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RADICALS AND THEIR LEFT IDEAL ANALOGUES
IN A SEMIGROUP

FRANTISEK KMET

The first section of the present paper deals with an R* NC-semigroup. It is
known that an R*NC-semigroup is a semilattice of archimedean semigroups
(see [5]). We prove that the converse is also true (Theorem 1).

In the second section we prove that in a semigroup S for any left ideal L we
have L < r(L) € m(L) < r*(L) = N(L) < ¢(L) (Theorem 2). This is a left-sided
analogue of the known result about radicals of R. Sulka [9, Lemma 19] and
J. Bosak [2].

We give some definitions (the others can be found in [2), [3], [7], or [9]). Let
S be a semigroup.

A non-empty subset J of S is a two-sided (or left) ideal if S'JS' = J (or
S'J < J). The principal two-sided (or left) ideal of S generated by an element
ac S is denoted by J(a) (or L(a)).

An element xe S is nilpotent with respect to a subset 4 if x"e A for some
positive integer n. The set of all nilpotent elements of S with respect to A4 is
denoted by N(A).

A two-sided (or left) ideal A is a nilideal (or left nilideal) with respect to a
two-sided (or left) ideal J if 4 = N(J). The union of all two-sided (or left)
nilideals with respect to a two-sided (or left) ideal J is denoted by R*(J) (or
r*(J)).

A two-sided (or left) ideal A is nilpotent with respect to a two-sided (or left)
ideal J if A" < J for some positive integer n. The union of all two-sided (or left)
nilpotent ideals of S with respect to a two-sided (or left) ideal J is denoted by
R(J) (or r(J)).

A two-sided (or left) ideal Q is prime (or left prime) if for any two-sided (or
left) ideals 4, B of S, AB = Q implies that A = Q or B = Q. We denote by M(J)
(or m(J)) the intersection of all two-sided (or left) prime ideals of S containing
a two-sided (or left) ideal J.

A two-sided (or left) ideal P is completely prime (or left completely prime) if
for any a,be S, abe P implies that ae P or be P. We denote by C(A) (or c(A))
the intersection of all two-sided (or left) completely prime ideals of S containing
a given subset A.
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If J is a two-sided (or left) ideal of S, then R(J), M(J), R*(J), C(J) (or r(J),
m(J), r*(J), c(J)) are two-sided (or left) ideals. The two-sided ideals R(J), M(J),
r*(J)and C(J) are called the radicals of Schwarz, McCoy, Clifford and Luh with
respect to J.

A two-sided (or left) ideal J of S is semiprime (or left semiprime) if for any
two-sided (or left) ideal A of S, 4" < J for some positive integer n implies that
AcJ.

A two-sided (or left) ideal J of S is completely (or left completely) semiprime
if for any a€ S, a"eJ for some positive integer » implies that ae J.

Evidently, if J is a two-sided (or left) ideal, then M (J) (or m(J)) is semiprime
(or left semiprime) and C(J) (or ¢(J)) is completely (or left completely) semi-
prime two-sided (or left) ideal.

A semigroup S has the Q,-property (see M. S. Putcha [8]) if for any
a.be S, beJ(a) implies that "€ J(a?) for some positive integer n.

A semigroup is called an R* NC-semigroup if for any two-sided ideal J = S,
R*(J) = N(J) = C(J) holds.

A commutative semigroup, each element of which is idempotent, is called a
semilattice.

A congruence ¢ on S is a semilattice congruence if the factor semigroup S/o
is a semilattice.

A semigroup S is called archimedean if for any a, b€ S there exists a positive
integer n for which a"e SbS.

A semigroup S is a semilattice of archimedean semigroups if there exists a
semilattice congruence o on S such that each o-class of the factor semigroup S/o
is an archimedean subsemigroup of S. Then o'is the least semilattice congruence
on S, since an archimedean subsemigroup of S contains no proper completely
prime ideals (see [7, Lemma I1.4.2]).

1. On radicals

Theorem 1. In a semigroup S the following conditions are equivalent:

(1) N(J(a)) = N(J(a")) for every ae S and every positive integer n.

(2) The set N(J(a)) is a two-sided ideal of S for every a€ S.

(3) The set N(J) is a two-sided ideal of S for every two-sided ideal J of S.

(4) S is an R*NC-semigroup.

(5) S is a semilattice of archimedean semigroups.

(6) S has the Qs-property.

Proof. We prove that (1) implies (2). Let ae S, be N(J(a)). Then b*e J(a)
for some positive integer k, hence J(b*) < J(a) and N(J(b*)) = N(J(a)). Let
x,yeS"', then xbye J(b) = N(J(b)), since by the assumption N(J(b*)) = N(J(b))
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we obtain that xby e N(J(b*)) = N(J(a)). Therefore N(J(a)) is a two-sided ideal
of S.
We prove that (2) implies (3). Let J be any two-sided ideal of S. If
J ={a,,iel}, then evidently J = U J(a;). Since each N(J(a;)) is a two-sided ideal
iel

of S we obtain that N(J) = N(U J(a; )> U N(J(a,))is a two-sided ideal of S.

By Corollary 1 of [4] the condition (3) 1mp11es 4).

By Theorem 5 of [5] the condition (4) implies (5).

We prove that (5) implies (1). Let S be a semilattice of archimedean semi-
groups S,, a€ A. Then S is a disjoint union of archimedean subsemigroups S,,
ae A and for every a, fe A there exists ye A such that S,S;0 S;S, < S,.

We show that N(J(a")) 2 N(J(a)) for every ae S and for every positive
integer n. Let a€ S, xe N(J(a)), then x* e J(a) for some positive integer k, hence
x* = sat for some s, te S'. The elements a, a" for every positive integer n belong
to the same subsemigroup S, for some ae€ A, hence there exists Se A such that
x* = sate Sz and sa"te S;. Since x*, sa"te Sy and Sj is an archimedean semi-
group there exists a positive integer m such that

(x*)" = x*" € Spsa"tSy < J(a"),

thus xe N(J(a")) for every positive integer n.

In any semigroup N(J(a")) < N(J(a)) for every positive integer n, hence we
have N(J(a)) = N(J(a")).

The equivalence of (5) and (6) was proved by M. S. Putcha [8, Theo-
rem2.1].

2. Left ideal analogues of radicals

From the definitions we immediately obtain

Lemma 1. Let S be a semigroup with a left ideal L. Then
Lcr(l)cr¥(L)<s N(L) and L = c(L)~m(L).

Lemma 2. Let S be a semigroup, L,, L, left ideals of S with L, < L,. Then

a) r(L) s r(Ly),

b) m(L,) = m(L,),

©) r*(Ly) s r*(Ly),

d) N(L)) = N(Lp),

e) c(Ly) < c(Ly).

Proof. a) Let xer(L,). Then for some positive integer n, L(x)"<
c L, < L,, therefore L(x) < r(L,) and so xer(L,).
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The assertions b), d) and e) are evident.

c) Let xer*(L,), then L(x) < r*(L,) < N(L,) = N(L,). Hence L(x) is a left
nilideal with respect to L,, thus xer*(L,).

The next lemmas 3 and 4 are analogous to Lemma | and Theorem4 of [6],
where the statements are proved for two-sided ideals.

Lemma 3. Let S be a simigroup with a left ideal L. If H = {x,x* x* ...} is a
cyclic subsemigroup of S with HN L = (, then there exists a left prime ideal
0 2 L such that Q nJ =0 and Q = r*(Q).

Proof. The set of all left ideals which contain L and do not meet H is
non-empty since it contains L. We denote this set by T. The set Tis closed under
unions of increasing chain, thus we can apply Zorn’s lemma and we obtain a
maximal element Qe T.

We prove that Q is a left prime ideal of S. Suppose that for some left ideals
A, B of S we have AB < Q, however A £ Q and B & Q. Then the left ideal
Q U A contains some x" and the left ideal Q U B contains some x* of H. Since
x"¢0, x*¢Q we have x"€ 4, x’e B and so x"**e AB < Q, which contradicts
H N Q = 0. Therefore Q is a left prime ideal.

We prove that r*(Q) = Q. By Lemma 1 we have Q < r*(Q).

Suppose that Q # r*(Q). Then H N r*(Q) # 0, hence for some positive in-
teger m we have x” € H nr*(Q). Since x™ e r*(Q) there exists a positive integer
n with (x™)" = x™e Q. This contradicts Hn Q = .

Lemma 4. Let S be a semigroup with a left ideal L. If {Q;, i€ I} is the set of all
left prime ideals of S containing L such that r*(Q,) = Q,, then r*(L) = () Q..
iel
Proof. By Lemma2, L < Q; implies r*(L) < r*(Q;) = Q, for each iel
Therefore r*(L) = () Q..

iel
Conversely, we prove that ﬂ Q; < r*(L). If r*(L) = S, then the statement
iel
holds. Suppose therefore that r*(L) # S. We prove that S — r*(L) = S — () O,.
iel
Let xe S — r*(L). Then x ¢ r*(L), therefore the principal left ideal L(x) & r*(L)
and so there exists an element y e L(x) such that y"¢ L for all positive integers
n. Denote H = {y, y% y*,...}. We have H n L = 0. By Lemma 3 there exists a left
prime ideal Q; = r*(Q;) 2 L such that Q;n H = § for some jel. Then x¢Q,
since x€ Q; implies L(x) = Q;, hence ye Q,, a contradiction with Hn Q, = 0.

Thus x¢ () Q; and s0 xe S — () Q..

iel iel
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Theorem 2. Let S be a semigroup with a left ideal L. Then we have:
Lecr(Lysm(L)<sr*(L)< N(L) < c(L).

Proof. By Lemmal we have L < r(L).
We prove that r(L) < m(L). Let {Q,, k € K} be the set of all left prime ideals

of S containing L. Then m(L) = () Q. Let aer(L). Then L(a)" = L for some
keK

positive integer n. However, L < m(L) and so L(a)" < m(L). Since m(L) is left
semiprime we obtain L(a) = m(L) and so ae m(L).

We prove that m(L) < r*(L). Let {Q,,ie I} be the set of all left prime ideals
containing L with the property r*(Q,) = Q; for any iel. Then evidently
{Q,,iel} = {0, ke K} and so by Lemma4 we obtain

m(L) = kOKQk = () Qi =r*L).

Evidently, r*(L) < N(L).

We prove that N(L) < c¢(L). Let ae N(L), then a"e L for some positive
integer n. Since L < ¢(L) we have a"e c¢(L). However, c(L) is a left completely
semiprime ideal, hence ae c(L).

Lemma 5. Let S be a semigroup with a two-sided ideal J. Then
a) r(J) = R(J),

b) m(J) € M(J),

) r*(J) = R*(J),

d) c(J) = C(J).

Proof. a) Evidently R(J) < r(J). Conversely, we show that r(J) < R(J).
Let aer(J). Then a belongs to some nilpotent left ideal 4 with respect to J. If
A" < J for some positive integer n, then (AS')" = A(S'A)"~'S'c A4"S' = J.
Therefore ac A = AS' = R(J), hence r(J) < R(J) and thus r(J) = R(J).

b) If Q is a two-sided prime ideal of S, then Q is left prime. If, namely, for
left ideals A4, B of S, 4B = Q, then for the two-sided ideals AS', BS' we have
AS'BS' < ABS' < Qandso AS' = Qor BS' < Q, thus 4 = Q or B < Q. This
immediately implies that m(J) < M(J).

¢) Evidently R*(J) < r*(J). We show that r*(J) = R*(J). Let aer*(J), then
L(a) < r*(J) and so L(a) is the principal left nilideal with respect to J. We have -
J(a) = L(a) S'. Choose xeJ(a). Then x = ys, where ye L(a) and seS'. Since
sy € L(a) we have (sy)"eJ for some positive integer n. Then x"*' = (ys)"*' =
= y(sy)'seJ and so x is nilpotent with respect to J. Hence ae R*(J) and
r*(J) € R*(J), thus r*(J) = R*(J).

d) Evidently, each two-sided completely prime ideal of S is left completely
prime thus ¢(J) = C(J).
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The following examples show that the sets of Theorem 2 can be different.

Example 1. Let S, ={0, ey, €5, €3, €5, €1, €33, €31, €3, €33} With the multi-
plication ey e, = e;,, €y-€, =¢€;-0=0-¢, =0 for i, j, k, ne{1,2,3}, j #k.
Then for the left ideal L ={0,e,,,e,,e;} we have L=r*(L)<= N(L)=
= 8, — {en, e} = c(L) = S,.

Example 2. Let S, be the semigroup generated by the set
{0, a,,a,,a,, ...} subject to the generating relations 0-x = x-0 = x? = 0 for any
x€S,. Then we have 0 = M(0) < R*(0) = S, (see [1, p. 232]). By the preceding
Lemma 5 we obtain m(0) = 0 = r*(0) = S,.

Example 3. Let S;=1{0,¢,;,€),,€3,€5,6,€5;} be the subsemigroup of
the semigroup S, of Example 1. Then for the left ideal L = {0, ¢,,, €,,} of S; we
have L c r(L) = S — {e,, €33}.

The author does not know an example of a semigroup S with a left ideal L
such that (L) < m(L).

Lemma 6. Let S be a semigroup with a left ideal L. Then r(L) = r(L?) holds.

Proof. From L?< L we have r(L? < r(L). Conversely, we prove that
r(L) € r(LY). Let xer(L). Then L(x)" < L for some positive integer n. From this
we obtain that L(x)*" < L?, therefore L(x) < r(L? and xer(L?).

We recall that an ideal L is idempotent if L? = L.

Theorem 3. Let S be a semigroup. Then the following conditions are equiv-
alent:

(1) Each principal left ideal of S is idempotent.

(2) Each left ideal of S is idempotent.

(3) For every left ideal L of S, L = r(L) holds.

Proof. We prove that (1) implies (2). Let L be a left ideal of S. If

L ={a,iel}, then L =) L(a). Then we have L =) L(a) =) L(a,)* =

iel iel iel

2
c [U L(a‘.)jl =L*c L, thus I’ = L.
iel

We prove that (2) implies (3). Let L be a left ideal of S. By Lemmal,
L < r(L), we show that r(L) = L. Let aer(L). Then a belongs to some left ideal
A having the property A" = L for some positive integer n. Thenae 4 = A" < L,
since by the assumption A4 is idempotent. Hence r(L) < L and thus r(L) = L.

We prove that (3) implies (1). Let L(a) be a principal left ideal of S. Then the
assumption and Lemmaé6 imply that L(a)= r(L(a)) = r(L(a)’) = L(a)’.
Therefore every principal left ideal of S is idempotent.

Remark. We note that a semigroup S is semisimple if and only if each
two-sided ideal of S is idempotent (see e.g. [3; §2.6; Exercise 7(a)]). Hence a
semigroup having the property (1), (2) or (3) of Theorem 3 belongs to the class
of all semisimple semigroups.
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PAOUKAIJIBI 1 UX JIEBOUAEAJIBHBIE AHAJIOTHU B ITOJIVI'PYIIIIE
FrantiSek Kmet
Pe3rome
CHayvana 10ka3aHo, Y10 R* NC — nosyrpynia siBjiseTcs NoJyCTPYKTYpOid apXuMeIOBBIX IOJIY-

rpynn 1 Hao6opoT.

Kpome Toro B craTbe QOKa3aHO, 4TO B MOJIYTPYyMMe IJIA MPOM3BOJILHOTO JiIeBOro uaeana L
umeeM: L < r(L) € m(L) < r*(L) < N(L) < c¢(L), toe r(L), m(L), r*(L), c(L) — neBble Maeasi,
onpezaesieHble aHAIOTHYHO paaukaiam lllsapua, Maxkxkoiia, Knudpdopna, Jiyra u N(L) — MHOXECT-
BO BCEX HMJIBIOTEHTHBIX 3JIEMEHTOB IOJIYTPYNIbl OTHOCHTEIBHO L.
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