92) (x, y) = J z(u(s, ) + (1 — @) (x, y)) pu ds de.

B x. )

Here j' 4 ds dr is the |u|-dimensional integral with respect to the variabless,
tiy.on t; if0€EN,, i, ..., i€ N, and it is the integral with respect to ¢, , ..., ¢,
1 k 0 k

if 0EN,,.

Now we consider the Cauchy problem (1), (2) for integrodifferential systems
with V¥z = (V(S) , %5 (0 1 , %5 Vl 0.1,.., 0% =ee V(l(s) 1,075 W(gf)o, 1. D2 seos

o V10,07 o I/(](,)O,..,, )Z) s=1,2, 3.

We introduce the following assumptions

1° B0, ¥iy: 1, X R™ = R, p€ A,,, are continuous, ), (x, y) < X, 7)o (%, ) <

<x, (% y)el x R™, and B, y), ¥O(> ¥): I, » R, s=2, 3, ue A4,, are
measurable, ,B(F)O(x VS X ¥e(x )< x,5=2,3, (x, el xR™;

2° there are constants dfy), di) > 0, such that, for all (x, y), (%, el xR",
we have
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1B (x, ¥) = By (%, PN < diBICx, y) — (% Pty o
175305, ) = 73,5, P < ANk, ) = & Pt
1S, (x, ¥) — B, (x, P < dS) |y — UM,
75,06 ) — ¥, DI <dBly — M, s=2.3 =L ... m;

3° there are constants e(}) > 0, such that, for every (X, y) € [, X R™, we have

l—[N |}/((j§,\x, y) [3((3/('){’ y)l e((;;, s = 1’ 2’ 3
G

Then Assumption H, is satisfied for the operators V,* defined by (8) with
pY —+e(‘j,;, q){," = Q)™ + dPH], and MO =el}, s=1, 2, 3, (here /=
=2"t —1).
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CYIIECTBOBAHUE U EJUHCTBEHHOCTH PEMIEHUI KBA3UJIMHENHBIX
TMNEPBOJIMYECKUX CUCTEM NUPPEPEHLHUAJIBHO-®YVHKIMOHAJIBHBIX
YPABHEHUI C YACTHBIMU MPOU3BOJHLIMU

Jan Turo

Pe3ome

B pa6GoTe moka3biBaeTCs TEOpEMa O CyLLIECTBOBAHMH, EIUHCTBEHHOCTH H HENPEPLIBHOM 3aBHCH-
MOCTH O0OOLIEHHBbIX pEelIEeHHii (B CMbIC/Ie BCIOJ «MIOYTH BCIOAY») OT HAa4YaJIbHBIX JAHHBIX 33Ja4H
Koy nns kBa3swinHeHBIX runepbonuueckux cucteM audpdepeHmanbHO-GYKIHOHATBHLIX YPaB-
HEHMH C 4YaCTHBIMH NPOM3BOAHBIMM NEPBOTO NMOPSIKA.
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