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RADICALS AND THEIR LEFT IDEAL ANALOGUES 
IN A SEMIGROUP 

FRANTISEK KMET 

The first section of the present paper deals with an i?*NC-semigroup. It is 
known that an i?*1VC-semigroup is a semilattice of archimedean semigroups 
(see [5]). We prove that the converse is also true (Theorem 1). 

In the second section we prove that in a semigroup S for any left ideal L we 
have L c r(L) c m(L) _= r*(L) c N(L) c C(L) (Theorem 2). This is a left-sided 
analogue of the known result about radicals of R. §ulka [9, Lemma 19] and 
J. Bosak [2]. 

We give some definitions (the others can be found in [2), [3], [7], or [9]). Let 
S be a semigroup. 

A non-empty subset / of S is a two-sided (or left) ideal if S]JS] ^ J (or 
S]J ^ J). The principal two-sided (or left) ideal of S generated by an element 
aeS is denoted by J(a) (or L(a)). 

An element xeS is nilpotent with respect to a subset A if xneA for some 
positive integer n. The set of all nilpotent elements of S with respect to A is 
denoted by N(A). 

A two-sided (or left) ideal A is a nilideal (or left nilideal) with respect to a 
two-sided (or left) ideal / if A _= N(J). The union of all two-sided (or left) 
nilideals with respect to a two-sided (or left) ideal J is denoted by R*(J) (or 
r*(J)). 

A two-sided (or left) ideal A is nilpotent with respect to a two-sided (or left) 
ideal J if An := J for some positive integer n. The union of all two-sided (or left) 
nilpotent ideals of S with respect to a two-sided (or left) ideal J is denoted by 
R(J) (or r(J)). 

A two-sided (or left) ideal Q is prime (or left prime) if for any two-sided (or 
left) ideals A, B of S, AB c Q implies that A _= Q or B c Q. We denote by M(J) 
(or m(J)) the intersection of all two-sided (or left) prime ideals of S containing 
a two-sided (or left) ideal J. 

A two-sided (or left) ideal P is completely prime (or left completely prime) if 
for any a,beS, abeP implies that aeP or be P. We denote by C(A) (or c(A)) 
the intersection of all two-sided (or left) completely prime ideals of S containing 
a given subset A. 
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If J is a two-sided (or left) ideal of 5, then R(J), M(J), R*(J), C(J) (or r(J), 
m(J), r*(J), c(J)) are two-sided (or left) ideals. The two-sided ideals R(J), M(J), 
r*(J) and C(J) are called the radicals of Schwarz, McCoy, Clifford and Luh with 
respect to J. 

A two-sided (or left) ideal J of S is semiprime (or left semiprime) if for any 
two-sided (or left) ideal A of 5, An ^ J for some positive integer n implies that 
A^J. 

A two-sided (or left) ideal J of S is completely (or left completely) semiprime 
if for any ae 5, a"eJ for some positive integer n implies that aeJ. 

Evidently, if J is a two-sided (or left) ideal, then M(J) (or m(J)) is semiprime 
(or left semiprime) and C(J) (or c(J)) is completely (or left completely) semi-
prime two-sided (or left) ideal. 

A semigroup S has the Q3-property (see M. S. P u t c h a [8]) if for any 
a.beS, beJ(a) implies that bneJ(a2) for some positive integer n. 

A semigroup is called an /^NC-semigroup if for any two-sided ideal J .= S, 
R*(J) = N(J) = C(J) holds. 

A commutative semigroup, each element of which is idempotent, is called a 
semilattice. 

A congruence g on S is a semilattice congruence if the factor semigroup S/g 
is a semilattice. 

A semigroup S is called archimedean if for any a,beS there exists a positive 
integer n for which aneSbS. 

A semigroup S is a semilattice of archimedean semigroups if there exists a 
semilattice congruence a on S such that each cr-class of the factor semigroup S/cr 
is an archimedean subsemigroup of 5. Then a is the least semilattice congruence 
on S, since an archimedean subsemigroup of S contains no proper completely 
prime ideals (see [7, Lemma II.4.2]). 

1. On radicals 

Theorem 1. In a semigroup S the following conditions are equivalent: 
(1) N(J(a)) = N(J(an)) for every aeS and every positive integer n. 
(2) The set N(J(a)) is a two-sided ideal of S for every aeS. 
(3) The set N(J) is a two-sided ideal of S for every two-sided ideal J of S. 
(4) S is an R*NC'-semigroup. 
(5) S is a semilattice of archimedean semigroups. 
(6) S has the Qrproperty. 
Proof . We prove that (1) implies (2). Let aeS, beN(J(a)). Then bkeJ(a) 

for some positive integer k, hence J(bk) _= J(a) and N(J(bk)) = N(J(a)). Let 
x,yeS\ then xbyeJ(b) ^ N(J(b)), since by the assumption N(J(bk)) = N(J(b)) 
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we obtain that xbyeN(J(bk)) = N(J(a)). Therefore N(J(a)) is a two-sided ideal 
of S. 

We prove that (2) implies (3). Let J be any two-sided ideal of S. If 

J = {ah is I}, then evidently J = \J J(tf,). Since each N(J(af)) is a two-sided ideal 

of S we obtain that N(J) = N[ ( J J(a7)) = ( J N(J(a,)) is a two-sided ideal of S. 
\iel / / e / 

By Corollary 1 of [4] the condition (3) implies (4). 
By Theorem 5 of [5] the condition (4) implies (5). 
We prove that (5) implies (1). Let S be a semilattice of archimedean semi­

groups Sa, aeA. Then S is a disjoint union of archimedean subsemigroups Sa, 
aeA and for every a,peA there exists ye A such that SaSpu SpSa^ Sr 

We show that N(J(an)) =. N(J(a)) for every aeS and for every positive 
integer n. Let a eS, xeN(J(a)), then xkeJ(a) for some positive integer k, hence 
xk = sat for some s,teS\ The elements a, a" for every positive integer n belong 
to the same subsemigroup Sa for some aeA, hence there exists 0eA such that 
xk = sateSp and santeSp. Since JC*, santeSp and S^ is an archimedean semi­
group there exists a positive integer m such that 

(**)"• = xkmeSpsantSp c J(a"), 

thus xeN(J(an)) for every positive integer rz. 
In any semigroup N(J(an)) .= N(J(a)) for every positive integer rz, hence we 

have 7V(/(a)) = N(J(an)). 
The equivalence of (5) and (6) was proved by M. S. Pu t cha [8, Theo­

rem 2.1]. 

2. Left ideal analogues of radicals 

From the definitions we immediately obtain 

Lemma 1. Let S be a semigroup with a left ideal L. Then 
L c r(L) c r*(L) c 7V(L) and L = c(L) n m(L). 

Lemma 2. Let S be a semigroup, L1? L2 left ideals of S with Lx .= L2. Then 
a) r(L,) s r(L2), 
b) #fi(L.) £ m(L2) , 
c) r*(L,) £ r*(L2), 
d) N(LX) £ N(L2), 
e) c(L.) = c(L2). 
Proof, a) Let xer(Lx). Then for some positive integer n, L(x)n £ 

.= Lx =; L2, therefore L(x) =; r(L2) and so jcer(L2). 
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The assertions b), d) and e) are evident. 
c) Let xer*(.£,), then L(x) c r*(L,) cz /V(L,) c N(L2). Hence L(x) is a left 

nilideal with respect to L2, thus xer*(L2). 
The next lemmas 3 and 4 are analogous to Lemma 1 and Theorem 4 of [6], 

where the statements are proved for two-sided ideals. 

Lemma 3. Let S be a simigroup with a left ideal L. If H = {x,x2,x\ ...} is a 
cyclic subsemigroup of S with H nL = 0, then there exists a left prime ideal 
Q^L such that Q n J = 0 and Q = r*(Q). 

Proof. The set of all left ideals which contain L and do not meet H is 
non-empty since it contains L. We denote this set by T. The set 7is closed under 
unions of increasing chain, thus we can apply Zorn's lemma and we obtain a 
maximal element QeT. 

We prove that Q is a left prime ideal of S. Suppose that for some left ideals 
A,B of S we have AB c Q, however A £ Q and B £ Q. Then the left ideal 
Q u A contains some xr and the left ideal Q u B contains some xs of H. Since 
xr$Q, xs<£Q we have xreA, xseB and so xr + seAB .= Q, which contradicts 
HnQ = 0. Therefore Q is a left prime ideal. 

We prove that r*(Q) = Q. By Lemma 1 we have Q c r*(Q). 
Suppose that Q ^ r*(Q). Then Hn r*(Q) ^ 0, hence for some positive in­

teger m we have xmeHnr*(Q). Since xmer*(Q) there exists a positive integer 
n with (xm)n = xmneQ. This contradicts Hn Q = 0. 

Lemma 4. Let S be a semigroup with a left ideal L. If{Qh iel} is the set of all 

left prime ideals of S containing L such that r*(Qf) = Qh then r*(L) = f\ Qt. 
iel 

Proof. By Lemma2, L c Q. implies r*(L) c r*(Qf) = Q, for each iel. 

Therefore r*(L) c p) Q.. 
iel 

Conversely, we prove that Q Qt .= r*(L). If r*(L) = S, then the statement 
iel 

holds. Suppose therefore that r*(L) # S. We prove that S - r*(L) c S - f)Qr 
iel 

LetxeS- r*(L). Then x$r*(L), therefore the principal left ideal L(x) £ r*(L) 
and so there exists an element yeL(x) such that yn$L for all positive integers 
n. Denote H = {y,y2,y3,...}. Wehave/VnL = 0. By Lemma 3 there exists a left 
prime ideal Qj = r*(Qj) 3 L such that Q}n H = 0 for some jel. Then x$ Qj 

since xeQj implies L(x) cz Q hence yeQj9 a contradiction with H n Qj = 0. 

Thus x£ P) C- and so xe S - f) Qr 
iel iel 
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Theorem 2. Let S be a semigroup with a left ideal L. Then we have: 

L c r(L) c m(L) £ r*(L) c N(L) c r-(L). 

Proof. By Lemma 1 we have L c r(L). 
We prove that r(L) c m(L). Let {Qk, keK} be the set of all left prime ideals 

of S containing L. Then ra(L) = Q 2*. Let aer(L). Then L(a)" ^ L for some 
keK 

positive integer n. However, L = m(L) and so L(a)n c m(L). Since ra(L) is left 
semiprime we obtain L(a) = m(L) and so aem(L). 

We prove that m(L) c r*(L). Let {£,, /e/} be the set of all left prime ideals 
containing L with the property r*(Qt) = Q, for any ieL Then evidently 
{QiJel} = {Qk,keK} and so by Lemma 4 we obtain 

m(L) =piQk=f)Qi = r*(L). 
keK iel 

Evidently, r*(L) = N(L). 
We prove that N(L) c C(L). Let aeN(L), then a"eL for some positive 

integer n. Since L != c(L) we have anec(L). However, c(L) is a left completely 
semiprime ideal, hence aec(L). 

Lemma 5. Let S be a semigroup with a two-sided ideal J. Then 
a) r(J) = R(J), 
b) m(J) = M(J), 
c) r*(J) = R*(J), 
d) c(J) = C(J). 

Proof, a) Evidently R(J) c r(J). Conversely, we show that r(J) = R(J). 
Let aer(J). Then a belongs to some nilpotent left ideal A with respect to J. If 
An = J for some positive integer n, then (AS])n = A(S]A)n~]S] = AnS] = J. 
Therefore aeA c AS] c I?(J), hence r(J) c /?(./) and thus r(J) = R(J). 

b) If Q is a two-sided prime ideal of S, then Q is left prime. If, namely, for 
left ideals A,B of S,AB c Q, then for the two-sided ideals ,4s1, BS] we have 
./iS'-ftS1 c ABS] = Q and so AS1 = Q or 5S1 c Q, thus ^ c Q or £ c Q. This 
immediately implies that m(J) = M(J). 

c) Evidently R*(J) = r*(J). We show that r*(J) = R*(J). Let aer*(J), then 
L(a) c r*(J) and so L(a) is the principal left nilideal with respect to J. We have 
J(a) = L(a)S]. Choose xeJ(a). Then x = ys, where yeL(a) and seS]. Since 
syeL(a) we have (sy)neJ for some positive integer n. Then JC"* J = (ys)n+] = 
= y(sy)nseJ and so x is nilpotent with respect to J. Hence aeR*(J) and 
r*(J) c I?*(J), thus r*(/) = I?V). 

d) Evidently, each two-sided completely prime ideal of S is left completely 
prime thus c(J) = C(J). 

143 



The following examples show that the sets of Theorem 2 can be different. 
E x a m p l e 1. Let S, = {0,en,e12,e13,e21,e22,e23,e31,e32,e33} with the multi­

plication eik-ekn = ein, eik-ejn = eik-0 = 0 - ^ = 0 for i, j , k, ne{1,2,3}, j 7-= k. 
Then for the left ideal L = {0,en,e21,e31} we have L = r*(L) cz N(L) = 
= S]-{e22,e33}^c(L) = S]. 

E x a m p l e 2. Let S2 be the semigroup generated by the set 
{0, ax,a2,a3,...} subject to the generating relations Ox = x-0 = x2 = 0 for any 
xeS2. Then we have 0 = M(0) cz R*(0) = S2 (see [1, p. 232]). By the preceding 
Lemma 5 we obtain m(0) = 0 cz r*(0) = S2. 

E x a m p l e 3. Let S3 = {0,eu,en,en,e22,e23,e33} be the subsemigroup of 
the semigroup Sx of Example 1. Then for the left ideal L = {0, e12, e22} of S3 we 
have L cz r(L) = S — {eu, e33}. 

The author does not know an example of a semigroup S with a left ideal L 
such that r(L) cz m(L). 

Lemma 6. Let S be a semigroup with a left ideal L. Then r(L) = r(L2) holds. 
Proof . From L2 cz L we have r(L2) c= r(L). Conversely, we prove that 

r(L) c= r(L2). Let xer(L). Then L(x)n c= L for some positive integer n. From this 
we obtain that L(x)2n ^ L2, therefore L(x) ^ r(L2) and xer(L2). 

We recall that an ideal L is idempotent if L2 = L. 

Theorem 3. Let S be a semigroup. Then the following conditions are equiv­
alent: 

(1) Each principal left ideal of S is idempotent. 
(2) Each left ideal of S is idempotent. 
(3) For every left ideal L of S, L = r(L) holds. 
Proof . We prove that (1) implies (2). Let L be a left ideal of 5". If 

L = {ai9 iel}, then L = ( J L(at). Then we have L = ( J L(at) = [J L(ai)
2 ^ 

iel iel iel 

L2 £ L, thus L2 = L. s [yЧ 
We prove that (2) implies (3). Let L be a left ideal of S. By Lemma V 

L cz r(L), we show that r(L) cz L. Let a e r(L). Then a belongs to some left ideal 
A having the property An cz L for some positive integer n. Then a e A = An cz L, 
since by the assumption A is idempotent. Hence r(L) cz L and thus r(L) = L. 

We prove that (3) implies (1). Let L(a) be a principal left ideal of S. Then the 
assumption and Lemma 6 imply that L(a) = r(L(a)) = r(L(a)2) = L(a)2. 
Therefore every principal left ideal of S is idempotent. 

R e m a r k . We note that a semigroup S is semisimple if and only if each 
two-sided ideal of S is idempotent (see e.g. [3; §2.6; Exercise 7(a)]). Hence a 
semigroup having the property (1), (2) or (3) of Theorem 3 belongs to the class 
of all semisimple semigroups. 
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РАДИКАЛЫ И ИХ ЛЕВОИДЕАЛЬНЫЕ АНАЛОГИ В ПОЛУГРУППЕ 

Ргапйзек К т е ! ' 

Резюме 

Сначала доказано, что I?*NС — полугруппа является полуструктурой архимедовых полу­
групп и наоборот. 

Кроме того в статье доказано, что в полугруппе для произвольного левого идеала I, 
имеем: I, .= г(Ь) != т(Ь) Я г*(Ь) 1= ЩЬ) <= с(Ь\ где г(_Ц, т(Ь), г*(Ь), с(Ь) — левые идеалы, 
определеные аналогично радикалам Шварца, Маккойа, Клиффорда, Луга и ЩЬ) — множест­
во всех нильпотентных элементов полугруппы относительно Ь. 
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