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Math . Slovaca 38, 1988, No . 2 ,147—158 

IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS 
WITH LINEARLY INDEPENDENT ROOTS 

STEFAN SCHWARZ 

Let GF(q) = Fq be a finite field, q = ps
9 s ^ 1, p a prime. Let/(x) be a monic 

irreducible polynomial of degree n over Fq and a a root of f(x) = 0. If ft is an 
element of the field Fq(a) and the elements P,Pq, ...,/K~' are linearly indepen­
dent over Fq9 then the set Q= {frPq, ...,/K~'} is called a no rma l basis of 
Fq(a) over Fq9 and /? is called a g e n e r a t o r of the normal basis Q. It is well 
known that such a basis always exists, and any element of Q is a generator 
of Q. 

It is known that Fq(a) is a cyclic extension of Fq with the (cyclic) Galois group 
G of order n. The automorphism x -> x* is a generator of G. 

The problem to be discussed in this paper is the following. Given a fixed 
chosen monic irreducible polynomial/(x) of degree n over Fq we have to decide 
whether the roots of f(x) = 0 represent a normal basis of Fq(a) over Fq. For 
convenience we shall call a polynomial having this property an N - p o l y n o -
mial. 

There is a straightforward way how to verify whether a given polynomial is 
an N-polynomial or not. We represent the roots a9 a

q
9..., aq"~l o'f(x) = 0 as 

polynomials of degree at most n — 1 in a: 

aqi = bi0 + biXa + ... +bUn_xa"-\ (i = 0 ,1 , ...9n - 1). 

[Hereby box = \9 b00 = b02 = ... = b0,„_ i = 0.] 
If the n x n matrix B = (btj) is non-singular, then/(x) is an N-polynomial. If n 
is small, we can establish directly whether B is non-singular. However, if n is 
large (say n ^ 10), this method may require a great number of computations. 

In this paper we present a method how to avoid the consideration of large 
matrices. The result obtained is a wide generalization of that given in the paper 
[4], and the proofs, as well as the results, are different. In [4] the authors deal 
only with the field Fl9 while the result of the present paper holds for any finite 
field. [Of course F2 is the most important case for the coding theory.] Also the 
authors of [4] (as well as the paper [5], which has a different main aim) deal only 
with the case that n = 2M- rv

9 where r is a prime, while in the present paper n may 
be any positive integer. 
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Our method is based on a statement proved in [9] which holds for cyclic 
extensions of any field. In order to make the present paper independent of [9], 
I give here a direct proof of this statement for finite fields (see Lemma 1). This 
is then used to prove the main result. 

1. The Theorem 

We retain the notations introduced above and introduce the matrix C = (c0) 
defined by 

1 = Cw + c0]a + c02a
2 + ... +c0^n_]a

n-\ 

aq = c]0 + cua+ c]2a
2 + ... +clt„_xa

n~\ 

<*2q = c20 + c2]a+ c22a
2 + ... + c2n_xa

n-\ 

a(n-])q = cn_h0 + cn_h]a+ cn_h2a
2 + ... + cn_ln_]a

n-\ 

[Here coo = 1, c0l = ••• = co,«-I = 0.] 
Denote A = (1, a, a2,..., a"- l)T (where Tdenotes the transpose). The identities 
(1) can be written in the form 

[l,aq,a2q,...,a(n-])q]T=CA. 

If f(x) is irreducible (over Fq) (as we supposed), it is known (see [8]) that C is 
non-singular and A" — 1 is the minimal polynomial of the matrix C. [As a matter 
of fact it can be proved that det |C| = (— l)""1, but this is irrelevant for our 
purposes.] 

lfP=r0 + r]a+...+rn_]a
n-] = (r0,r],...,rn_])A, (r,e/J), we have ^ = 

= (r0,r1,...,r„_1) [\,aq,a2q,...,a^n-X)q]T=(r0,ru...,rn_])CA. Further (3ql = 
= (r0,ri, ...,r„_j)C2^, and, in general, we have 

Pqi=(r0,r],...,rn_l)C
i.A for i = 0,1,2, ...,n- 1. 

(Note that Cn = E, where E is the n x n unit matrix.) 
Denote Q = (r0,ri, ...,r„_i)> then 

(frPq,Pq\...,Pqny=\ Q
Qc2 \A. 

QCn 
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Hence the set (P,Pq
9 ...9P

q" l) is a normal basis if and only if the matrix 

('c \ 
Q = I ^. J is non-singular. 

For any vector Q we have QCn = Q9 i.e. £>(CW — E) = 0 (the zero row vector). 
Denote by y/Q(X) the monic A-polynomial of smallest degree (with coefficients in 
Fq) such that Q- y/Q(C) = 0. Clearly the degree of y/e(C) is ^ n. (The polynomial 
V (̂A) is called the minimal polynomial of Q with respect to C.) It is known that 
y/Q(X) is uniquely determined and y/Q(X) divides Xn — 1. 

The condition det \Q\ ^ 0 says that the minimal polynomial of Q (with respect 
to C) is Xn — 1. Decompose Xn — 1 into the product of monic irreducible factors 
over Fr This factorization is of the form 

Xn-l=[cpl(X)...(Pr(X)]t
9 

where t = 1 if («,/?) = 1, and t = pe if n = m-p\ (n9m) = 1. Denote the degree 
Xn — 1 

of <p,(A) by d,. Construct the polynomials <P,(A) = of degree n — dt. The 
<Pi(X) 

minimal polynomial of Q (with respect to C) is Xn — 1 if and only if Q- 4>(C) T-= 0 
for / = 1,2, ...,r. We have proved the following. 

Lemma 1. An element P = Q-AeFq(a) is a generator of a normal basis if and 
only if Q. 4>i(Q^0fori= l,2,...,r. 

We now return to the original problem, namely to find under what conditions 
a itself [i.e. the root of the given/(x)] is a generator of a normal basis (i.e.,/(x) 
is an N-polynomial). Now a = (0,1,0,0, ...,0)A. Hence f(x) is an N-polyno-
mial if and only if (0,1,0, ...,0)<Pf{C) # (0,0,...,0), for / = l,...,r, i.e., 

(0,1,0,0, . . . ,0)<P,(CM^0. (2) 

Assume &t(X) = 6» + 6{°A + bfX1 + ... + b^_di_xX
n~di~x + Xn~di. 

Clearly (0,1,0,..., 0) <P,(C) A is equal to the second term of the column vector 
@i(C)'A. Now the second term of EA is a, the second term of CA is aq, and, 
in general, the second term of CjA is aqJ(j = 0,1, ...,rz — 1). Hence the second 
term of 0> (C) A is 

btPa + b^a* + b<?aq2 + ... + 6<%_1a«""*"1 + a*""*. 

We have proved the following 

Theorem. Let f(x) be a monic irreducible polynomial of degree n over Fq and 
a a root off(x) = 0. Let Xn — 1 = [^(A)... q>r(X)]', t= \, be the factorization of 
Xn — 1 into monic irreducible polynomials over Fq. Denote 
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(Pj(A) = ^ = ^ + ijOA + «'U2 + . . . + e r f X d' ]+X"-d>. (3) 
(piW 

Then a is a generator of a normal basis of Fq(a) over Fq if and only if for 
i = 1,2, ...,r, we have 

b}?a + b\°a« + b?a<2 + ... + #''__ di _ , «*" * ' + a«n d' ± 0. (4) 

No ta t i on , If <P.(A) is the polynomial (3), we shall denote the left hand 
side of (4) by 0{(a). [Clearly <_5(A) i s a q - p o l y n o m i a l of Ore, often cal­
led also the linearized polynomial of Ot(X). See [2].] The linearized polynomials 
appear here in an quite natural way. No knowledge about their properties is 
needed in what follows. 

Remark 1. Since A — 1 is always a factor of A" — 1 one of the r con­
ditions is always Tr(a) = a + aq + aql + ... + aq" ' ^ 0. 

Remark 2. Ore ([3]) proved that the number v of N-polynomials of 
degree n over Fq is given by the formula 

v=l-q"(\-q-d>)(\-q-d>)...(\-q '')-
n 

Remark 3. Pe te rson and Weldon ([6]) list the set of all N-polyno­
mials over F2 of degree n = 16 and some N-polynomials of degree 17 ^ rz ^ 34. 
As far as I can decide analogous tables, e.g., for F3 have not been published. (See 
however [1].) 

2. Examples 

We first recall some known results concerning the decomposition of 

xn- 1 =(x- \)(x"~] + x " ~ 2 + ... + 1) (5) 

over Fq into irreducible factors. 
Let ok be the number of monic irreducible factors of xn — 1 of degree k over 

Fq. If (n, q) = 1, it is known (see [7]) that 

ak = l^J-)(n,qk - 1), (k = 1,2,...,/.), 
ktk \tJ 

where // is the Moebius function. Otherwise stated the numbers ok may be 
successively calculated from the system of linear equations 

YJtok = (n,qk- 1), k= 1,2,..., -
t k L2. 

(See Example 4 below.) 
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The following Corollaries of this general formula will be freely used in the 
sequel. 

a) If n > 2 is a prime, and q belongs (mod n) to the exponent /, then the 
n - 1 

second factor on the right-hand side in (5) is a product of irreducible 

factors of degree / (over Fq). 
b) Let r be a prime, (r, q) = 1 and denote Qrt(x) = (xrl — \)/(xr'~ — 1). Let 

n = r\ v = 1. If q is a primitive element (modn), then each factor in the 
decomposition 

xn - 1 = (x - \)Qr(x)Qr2(x)... QrV(x) 

is irreducible over Fq. 
Example 1. The simplest case is the following. Let f(x) = xn + ax• 

xn~1 + ... + an be an irreducible polynomial of degree n = pe over Fq = GF(ps) 
and a a root of f(x) = 0. 

In this case xn - 1 = (x - \ye. Hence <t>(x) = 1 + x + x2 + ... + xn~ \ and 
<P(a) = a + aq + ... + aq"~l = Tr(a) = —ax. Hence our polynomial is an 
N-polynomial if and only if Tr(a) = — ax 7-= 0. 

This is a known result going back at least to [5]. 
Example 2. Let /(x) = xn + axx

n~l + ... + an be an irreducible polyno­
mial over Fp and n a prime, (n,p) = 1. Suppose moreover thatp is a primitive 
element (mod n). We have to decide under what conditionsf(x) is an N-polyno­
mial (over Fp). 

In this case CP,(A) = X — 1, <2>2(A) = 1 + A + ... + Xn~\ Denoting by a a root 
of f(x) = 0 we have as necessary and sufficient conditions: a) Tr(er) = 
= a+ ap + apl + ... + apn~x = -ax ^ 0 , and b) ap - a ^ 0. 

The second condition is certainly satisfied since the roots a, ap, ap2, ...,ap"~l 

of an irreducible polynomial are all different. 
Hence we have the resul t : If n is prime and p is a primitive element 

(modn), thenj(x) is an N-polynomial over Fp if and only if Tr(a) = — ax 7-- 0. 
Consider, e.g., the field F2. The number p = 2 is a primitive element mod 3, 

5, 11, 13, 19,.... Hence over the field F2 the irreducible polynomials of degree 3, 
5, 11, 13, 19,... are N-polynomials if and only i'Tr(a) 7-= 0, i.e. ax = 1. 

Consider next the field F3. The number p = 3 is a primitive element mod 5, 7, 
17, 19,.... hence, over the field F3 the monic irreducible polynomials of degree 
5, 7, 17, 19,... are N-polynomials if and only if Tr(a) ^ 0, i.e. ax = 1 or ax = 2. 

Example 3. Consider the field F2 and suppose again that n is a prime. 
The number p = 2 i s not a primitive element mod7, 17, 23, 31, . . . , so 

that in these cases the second term on the right hand side of (5) is not irreducible 
over F2. 
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A) For n = 7 we have 

x1 - 1 = (x + l)(x3 + x2 + l)(x3 + X+ 1). 

Hence ®X(X) = 1 + A + A2 + ... + A6, d>2(A) = 1 + A + A2 + A4, <£3(A) = 
= 1 + A2 + A3 + A4. 

Hence a polynomial of degree 7 over i^ is an N-polynomial if and only if the 
following three conditions are satisfied: 

a) Tr(a) = ax = 1. 
b) (p2(a) = a+ a2 + a22 + a24 = a+ a2 + a4 + au ^ 0. 
c) <p3(a) = a+ a22 + a1' + a24 = a + a4 + a8 + a16 ^ 0. 

(Note, by the way, that there exist 18 irreducible polynomials of degree 7 over 
F29 7 of them being N-polynomials.) 

B) To see how this works, consider a concrete irreducible polynomial over F2, 
e.g., f(x) = x1 + x6 + x4 + x2 + 1. If f(a) = 0, we have by successive multi­
plication (in such a simple case by hand computations): 

a1 = 1 + a2 + a4 + a6, an = 1 + a + a1 + a5, 

a* = 1 + a + a1 + a3 + a4 + a5 + a6, a)6 = 1 + a + a3 + a4 + a6. 

a]0 = a+ a1 + a4 + a6, 

Hence: 

<p2(a) = a + a1 + a4 + (1 + a + a3 + a4 + a6) = 1 + a2 + a3 + a6 ^ 0, 

<P3(a) = a + a4 + (1 + a + a2 + a3 + a4 + a5 + a6) + (1 + a + a3 + a4 + a6) = 

= a + a2 + a4 + a5 # 0. 
All the three conditions are satisfied, hence our polynomial is an N-polyno­

mial. 
C) In this simple case we can write down the 7 x 7 matrix corresponding to 

the straightforward method mentioned at the beginning. We need 
a32 = 1 + a2 + a3 + a4, a64 = a + a2 + a3 + a5. Then the matrix (formed by 
the coefficients of a, a2, a4,..., a64) 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 1 0 0 
1 1 1 1 1 1 1 
1 1 0 1 1 0 1 
1 0 1 1 1 0 0 
0 1 1 1 0 1 0 

is easily seen to have the determinant equal to 1 (in F2). 
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D) The advantage of our method becomes clear if n is large. Consider the 
case of a polynomial of degree 17 over F2. Since p = 2 belongs to exponent 8 
(mod 17), the second term in (5) is a product of two irreducible factors of degree 
8. The corresponding factorization is 

JC17 - 1 = (1 + x)(l + X + x2 + x4 + x6 + x7 + x8)(l + x3 + x4 + x5 + x8). 

This implies: 

<P.W = I A', 
i = 0 

<p2(A) = 1 + A + A3 + A6 + A9, 

0>3(A) = 1 + A3 + A4 + A6 + A9, 

Hence an irreducible polynomial of degree 17 over F2 is an N-polynomial if and 
only if 

a) Tr(a) = a, = 1, 
b) a + a2 + a8 + a64 + a512 ^ 0, 
c) a + a8 + a16 + a64 + a512 ^ 0. 

This is, of course, essentially simpler than to deal with a 17 x 17 matrix. 
Example 4. Consider again F2 and an irreducible polynomial f(x) of 

(composite) degree 21. 
To find the degrees of the irreducible factors of x21 — 1, we consider the 

system of equations: 

a, = (21,2 - 1), 4<r4 + 2<r2 + <r, = (21,24 - 1), 

2<r2 + <r, = (21,22 - 1), 5<r5 + <r, = (21,25 - 1), 

3<T3 + <T, = (21 ,2 3 - 1), 6<T6 + 3<T3 + 2<T2 + <T1 = ( 2 1 , 2 6 - 1). 

This gives immediately <r, = 1, cr2 = 1, <J3 = 2, <J4 = 0, a5 = 0, <r6 = 2, i.e. there 
is one linear factor, one quadratic factor, two factors of degree 3 and two factors 
of degree 6. 

The factorization itself is 

x21 - 1 = (1 + x)(l + x + x2)(l + x + x3)(l + x2 + x3). 

(1 + X + x2 + x4 + x6)(l + x2 + x4 + x5 + x6). 

This implies: 
20 

<Z>,(A) = I X', 
; = o 
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02(X) = X A", U2 = {0, 1, 3, 4, 6, 7, 10, 12, 13, 15, 16, 18, 19}. 
; i £ l \ 

<p,(A) = X -*". ^3 = (0, 1, 2, 4, 7, 8, 9, 11, 14, 15, 16, 18}. 
ue L\ 

04(A) = Y, ^"- l-!4 = (0, 2, 3, 4, 7, 9, 10, 11, 14, 16, 17, 18}. 
ue L4 

05(A) = X A", U5 = {0, 1, 3, 6, 7, 10, 13, 15}. 
ue i\ 

0b(X) = X *tt« ^6 = {0, 2, 5, 8, 9, 12, 14, 15}. 
M e l- 6 

Define a by f(a) = 0. We have the following resul t : 
The polynomial f(x) is an N-polynomial if and only if the following 6 

conditions are satisfied: Tr(a) = a, = 1, <P,.(a) ^ 0 (/= 2,3,...,6). 
Remark. If Tr(#) = 1, then we may replace, e.g., the second condition 

by 1 + ^ a2" # 0, where U2 = {2, 5, 8, 9, 11, 14, 17, 20}. 
uei\ 

In examples of this type machine computation is inevitable. Note also: Since 
n > 16 the tables in [6] cannot help in this case. Note finally that there exist 
99858 monic irreducible polynomials of degree 21 over F2. 27783 of them are 
N-polynomials. This should emphasize that there are some reasonable limits for 
the construction of tables. 

Example 5. Consider the field F3 and an irreducible polynomial/(x) of 
degree 25 over Fv 

Since p = 3 is a primitive element (mod 52), we have 

x*- 1 = ( x - \)'Q5(x)Q25(x) = (x- l)(x4 + X
3
 + X

2
 + X-f l). 

.(x20 + x,5 + x,0 + x5+ 1), 

where the polynomials to the right are irreducible over F3. We have 

<P,(A) = f V, 
; = 0 

<Z>,(A) = - 1 + A - A5 + A6 - A10 + A" - A15 + A16 - A20 + A21, 

03(A) = A 5 - 1. 

Define a byf(a) = 0, and denote s(A) = 1 + A5 + A10 + A15 + A20. We have 

<P,(a) = Tr(a). 
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02(a) = - [a + a35 + a3" + a3'5 + a320] + [a3 + a36 + a3XX + a3'6 + a3lx = 

= ~ [S(a)] + [S(a)]3 = S(a).[Sa) - 1]-[£(«) - 2]. 

03(a) = a35 — a. 

<X>3(a) 7-- 0 is certainly satisfied since the roots of our irreducible polynomial 
a, a3, a32,..., a324 are all different. 

We have the following resul t : An irreducible polynomial of degree 25 
over F3 is an N-polynomial if and only if 

a) Tr(a)=£0. 
b) The element a + a35 + a3W + a3X5 + a320 is not an element of the ground 

field F3 (i.e. 0, 1, 2). 
Before proceeding to the next examples we prove the following simple 

Lemma 2. Let f(x) be an irreducible polynomial of degree n over F2 and 
f(a) = 0. Let t be a divisor of n and s = n/t. Denote 

S(t, a) = X a2", where Ut = {0, /, 2l,..., (s - 1) /}. 
ueUt 

IfTr(a)= 1, then S(t,a)=£0. 

Proof. For any non-negative integer v we have [S(t,a)fl = £ a2"*1 = 
ueUt 

= Yu a2> where Ut v = {v, t + v,..., (s — 1) t + v}. If v runs through 

{0,1,2, ...,t — 1}, we have 

Ut u UtA u ... u C/,tl_ , = {0,1,2, . . . , / ! - 1}. 

Hence 

Tr (a) = S(t, a) + [S(t, a)]2 + [S(t, a)f + ... + [S(t, a)]2"1. 

Now S(t, a) = 0 would imply Tr(a) = 0, contrary to our assumption. 

Example 6. Let n = 2k-r, where k = 1, r > 2 a prime, and suppose that 
2 is a primitive element (modr). Let further f(x) be an irreducible polynomial 
of degree n over F2 andf(a) = 0. 

In this case we have: 

xn- 1 =(xr- l)2" = ( x + l ) 2 V r " , + x r - 2 + . . . + 1)2\ 

Hence: 
v « 1 n - 1 

0t(x) = -—i= ZxJ, 
X — 1 7 = 0 
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<P2(.v) = (l +-v):A.(l + X + ...+xr-1)2"-1 = (l +JC)(1 +xrf~l = 

= [1 +xr + x2r+ ... +x ( 2*- I ) ' ] -( l +x). 

(2k - \\ 
Hereby we have used the fact that ( 1=1 (mod 2) for any 

v = 1.2 2k — 1. This implies: 

<P](a) = Tr(a). 

02(a) = a+ ay+ a22r + ... + ar~r + [a + a2' + ... + a2"~r]2 = 

= S(r, a) + [S(r, a)]2. 

Now since S(/\ a) # 0, <P2(a) # 0 if and only if 5(r, a) + 1 # 0. 
We have the following resul t : The root a is a generator of a normal 

basis if and only if 
a) Tr(fI) ^ 0 , 
b) a+ ay + a2~r + ... + a2"~r ?- 1. 

This is the same result as given in [4]. 
Example 7. If n is a prime-power, n = r\ e > 2, the results obtained by 

our method ared formally not the same as in [4]. 
We first quote the main result of [4]. 
P ropos i t ion . Suppose « = r f ( r a prime, r > 2) and 2 is a primitive ele­

ment (mod r/). Letf(x) be an irreducible polynomial of degree n over F2 and 
f(a) = 0. Denote 

g](x) = 1 + X *2\ 
weUf 

where 

I7* = {/r|/ = 0, l ,2, . . . , (r^-1-- l)} = {0,r ,2r , . . . , (r^-1- l)r}, 

and for 2 = j = e 

ft(-v)=X*2\ where Uf= {i-r^]\i = 1,2, . . . ,(r^>+ • - 1); r -f /}. 
U G U* 

Then f(.v) is an N-polynomial if and only if T r ( a ) = l , g\(a) 7-= 0, 
g2(a)*0,...,ge(a)*0. 

We now compare this result with the result obtained by our method in the 
case e = 3, i.e. n = r3. 

A) By the Proposition just mentioned f(x) is an N-polynomial if and only if 
Tr(ff) = 1 and 

g , ( a ) = l + X « 2 V 0 , where U* = {ir\i = 0,1,2, ...,r2 - 1}, 
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g2(a)= £ a 2 V 0 , where £/2* = {ir\i = 1,2, ...,r2 - 1; r + /}, 

ft(«) = Z «2" # 0, where [73* = {ir2\i = 1,2, ...,r - 1}. 

B) By our method (under the same suppositions) we obtain successively: The 
decomposition of xn — 1 into irreducible factors over F2 is 

x*-l=(l+x).QAx)-QAx)-QAx) 
Hence 

<pi(*)="i*'. 
i = 0 

02(x) = (1 + x")(l + x r Y ' ( l + x) = [1 + xr + x2r + ... + x ( r2-1)r]-(l + x). 

d)3(x) = (1 + x")(l + x r 2)- '( l + xr) = [1 + xr2 + x2r2 + ... + x ( r- , ) r 2]-(l + x r). 

<P4(x) = 1 + xr2. 

This implies: 

<P,(a) = Tr(a). 

^ ( a ) = £ a2"> where 
ueU2 

C/2 = { 0 , r , 2 r , . . . , ( r 2 - l ) . r } u { l , r + l , 2 r + l , . . . , ( r 2 - l ) r + l } . 

®Aa) = Z a 2 ' where 
MGU3 

U3 = {0 , r 2 ,2 r 2 , . . . , ( r - l ) r 2 }u{r , r 2 + r,2r2 + r , . . . , ( r - l ) r 2 + r}. 

<P4(a) = a + a2'2. 

The condition <P}(a) ^ 0 implies Tr(a) = 1. The condition <P4(a) =£ 0 is 
always satisfied since the roots of f(x) = 0 are all different. The condition 
<P2(a) = S(r, a) + S(r, a)2 T-= 0 is satisfied (by Lemma 2) if and only if 
1 + S(r, a) T-= 0. This condition is the same as the condition g\(a) ^ 0. 

But the condition <f>3(a) ^ 0 is different from the remaining conditions 
g2(a) # 0 and g3(a) * 0. 

To have a concrete example consider n = 5\ Then 
A) Uf = {5, 10, 15, 20, 30, 35, 40, 45, 55, 60, 65, 70, 

80, 85, 90, 95, 105, 110, 115, 120}, 
C/3* = {25, 50, 75, 100}. 

B) C/3 = {0, 25, 50, 75, 100} u {5, 30, 55, 80, 105}. 

The second method leads to simpler results. 
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НЕПРИВОДИМЫЕ МНОГОЧЛЕНЫ НАД КОНЕЧНЫМ ПОЛЕМ 
С ЛИНЕЙНО НЕЗАВИСИМЫМИ КОРНЯМИ 

§1еГап 8сЬ\уаг2 

Резюме 

Пусть/(.х)-неприводимый многочлен степени п над конечным полем Гд и/(а) = 0. Рассмо­
трим конечное расширение Рч(а) как векторное пространство размерности п над Гд. Если 
корни уравнения /(х) = 0 линейно независимы над Рч (значит они образуют нормальный 
базис Рч(а)/Гц), то назовем /(х) ТУ-многочленом. 

В статье указан общий метод проверки, является ли заданный многочлен (любой степени 
п над любим полем Еч) ^-многочленом или нет. Метод демонстрирован на нескольких 
примерах. 
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