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Math. Slovaca 37, 1987, No. 4, 407—416 

UNIFIED POLYNOMIALS FOR CONGRUENCE 
PRINCIPALITY 

JAROMIR DUDA 

Varieties having Principal Compact Congruences (briefly PCC varietis) were 
independently studied in papers [2] and [15]. Varieties with Principal Compact 
Blocks (PCS varieties, for short) and varieties with Principal Compactly 
Generated Congruences (so called PCGC varieties) were investigated in a later 
paper [4]. While the aim of [2] and [15] is to prove that PCC varieties form a 
Marcev class we state in [4] that PCC varieties, PCB varieties, and PCGC 
varieties are definable by suitable polynomial pairs. Congruence distributive 
varieties having the Principal Intersection Property (briefly the PIP) were al­
ready characterized by a pair of so-called intersection polynomials in the well-
known paper [1]. The aim of the present note is to show that any of the 
mentioned polynomial pairs arises from one unified polynomial whenever some 
additional condition is assumed. For varieties of rings having the PIP a more 
detailed description is achieved. 

In the sequel the description of finitely generated congruences will be needed. 
From [2] and [13] we quote. 

Lemma 1. Let Vbe a congruence permutable variety, x9 y9 a]9 bl9 ..., an9 bne 
eAeV. Then 

(i) 0«a ! , Z?,>, ..., <a„, bny) = P«a,, b,>, ..., <a„, bny) (the symbol on the 
right-hand side denotes the compatible reflexive binary relation generated 
by pairs <a,, Z>,>, ..., <a,,, bnyeAxA); 

(ii) (x9yye0(aX9b{y9 ..., <an9bny)iffx = a(a]9 ...9an)9y = a(bl9 ...9bn)for 
some n-ary algebraic function a over A. 

The concept of a tolerance, see [3], enables to generalize permutable varieties 
to Principal Tolerance Trivial varieties (recall that a variety is PTT whenever 
0(a9 b) is equal to the principal tolerance T(a9 b) for any a9 beAeV9 see [3] 
again). Principal congruences on algebras form PTT varieties have the following 
simple description: 

Lemma 2. Let Vbe a PTT variety, x9y9a9beAeV. Then <x, yy e 0(a9 b) iff 
x = P(a9 b)9 y = P(b9 a) for some binary algebraic function P over A. 
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Now we shall turn to the varieties cited in the introduction. Apparently the 
congruence blocks on an algebra form an algebraic lattice. Finitely generated 
blocks are exactly the compact elements of this lattice and so they are named 
compact blocks in this paper. 

Theorem 1. Let V be a variety. The following conditions are equivalent: 
(1) V is a permutable variety having PCB (= Principal Compact Blocks); 
(2) There exists a quinary polynomial r and quaternary polynomials f, g such 

that 
y = f(r(x, y, x, y, z), x, y, z), 
x = f(r(y, z, x, y, z), x, y, z), 
x = g(r(x, y, x, y, z), x, y, z), 
z = g(r(y,z, x, y, z), x, y, z), 
•\> — * m I wV, J\i, •A ' , J*, "^) 

hold in V; 
(3) V is a congruence permutablevariety having a quinary idempotent polyno­

mial r such that 

r(x, y, x, y, z) = r(y, z, x, y, z) implies x = y = z. 

Proof. (1)=>(2). Let A = Fv(x, y, z) be the free algebra over three 
generators x, y, and z in V. By hypothesis the congruence block [x, y, z] = 
= [a, b] for some a, be A. Since [x, y, z] = [x] 0((x, y>, <y, z » and [a, b] = 
= [a] 0(a, b), we have <a, b}e <9«x, y>, <>>, z » = R((x, y}, <y, z » and so 

a = r(x, y, x, y, z), 
b = r(y, z, x, y, z) 

for some quinary polynomial r, see Lemma 1. Further (y, x}, <x, z> e 0(a, b) = 
= R(a, b) yield 

y = f(r(x, y, x, y, z), x, y, z), 
x = f(r(y, z, x, y, z), x, y, z), 
x = g(r(x, y, x, y, z), x, y, z), 
z = 9(r(y, z, x, y, z), x, y, z) 

for some quaternary polynomials /, g of V. Finally the identity x = r(x, x, x, 
x, x) follows directly from the fact that r(x, y, x, y, z) = ae[x, y, z]. 

(2) => (3). The congruence permutability is ensured by the Malcev polynomial 
m(x, y, z) = f(r(y, z, x, z, z), x, z, z). 

The implication r(x, y, x, y, z) = r(y, z, x, y, z) => x = y = z is a consequence 
of the identities (2) from our Theorem 1. 

(3) => (1). Apply [4, Thm 1] with p(x, y, z) = r(x, y, x, y, z), q(x, y, z) = 
= r(y, z, x, y, z). 
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Example 1. (a) For Boolean algebras we propose the unified 5-ary polyno­
mial r in the form: 

r(x]9 x29 x3, x49 x5) = [(x^ ® x4) v (x2 ® x5)] ® x59 

where the symbol ® denotes the symmetrical difference. Then 

r(x9 x9 x9 x9 x) = [(x ® x) v (x ® x)] ® x = x9 

r(x9y9x9y9z) = [(x®y) v (y®z)]@z9 

r(y9 z, x9 y9 z) = [(y®y) v (z®z)]®z = z9 

and so r(x9 y9 x9 y9 z) = r(y9 z, x9 y9 z) implies x = y = z, as required. 
(b) Any variety of /-groups is permutable and has PCB. Take r(xl9 x29 x3, 

x49 x5) = \X] — x4\ + \x2 — x5\ + x5 (here \x\ stands for x v —x). Then 
r(x9 x9 x9 x9 x) = \x — x\ + \x — x\ + x = x9 

r(x9 y9 x9 y9 z) = \x -y\ + \y - z\ + z9 and 
r(y9 z, x9 y9 z) = \y - y\ + \z - z\ + z = z. 

The equality r(x9 y9 x9 y9 z) = r(y9 z, x9 y9 z) evidently implies x = y = z. 
(c) Let V be a discriminator variety (with the ternaty polynomial t which is 

a discriminator on any SI member of V). Then the following identities hold 
in V 
(i) x = t(x9 y9 y) = t(y9 y9 x) = t(x9 y9 x) 

(ii) t(x9 y9 z) = t(x9 y9 t(y9 x9 z)), see [10] or [5]. 
Define r(xl9 xl9 x39 x49 x5) = t(x]9 x39 t(xZ9 x49 x2)). Then 

r(x9 x9 x9 x9 x) = t(x9 x9 t(x9 x9 x)) = t(x9 x9 x) = x9 

r(x9 y9 x9 y9 z) = t(x9 x9 t(x9 y9 y)) = t(x9 y9 y) = x9 and 
r(y9 z, x, y9 z) = t(y9 x9 t(x9 y9 z)) = t(y9 x9 z). 

Now let r(x9 y9 x9 y9 z) = r(y9 z, x9 y9 z), i.e. x = t(y9 x9 z). Then also x = 
= t(x9 x9 z) = z and x = t(y9 x9 x) = y. Then conclusion x = y = z follows. 

Theorem 2. Let V be a variety. The following conditions are equivalent: 
(1) V is a congruence permutable variety having PCC (= Principal Compact 

Congruences); 
(2) There exist a sexnary polynomial s and quinary polynomials f9 g such that 

y = f(s(x9 u9 x9 y9 u9 v)9 x9 y9 u9 v)9 

x = f(s(y9 v9 x9 y9 u9 v)9 x9 y9 u9 v)9 

u = g(s(x9 u9 x9 y9 u9 v)9 x9 y9 u9 v)9 

v = g(s(y9 v9 x9 y9 u9 v)9 x9 y9 u9 v) 
hold in V; 

(3) V is a congruence permutable variety having a sexnary polynomial s 
such that 
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s(x, u, x, y, u, v) = s(y, v, x, y, u, v) implies x = y and u = v. 

Proof. (1)=>(2). Consider the congruence 6>«x, y), <u, v» on A = 
= Fv(x, y, u, v). By hypothesis 6>«x, y}, <u, v>) = 0(a, b) for some elements 
a, be A. From <a, b>e 6>«x, y}, <u, v» = I?«x, ^>, <u, v» we find that 

a = s(x, u, x, y, u, v), 
b = s(y, v, x, y, u, v) 

for suitable sexnary polynomial s of V. On the other hand 0 ' , x>, <u, v}e 
e 0(a, b) = R(a, b) imply 

y = f(s(x, u, x, y, u, v), x, y, u, v), 
x = f(s(y, v, x, y, u, v), x, y, u, v), 
u = g(s(x, u, x, y, u, v), x, y, u, v), 
v = g(s(}\ v> x> y- w, v), x, y, u, v) 

for some quinary polynomials f, g of V. 
(2) => (3). One easily sees that m(x, y, z) = f(s(y, z, x, z, z, z), x, z, z, z) is a 

Malcev polynomial. 
The implication s(x, u, x, y, u, v) = s(y, v, x, y, u, v) =>x = y and u = v 

follows directly from the identities (2). 
(3) => (1). Apply [4, Thm 2] with p(x, y, u, v) = s(x, u, x, y, u, v), q(x, y, 

u, v) = sty, v, x, y, u, v). 

Examples 2. (a) /-groups constitute a permuiable variety with PCC. Take 
s(x,, x2, x3, x4, x5, x6) = |xj — x3| -F \x2 — x5\. Then s(x, u, x, y, u, v) = 0 and 
s(y, v, x, y, u, v) = \y — x\ -F |v — u|. Condition (3) from Theorem 2 is fulfilled. 

(b) Any variety of Heyting algebras has permutable congruences and PCC. 
Condition (3) from Theorem 2 holds for 

s(x,, x2, x3, x4, x5, x6) = (x]<^x3) A (x2ox5) 

(here xoy abbreviates (x=>y) A (y=>x)). 
(c) Let V be a discriminator variety with the ternary discriminator t on SI 

members of V. Put s(x,, x2, x3, x4, x5, x6) = t(x^ t(x3, xj, x4), x2). Then 

s(x, u, x, y, u, v) = t(x, t(x, x, y), u) = t(x, y, u) and 
s(y, v, x, y, u, v) = t(y, t(x, y, y), v) = t(y, x, v). 

Apparently t(x, y, u) = t(y, x, v) implies x = y and u = v. 

Theorem 3. Let V be a variety. The following conditions are equivalent: 
(1) Visa permutable variety having PCGC (= Principal Compactly Generated 

Congruences), i.e. any congruence &(ax, ..., an) = 0({ax, ..., an}x{a], ..., an}), 
a,, ..., aneAeV, is principal; 
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(2) There exist a quinary polynomial t and quaternary polynomials f, g such 
that *<*< \ \ 

y = f(t(x, y, x, y, z), x, y, z), 
x = f(t(y, z, x, y, z), x, y, z), 
x = g(t(x, y, x, y, z), x, y, z), 
z = 9(t(y, z, x, y, z), x, y, z) 

hold in V; 
(3) V is a permutable variety having a quinary polynomial t such that 

t(x, y, x, y, z) = t(y, z, x, y, z) implies x = y = z. 

Proof. (1)=>(2). Take A = Fv(x, y, z). Let 0(x, y, z) be the congruence 
on A generated by the Cartesian square {x, y, z) x {x, y, z). Then 0(x, y, z) = 
= 0(a, b) for some a, be A, by (1). Further <a, b}e0(x, y, z) = 0 « x , y}, 
<>', z » = I?«x, >>, <>, z » , by Lemma V Consequently 

a = t(x, y, x, y, z) 
b = t(y, z, x, y, z) 

for a suitable quinary polynomial t of V. On the other hand <y, x}, <x, z>e 
e 0(x, y, z) = 0(a, b) = R(a, b) yield 

y = f(t(x, y, x, y, z), x, y, z), 
x = f(t(y, z, x, y, z), x, y, z), 
x = 9(t(x, y, x, y, z), x, y, z), 
z = 9(t(y, z, x, y, z), x, y, z) 

for some quaternary polynomials /, g of V. 
(2)=>(3). It is enough to verify that the ternary polynomial m(x, y, z) = 

= f(t(y, z, x, y, z), x, y, z) is a Malcev polynomial. 
(3) => (1). Put p(x, y, z) = t(x, y, x, y, z) and q(x, y, z) = t(y, z, x, y, z). 

[4, Thm 3] completes the proof. 

Remark 1. Since PCGC varieties include PCB varieties as well as PCC 
varieties any variety already presented in Examples 1 and Examples 2 can be 
used to demonstrate the unified polynomial /from Theorem 3. 

Proposition 1 ([1; Thm 2.8, Thm 2.9]). Let V be a congruence distributive 
variety. The following conditions are equivalent: 

(1) V has the PIP (= Principal Intersection Property), i.e. the congruence 
0(ax, bx) A 0(a2, b2) is principal for any ax, bx, a2, b2eAeV; 

(2) There exist quaternary intersection polynomials D0, Dx such that 

0(ax, bx) A 0(a2, b2) = 0(Do(ax, bx, a2, b2), Dx(ax, bx, a2, b2)) 

for any ax, bx, a2, b2eAeV; 
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(3) There exist quaternary polynomials D0, Dx such that D0(x, y, u, v) = 
^ O, (x, y, u, v) iff x = y or u = v holds on any SI member of V. 

Theorem 4. Let V be an arithemetical variety. The following conditions are 
equivalent: 

(1) Vhas the PIP; 
(2) There exists a quinary polynomial i such that 
i(x, x, y, u, u) = i(y, x, y, u, u) holds on any AeV, and 
i(x, x, y, u, v) = i(y, x, y, u, v) implies x = y or u = v on any SI mem­

ber of V; 
(3) There exists a quinary polynomial i such that 
i(x, x, y, u, v) = i(y, x, y, u, v) iff x = y or u = v holds on any SI mem­

ber of V. 

Proof . (1)=>(2). By Proposition 1 (2) we have 4-ary polynomials D0, Dx 

such that Q(x, y) A 0(U, V) = &(D0(x, y, u, v), Dx (x, y, u, v)) for any x, y,u,ve 
eAeV. From (D0(x, y, u, v), Dx(x, y, u, v)}e0(x, y) = R(x, y) we find that 

D0(x, y, u, v) = i(x, x, y, u, v) and 
Dx (x, y, u, v) = i(y, x, y, u, v) 

for some quinary polynomial /of V, see Lemma 1. The identity i(x, x, y, u, u) = 
= i(y, x, y, u, u) is immediate. If A is a SI algebra in Ifand i(x, x, y, u, v) = 
= i(}\ x, y, u, v), then 0(x, y) A 0(U, V) = 0(i(x, x, y, u, u), i(y, x, y, u, u)) and 
so 0(x, y) = co or 0(u, v) = co hold. Consequently x = y or u = v, which was to 
be proved. 

(2) => (3) is trivial. 
(3) => (1). Put D0(xx, x2, x3, x4) = i(xx, xx, x2, x3, x4) and Dx(xx, x2, x3, x4) = 

= i(x2, xx, x2, x3, x4). Then D0, Dx are polynomials mentioned in Proposition 1 
(3). The proof is complete. 

Examples 3. (a) Heyting algebras constitute an arithmetical variety having the 
PIP ; Define i(xx, x2, x3, x4, x5) = (xxox3) v (x4ox5). Consider the equality 
l%(x, x, y, u, v) = i(y, x, y, u, v) onan arbitrary SI Heyting algebra A. Then 
i(x, x,y, u, v) = i(y,x,y, u, v) iff(xoy) v (uov) = 1 iffxoy = 1 ovuov = 
^ 1 (by hypothesis A has the least nontrivial filter) if x = y of u = v, as required. 

(b) Any discriminator variety V is arithmetical and has the PIP; Take 
i(X\, x2, x3, x4, x5) = t(t(xx, x3, x4), t(xx, x3, x5), x5). Then / (* , , x2, x3, x4, x5) = 
^ n(xx, x3, x4, x5) where n denotes the so-called normal transform n(x, x, 
uy v) = u and n(x, y, u,v) = v for x # v. Then v = n(x, y, u, v) = w, a contradic­
tion. 

(c) It follows directly from the preceding example (b) that any variety V of 
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arithmetical rings has the PIP. This fact can be made more distinct by taking 
/(*,, x2, x3, x4, x5) = (JC, — x3) (x4 — x5). Then i(x, x, y, u, v) = i(y, x, y, u, v) iff 
(x — y)(u — v) = 0 iff x = y or u = v, since any SI member from If is a finite field, 
see (11). 

Something more can be stated for varieties of rings. First two auxiliary 
results: 

Proposition 2 ([14) and [9]). Any variety of arithmetical rings is a variety of 
commutative rings. 

Proof. Combine the following two facts: 
(i) Any variety of arithmetical rings satisfies the identity x" = x for some 

n > 1, see [14, p. 38]. 
(ii) Let R be a ring in which for every xeR there exists an integer n(x) > 1 

such that xn{x) = x. Then R is commutative. See [9; Chap. 10.1, Thm 1]. 

Lemma 3. Let R be a ring such that r divides r for every reR. Then 0(0, x) =2 
^ 0(0, y) iff x divides y for any x, yeR. 

Proof. The equivalence 0(0, x) ^ 0(0, y) iff (x) ^ (y) ((x) denotes the 
ideal generated by an element x) is well known from the ring theory. The rest 
of the proof is evident. 

Theorem 5. Let Vbe a variety of rings. The following conditions are equivalent: 
(1) Vhas the PIP; 
(2) V is congruence distributive; 
(3) For any x, yeReV there hold 

(a) x divides x; 
(b) xy is the least common multiple of x and y. 

Proof. (\)=>(2). Consider the principal congruences 0(0, x), 0(0, y) on 
the free ring R = Fv(x, y, z) with free generators x, y, and z. By hypothesis 
0(0, x) A 0(0, y) = 0(px(x, y, z), p2(x, y, z)) = 0(0, p(x, y, z)) where 
p(x, y, z) = p2(x, y, z) — p, (x, y, z). The ternary polynomial pevidently satisfies 
the identities p(x, 0, z) = p(0, y, z) = 0, which means that p is a commutator 
polynomial in the sense of [8]. Hence 0(0, x) A 0(0, y) = 0(0, p(x, y, z)) ^ 
<=[0(O, x), 0(0, y)] holds. Since the opposite inclusion is a general consequence 
of the commutator theory we have proved the equality [0(0, x), 0(0, y)] = 
= 0(0, x) A 0(0, y). Now take an arbitrary congruence !fe Con R and elements 
a, beReV. Then 

[% 0(a, b)]^\ V #("> v), 0(a, b)] = V -0("> ")> @^ *M. 
L<u, i>>e¥' J <«,»>£ V 
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By the additivity of commutator, see e.g. [7]. Further 

V [&(u, v), 0(a, b)] = V (0("> v) A 0(a, b)) 
<n, u > e « F <M, « > e « P 

and it is a routine to verify the equality 

V (®(w, 0) A 0(a , b)) = l¥ A 0(a, b). 
<«, »> r- f 

So we find that [ f, 0(<t, b)] = *P A 0(a , b); applying the same arguments to the 
second variable one easily sees that [*F, 0] = *F A (P for any congruences XP, 0 
on R = Fv(x, y, z). Combining this fact with the above mentioned additivity of 
commutator we conclude that Fv(x, y, z) has distributive congruences. App­
arently the same holds for any ring ReV. 

(2)=>(3). We have \n = x, n > 1, by the Werner characterization of arith­
metical varieties of rings, see the proof of Proposition 2. Hence x divides x. 

The congruence distributivity of V implies [0(0, x), 0 (0 , y)] = 0(0, x) A 
A 0(0, y) for any x, y<- Re V, see [7] again. Simultaneously [0(0, x), 0(0, y)] = 
= 0(0, xy), by Proposition 2. Fruther let x and y divide an element te R. Then 
0(0, t) c 0(0, x) A 0(0, y) and so 0(0, t) c 0(0, xy). Consequently xy divi­
des /, by Lemma 3. 

(3)=>(1). Let x, ye ReV We have to prove that 0(0, x) A 0(0, y) = 
= 0(0, xy). The inclusion 0(0, x) A 0(0, y) =2 0(0, xy) is evident. Conversely 
let <a, b> G 0(0, x) A 0(0, >). Then 0(0, b - a) = 0(a, b) c 0(0 , x) A 0(0, y), 
which means that x and y divide b — a, by Lemma 3. From (3b) we infer that 
xy divides b — a. Summarizing <a, b> e 0(a, b) = 0(0, b — a) ^ 0(0, xy) and so 
0(0, x) A 0(0 , >') ?= 0(0, xy). The proof is complete. 

A unified intersection polynomial can be derived also for congruence distri­
butive PTT varieties. !n this way we obtain a somewhat stronger version of 
Theorem 4: 

Theorem 6. Let V be a congruence distributive PTT variety. The following 
conditions are equivalent: 

(1) Vhas the PIP; 
(2) There exists a sexnary polynomial k such that k(x, y, x, y, u, u) = 

= k(y, x, x, y, u, u) holds on any AeV, and k(x, y, x, y, u, v) = k(y, x, x, 
y, u, v) implies x = y or u = v on any SI member of V; 

(3) There exists a sexnary polynomial k such that k(x, y, x, y, u, v) = 
= k(y, x, x, y, u, v) iff x = y or u = v holds on any SI member of V. 

Proof . (1) => (2) proceeds along the same line as the proof of Theorem 4, 
only Lemma 1 is replaced by Lemma 2. 

(2) => (3) is evident. 
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(3)=>(1). Put 

L/0(xi, x2, x3, x4) = A(xi, x2, xl9 x2, x3, x4) and 

D\\X\) X2, x3, .x4) = K\X2, xj, X], x2? x3> -̂ 41 • 

Proposition 1 completes the proof. 

Example 4. It is already known that distributive lattices form a PTT variety, 
see [3]. Now we state that this congruence distributive variety satisfies the PIP: 
Define k(xu x2o x3, x4, x5, x6) =- m(xl9 x5, x6) where m denotes the median 
polynomial m(a, b, c) = (a v b) A (b v c) A (C V a). Then it is an easy exercise 
to verify that condition (3) from Theorem 6 is fulfilled. 
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СОЕДИНЕННЫЕ ТЕРМЫ ДЛЯ ГЛАВНЫХ КОНГРУЭНЦИИ 

1аготп О и о! а 

Резюме 

Известно, что конечно порожденные конгруэнции многообразий алгебр главны, если 
существует подходящая пара термов. Статья заменяет упомянутую пару одним термом. 
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