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IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
WITH LINEARLY INDEPENDENT ROOTS

STEFAN SCHWARZ

Let GF(q) = F, be a finite field, ¢ = p*, s 2 1, p a prime. Let f(x) be a monic
irreducible polynomial of degree n over F, and a a root of f(x) = 0. If Bis an
element of the field F,(a) and the elements B, f7, ..., B¢ " are linearly indepen-
dent over F,, then the set 2= {f, B, ..., "'} is called a normal basis of
F(a) over F,, and B is called a generator of the normal basis €. It is well
known that such a basis always exists, and any element of €2 is a generator
of Q.

It is known that F(a) is a cyclic extension of F, with the (cyclic) Galois group
G of order n. The automorphism x — x? is a generator of G.

The problem to be discussed in this paper is the following. Given a fixed
chosen monic irreducible polynomial f(x) of degree n over F, we have to decide
whether the roots of f(x) = 0 represent a normal basis of F(a) over F,. For
convenience we shall call a polynomial having this property an N-polyno-
mial.

There is a straightforward way how to verify whether a given polynomial is
an N-polynomial or not. We represent the roots a, a’, ..., ! of f(x) =0 as
polynomials of degree at most n — 1 in a:

@’ =by+ba+..+b, """, (i=0,1,...,n—1).

[Hereby by, =1, byy = by, = ... = b, ,,_; =0.]
If the n x n matrix B = (b;) is non-singular, then f(x) is an N-polynomial. If n
is small, we can establish directly whether B is non-singular. However, if n is
large (say n = 10), this method may require a great number of computations.
In this paper we present a method how to avoid the consideration of large
matrices. The result obtained is a wide generalization of that given in the paper
[4], and the proofs, as well as the results, are different. In [4] the authors deal
only with the field £, while the result of the present paper holds for any finite
field. [Of course F is the most important case for the coding theory.] Also the
authors of [4] (as well as the paper [5], which has a different main aim) deal only
with the case that n = 2“-r®, where r is a prime, while in the present paper » may
be any positive integer.
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Our method is based on a statement proved in [9] which holds for cyclic
extensions of any field. In order to make the present paper independent of [9],
I give here a direct proof of this statement for finite fields (see Lemma 1). This

is then used to prove the main result.

1. The Theorem

We retain the notations introduced above and introduce the matrix C = (c;)
defined by

1 - COO + C0|a+ Cozaz + cee + Co’n_lanil,

-1
a’=co+cpa+cpdt+ ..o+, @t

n—1 (1)

a2q=020+()21(l+ C2202+... +CZ’,,_I(1 N

n—1

—a 2
a" " M=c, ot @120+ G,

[Here C00= l, C0|=... —:60’"_1:0.]
Denote A = (1, @, a?, ..., a" ~")" (where T denotes the transpose). The identities

(1) can be written in the form

[1,a% a*,...,a" V)" = C- A.

If f(x) is irreducible (over F)) (as we supposed), it is known (see [8]) that C is
non-singular and A" — 1 is the minimal polynomial of the matrix C. [As a matter
of fact it can be proved that det|C| = (—1)"~"', but this is irrelevant for our

purposes.]

If=ro+ra+..+r,_a" ' =(r,r,...,r,_) A, (r,e F), we have p? =
= (rO’rl,""rn—l) [lsaq, azq"-w a("—])q]T= (ro,r],...,rn_l)CA. Furlher ﬁqz =
= (rg, 7y -..,r,_1) C*4, and, in general, we have

B = (ro,riy.eestn_))C-4 for i=0,1,2,...,n—1.

(Note that C” = E, where E is the n x n unit matrix.)
Denote o = (ry, 7y, ...,7,_1), then

[
2 n—I\T QC
(ﬁaﬁqaﬂq ""7ﬂq ) = QCZ -A.
QC"_]
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Hence the set (B, B9, ...,0% ") is a normal basis if and only if the matrix
o
0| ¢

is non-singular.

Cn -1

For gny vector o we have oC” = g, i.e. o(C" — E) = 0 (the zero row vector).
Denote by y,(4) the monic A-polynomial of smallest degree (with coefficients in
F)) such that o-y,(C) = 0. Clearly the degree of y,(C) is < n. (The polynomial
¥,(4) is called the minimal polynomial of g with respect to C.) It is known that
¥,(4) is uniquely determined and (1) divides " — 1.

The condition det |Q| # 0 says that the minimal polynomial of g (with respect
to C)is A" — 1. Decompose A" — 1 into the product of monic irreducible factors
over F,. This factorization is of the form

A —1=[p®) ... sV,
where t =1if (n,p) =1,and t = p®if n =m-p*, (n, m) = 1. Denote the degree
of @,(A) by d,. Construct the polynomials @,(1) =

of degree n — d;. The
@A)

minimal polynomial of o (with respect to C)is A" — 1 if and only if - @,(C) # 0

fori=1,2,....,r. We have proved the following.

Lemma 1. An element B = o- A€ F(a) is a generator of a normal basis if and
only if 0. ®(C)# 0 fori=1,2,...,r

We now return to the original problem, namely to find under what conditions
aitself [i.e. the root of the given f(x)] is a generator of a normal basis (i.e., f(x)
is an N-polynomial). Now a = (0,1,0,0,...,0)- 4. Hence f(x) is an N-polyno-
mial if and only if (0, 1,0, ...,0) ®(C) # (0,0, ...,0), fori=1,...,r, ie.,

(091’070,"O)Q(C)°A 360- (2)

Assume @A) = b + bPA + bPAZ + ... +bD , A4 4 pn
Clearly (0,1,0, ...,0) @(C) A isequal to the second term of the column vector
@(C)- A. Now the second term of E- A4 is a, the second term of C- 4 is a7, and,

in general, the second term of C/A is a"j(j =0,1,...,n — 1). Hence the second
term of @(C) A is

b’a + bPa’ + ba® + ... + b, _a” " + a7
We have proved the following

Theorem. Let f(x) be a monic irreducible polynomial of degree n over F, and
aaroot of f(x) =0. Let A" — 1 = [¢,(1) ... 9, (A)], t = 1, be the factorization of
A" — 1 into monic irreducible polynomials over F,. Denote
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@i(4) ’
Then a is a generator of a normal basis of F,(a) over F, if and only if for
i=1,2,...,r, we have
bia + b{"a? + bz"')a"2 + ...+ b 4~ " v g “£0. 4)

Notation, If @(A) is the polynomial (3), we shall denote the left hand
side of (4) by @(a). [Clearly &(1) is a g-polynomial of Ore, often cal-
led also the linearized polynomial of @,(1). See [2].] The linearized polynomials
appear here in an quite natural way. No knowledge about their properties is

needed in what follows.
Remark 1. Since 4 — 1 is always a factor of A" — 1 one of the r con-

ditions is always Tr(@) = a+ a’+ @ + ... + a”" ' #0.
Remark 2. Ore ([3]) proved that the number v of N-polynomials of
degree n over F, is given by the formula

d,

1 —d —d,
v=-q"(l—q Nl—g ™ ..(1—q Y.

Remark 3. Peterson and Weldon ([6]) list the set of all N-polyno-
mials over F, of degree n < 16 and some N-polynomials of degree 17 < n < 34.
As far as I can decide analogous tables, e.g., for F, have not been published. (See

however [1].)
2. Examples

We first recall some known results concerning the decomposition of

X"—l=x—-D"""+x"" 4+ ... +1) (5)

over F, into irreducible factors.
Let o, be the number of monic irreducible factors of x" — 1 of degree k over

F,. If (n,q) = 1, it is known (see [7]) that
k
o-kzlzu(—)(n,q"—l), k=1,2,...,n),
k% t

where p is the Moebius function. Otherwise stated the numbers o, may be
successively calculated from the system of linear equations

n

Y 1oy = (n,q* — 1), k = 1,2,...,[—].
tk 2

(See Example 4 below.)
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The following Corollaries of this general formula will be freely used in the
sequel.
a) If n> 2 is a prime, and ¢ belongs (mod n) to the exponent /, then the

n—1

second factor on the right-hand side in (5) is a product of irreducible

factors of degree / (over F). _ _

b) Let r be a prime, (r,¢) = 1 and denote Q,(x) = (x" — 1)/(x" "' — 1). Let
n=r" v=1. If g is a primitive element (modn), then each factor in the
decomposition

x"—1l=(x—-1)0,(x)0,:(x) ... Q,:(x)

is irreducible over F,.

Example 1. The simplest case is the following. Let f(x) = x"+ q,-
x"~'+ ... + a, be an irreducible polynomial of degree n = p¢ over F,= GF(p®)
and a a root of f(x) = 0.

In this case x" — 1 = (x — 1¥". Hence ®(x) = 1 + x + x>+ ... + x" !, and
&) =a+a’+ ...+ a” ' =Tr(e) = —a,. Hence our polynomial is an
N-polynomial if and only if Tr(a) = —a, # 0.

This is a known result going back at least to [5].

Example 2. Let f(x) =x"+ a;x"~' + ... + a, be an irreducible polyno-
mial over F, and n a prime, (n, p) = 1. Suppose moreover that p is a primitive
element (mod n). We have to decide under what conditions f(x) is an N-polyno-
* mial (over F).

Inthiscase ®,(1) = A — 1, P (A) =1+ A + ... + A"~ '. Denoting by a a root
" of f(x) =0 we have as necessary and sufficient conditions: a) Tr(a) =
=aq+a’+a”’ +..+a" '=—a #0,and b) a® — a #0.

The second condition is certainly satisfied since the roots a, o, a’, ... af

of an irreducible polynomial are all different.

Hence we have the result: If n is prime and p is a primitive element
(mod n), then f(x) is an N-polynomial over F, if and only if Tr(a) = —a, # 0.

Consider, e.g., the field . The number p = 2 is a primitive element mod 3,
5,11, 13, 19, .... Hence over the field E the irreducible polynomials of degree 3,
5, 11, 13, 19, ... are N-polynomials if and only if Tr(a) # 0, i.e. q, = 1.

Consider next the field . The number p = 3 is a primitive element mod 5, 7,
17, 19, .... hence, over the field F the monic irreducible polynomials of degree
5,7,17, 19, ... are N-polynomials if and only if Tr () # 0, i.e. a, = 1 or q, = 2.

Example 3. Consider the field £ and suppose again that »n is a prime.

The number p =2 is not a primitive element mod 7, 17, 23, 31, ..., so
that in these cases the second term on the right hand side of (5) is not irreducible
over E. :

n—1
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A) For n =7 we have
x'—1=(x+ 1>+ x>+ (x> + x + 1).

Hence D(A)=14+A4+A2+ ...+ 1% DA =14+14+A+1% @(1)=
=1+A"+ 2+ 2%

Hence a polynomial of degree 7 over E is an N-polynomial if and only if the
following three conditions are satisfied:

a) Tr(a) =a,=1.

b) D(a)=a+a*+a” +a* =a+a®+a*+ ' £0.

) Da)=a+a’+a’+a " =a+a*+a*+a®#0.
(Note, by the way, that there exist 18 irreducible polynomials of degree 7 over
E, 7 of them being N-polynomials.)

B) To see how this works, consider a concrete irreducible polynomial over E,
eg, f(x)=x"+x*+x*+ x>+ 1. If f(a) = 0, we have by successive multi-
plication (in such a simple case by hand computations):

a =1+a*+a*+ af, a’?’=1+a+a*+a’,
a =l4+a+a*+ad+a*+a’°+ ab, a®=1+a+d+ a*+ a
@’ =a+a’+ a* + b,

Hence:
b(a)=a+ad*+a*+(1+a++a*+a)=1+a*+a*+ a®#0,
d(a)=a+a'+(l+a+++a*++a)+(1+a+a’+ a* +a) =
=a+a’+a*+a’#0.

All the three conditions are satisfied, hence our polynomial is an N-polyno-
mial.

C) In this simple case we can write down the 7 x 7 matrix corresponding to
the straightforward method mentioned at the beginning. We need
a?=1+a*+ &+ a*, a® = a+ a* + a® + @°. Then the matrix (formed by
the coefficients of a, a?, a*, ..., a*)

01 00O0O0TO O
001 00 0O
0000T1O0TO0
1 111111
1101 1 01
1 011100
0111010

is easily seen to have the determinant equal to 1 (in E).
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D) The advantage of our method becomes clear if » is Iérge. Consider the
case of a polynomial of degree 17 over E. Since p = 2 belongs to exponent 8
(mod 17), the second term in (5) is a product of two irreducible factors of degree

8. The corresponding factorization is
xT—1=(0+x)A+x+x2+x*+ x°+ x7+ x5 + x> + x* + x° + x9).

This implies:

D(A) = iil‘,

D,(A)=1+A+A>+ 25+ 2%,

DA =1+ 4+ 2+ 25+ 2%,
Hencefan irreducible polynomial of degree 17 over F is an N-polynomial if and
only i

a) Tr(a) =a, =1,
b) a+ a®>+ a®* + a* + a°? # 0,
) a+at+ a®+ a* + o’ #£0.

This is, of course, essentially simpler than to deal with a 17 x 17 matrix.
Example 4. Consider again F, and an irreducible polynomial f(x) of

(composite) degree 21.
To find the degrees of the irreducible factors of x2' — 1, we consider the

system of equations:
o, =21,2-1), 40, + 20, + 0, = (21,2 = 1),
20, + 0, = (21,22 = 1), 505+ 0, =(21,2° — 1),
30+ 0, = (21,2 = 1), 60;+ 30; + 20, + 0, = (21,2 —1).

This gives immediately 0, =1, 0, =1, 0 =2, 6, =0, 05 = 0, 0, = 2, i.e. there
is one linear factor, one quadratic factor, two factors of degree 3 and two factors

of degree 6.
The factorization itself is

x—1=04+x0+x+xH0 +x+ xH(A + x>+ x3).
A+ x+x2+x*+ x990 + x2 + x* + x° + x9).
This implies:
0
D (A) = _Zol',
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O(A) =Y A% Uy=1{0,1,3,4,6,7. 10,12, 13, 15, 16, 18, 19},

uel

D)= Y A% Uy=1{0,1,2,4,7,8,9, 11, 14, 15, 16, 18}.

uely

DA =Y A U,=1{0.2,3,4,7,9, 10, 11, 14, 16, 17, 18}.

uely

o (A=Y A4 Us=1{0,1,3,6,7, 10,13, 15}.

ue s

D)= ) A% Ug=10,2,5.8,9, 12, 14, 15}.
uel’y
Define a by f(a) = 0. We have the following result:
The polynomial f(x) is an N-polynomial if and only if the following 6
conditions are satisfied: Tr(a) =a, =1, @(a) #0 (i = 2,3, ...,6).
Remark. If Tr(a) = 1, then we may replace, e.g., the second condition
by 1 + Y &’ # 0, where U,=1{2.58,9,11, 14, 17, 20}.

uel»
In examples of this type machine computation is inevitable. Note also: Since
n > 16 the tables in [6] cannot help in this case. Note finally that there exist
99858 monic irreducible polynomials of degree 21 over E. 27783 of them are
N-polynomials. This should emphasize that there are some reasonable limits for
the construction of tables.

Example 5. Consider the field £ and an irreducible polynomial f(x) of

degree 25 over F.
Since p = 3 is a primitive element (mod 5%), we have

XP == (0= 1) 05(x) @as(0) = (x = D(x* + x° + X3+ x + 1)
(0 + XX X ),

where the polynomials to the right are irreducible over F. We have

2
Dy(A) = i;l’}
BA) = —1 4 A— A5+ AS— A0 f AN 215 4 416 _ 420 4 a0
DA) = A5 — 1.
Define a by f(a) = 0, and denote S(1) =1 + A> + A1 + 15 + A%, We have
d,(a) = Tr(a).
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@z(a) - _ [Cl + a3s + a310 + a3|5 + a320] + [(13 + a36 + a3|l + a3I6 + a32| _
= — [S(@)] + [S(@)] = S(a)-[Sa) — 1]-[S(a) — 2].

D) = 2 — a.

d,(a) # 0 is certainly satisfied since the roots of our irreducible polynomial
a, @®, a%, ..., " are all different.

We have the following result: An irreducible polynomial of degree 25
over F is an N-polynomial if and only if

a) Tr(a) #0.

b) The element a + * + &* + &> + &* is not an element of the ground
field E (i.e. 0, 1, 2).

Before proceeding to the next examples we prove the following simple

Lemma 2. Let f(x) be an irreducible polynomial of degree n over F, and
f(a) =0. Let t be a divisor of n and s = nft. Denote

S(t,a) =Y a*, where U,={0,1,2t,....(s — 1)t}.

ueU,
If Tr(a) = 1, then S(¢, a) # 0.
u+

Proof. For any non-negative integer v we have [S(t,0) = ) o™ =

uel,

= Y a* where U,={v,t+v,...,(s—1)t+v}. If v runs through

uel,,

{0,1,2,...,t — 1}, we have
vouU,vu..ulU,6 _,={0,12,...,n—-1}
Hence
Tr(a) = S(t, @) + [S(, )P + [S¢ @) + ... + [SC, )] .
Now S(z, @) = 0 would imply Tr(a) = 0, contrary to our assumption.

Example 6. Let n=2*.r, where k 2 1, r > 2 a prime, and suppose that
2 is a primitive element (mod r). Let further f(x) be an irreducible polynomial
of degree n over F, and f(a) = 0.

In this case we have:

X"— 1= = D) =+ D x4 L+ DR

Hence:

n__ n—1
O,(x) =% :=zxa

X — j=0
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D)=+ +x+ .. +x "N T=0+x)1+x)""' =
=[1+x+x"+ .. +x¥D7.01 + x).

Hereby we have used the fact that <2k - l) =1 (mod2) for any
r=1.2.....28 — 1. This implies: ’
®,(a) = Tr(a). _
Sa)=a+a"+a+ ..+ +la+a¥ +...+a” =
S(r.a) + [S(r, )]~

Now since S(r. @) # 0, @,(a) # 0 if and only if S(r,@) + 1 # 0.

We have the following result: The root a is a generator of a normal
basis if and only if

a) Tr(a) # 0.

b) a+a¥ +a + ...+ #L
This is the same result as given in [4].

Example 7. If nis a prime-power, n = r¢, e > 2, the results obtained by
our method ared formally not the same asin [4].

We first quote the main result of [4].

Proposition. Suppose n = r¢ (r a prime, r > 2) and 2 is a primitive ele-
ment (mod #n). Let f(x) be an irreducible polynomial of degree n over F, and
f(a) = 0. Denote

gl(x) = 1 + Z x2"’

ue U}
where
Ur={irli=0,1,2,....,(r° "' = 1)} ={0,r,2r, ...,(r* "' = Dr},

and for2<j=<e

g(x)= Y x¥ where Ur={i-r/ 'li=12,..,0 " = 1);r+i.
uELT
Then f(x) is an N-polynomial if and only if Tr(e)=1, g,(a)#0,

gl(a) # 09 ""ge(a) ;’é 0
We now compare this result with the result obtained by our method in the

case e = 3,i.e. n=r’.
A) By the Proposition just mentioned f(x) is an N-polynomial if and only if
Tr(a) =1 and
g@=1+ Y a*#0, where Uf={ir|i=0,1,2,....,r — 1},

4eUt
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g@)= Y a*#0, where Uf={irli=12,...,r = 1;r+i},

ue U3

g(@ =Y a*#0, where U¥={ir’|li=1,2,...,r—1}.

ue U}

B) By our method (under the same suppositions) we obtain successively: The
decomposition of x" — 1 into irreducible factors over E is

x"—1=04x)0,(x)-0,:x)- Q,3(x)

Hence
n—1
D,(x) = 2’0 x'.

D)=+ xYVA+x)"'"A+x)=[1+ x4+ x¥+ ... + x~ .1 + x).

D)=+ xVA+x)'A+x)=[1+x"+x* + ... + x"7.(1 + x").
D,(x) =1+ x".
This implies:
@, (a) = Tr(a).
@y(a) = Y a*, where
ueU,
U,={0,r,2r,...(r> = D)-r}u{l,r+ 1,2r+1,..,(r* = Dr+1}.
d,(a) = 2(‘1 a”, where
uel,
U, ={0,r32r ...,(r — Dr2yu{r,r*+r2r2 +r,....,(r— Drr +r}.
@,(a) = a+ .

The condition @,(a) # 0 implies Tr(a) = 1. The condition ®,(a) # 0 is
always satisfied since the roots of f(x) =0 are all different. The condition
d,(a) = S(r,a) + S(r,a)* #0 is satisfied (by Lemma?2) if and only if
1 + S(r, @) # 0. This condition is the same as the condition g,(a) # 0.

But the condition ®,(a)# 0 is different from the remaining conditions
g,(@) # 0 and gy(a) # 0.

To have a concrete example consider n = 5°. Then
A) U¥ = {5, 10, 15, 20, 30, 35, 40, 45, 55, 60, 65, 70,
80, 85, 90, 95, 105, 110, 115, 120},
U¥ = {25, 50, 75, 100}.
B) U, ={0, 25, 50, 75, 100} u {5, 30, 55, 80, 105}.
The second method leads to simpler results.
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HEINMPUBOAUMBIE MHOI'OWJIEHBI HAJI KOHEUHBIM T1OJIEM
C JIMHEMIHO HE3ABUCUMbBIMH KOPHSMU

Stefan Schwarz
Pe3rome

IMycTs f(x)-HENPUBOAMMEIR MHOTO'JIEH CTETIEHH /1 HA/l KOHEYHBIM nosieM F, u f(a) = 0. Paccmo-
' TPUM KOHEYHOe pacliMpeHue F(@) kak BEKTOpHOE MPOCTPAHCTBO pa3MepHocTH n Han F,. Ecmu
KOpHM ypaBHeHus f(x) = 0 JHHeHHO He3aBHCHMMEI Haji F, (3HAYMT OHH O6GpAa3yIOT HOPMAIbHBIH
6asuc F(a)/F), To Ha30BeM f(x) N-MHOrO4JIEHOM.
B craTbe yka3aH o6wIuit METOA MPOBEPKH, SABJIACTCS JIM 3aAaHHBIH MHOTO4IeH (J1F000# cTeneHu
" n Han mobGum monem F) N-MHOTO4JIEHOM HJIM HET. MeTON JEMOHCTPHPOBAH Ha HECKOJNbLKHX
' TpHMeEpax.
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