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REMARK ON AN INTEGRAL OF M. MATLOKA 

BELOSLAV RIECAN 

Recently M. Matloka has constructed a Riemann type integral for functions 
/ : <a, b> -> L(R), where L(R) is a special set of so-called fuzzy numbers. Of 
course, the set L(R) has a natural algebraic and topological structure: it be
comes an ordered space and simultaneously a metric space. This remark con
tains an abstract point of view of the Matloka theory. We give assumptions 
under which the corresponding generalizations of the Riemann-Matloka inte
gral have the expected properties. Recall that the space L(R) with his usual 
operations does not form a linear space. Therefore our point of view may be 
useful. 

First we shall consider an ordered structure. 
1. Assumpt ions . There is given a partially ordered set A satisfying the 

following properties: 
1.1. A is a boundedly complete lattice. 
\.2. There is given a commutative and associative operation + on A with a 

neutral element O, preserving the ordering (i.e. x ^ y => x + z ^ y + z). 
1.3. There is given a multiplication of elements of A by real numbers, 

associative, preserving the ordering (i.e. x ^ y, c > 0, d < 0 => ex ^ cy, dx ^ dy) 
and such that \x = x. 

2. Definition. Iff: <a, b} -> A is a bounded function and D = {x0, ...,x„} is a 
decomposition of (a,b}, then we first define the lower and upper sums 

S(f D)=t M^ - xt_ •), S(f D)=t mix, - * , _ , ) 
/ = i / = i 

and then the lower and upper integrals 

(U) f(x) dx = inf{s(f £>); D is a partition of<a,6>}, 

(L) f(x) dx = sup {s(f, D); D is a partition of <.a,b}}. 
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The function f is integrable if(U) f(x) dx = (L) f(x) dл. 

The common value will be denoted by (O) f(x) dx. 
Ja 

3. Proposition. Iff g are integrable functions and a, ft are real numbers, then 
af+ [ig is integrable, too, and 

f
b /%b /»/> 

(aj(x) + Pg(x)) dx = a(O) f(x) dx + p(0) g(x) dx. 

Iff^g, then(O) f(x) dx ź (O) g(x) dx 

P r o o f . It is straightforward. 
4. Proposition. Iff is integrable on <a, b> and ce(a,b), then f is integrable on 

(a,c) and (c,b} and 
/*b /• i\b 

(O) f(x) dx = (o) f(x) dx + (O) f(x) dx 
a Jc 

P r o o f . It follows from the inequalities 

(U)\ f(x)dx^(U)\ f(x)dx + (U) 
Ja Ja 

f(x) dx ^ 

Г. Ž(L)\ f(A)d.v + (L) f(x)dx^(L) f(x) dx. 

Now the second point of view. 
5. A s s u m p t i o n s . Let (A,d) be a complete metric space satisfying the 

following conditions: 
5.1. There is given a commutative and associative operation + on A with a 

neutral element and satisfying the identities 

d(a + b, c + d) = d(a, c) + d(b, d) and d(a, b) = d(a + c, b + c). 

5.2. There is given a multiplication of elements of A by real numbers such 
that 0 a = 0 and the identities X(a + b) = Xa + Xb, d(Xa, Xb) = \X\d(a,b) are 
satisfied. 

6. Definition. Let (A, d) be a metric space satisfying the assumptions 5. A 
function <a, b> -• A is called integrable if there is IeA such that to every s > 0 
there is 8 > 0 such that for every decomposition D with the norm \\D\\ < 5 we have 
d(S(f D), I) < £ (S(f, D) is an arbitrary integral sum), the element I will be 

denoted by \ f(x) dx. 

342 



7. Proposition. Iff g are integrable, then of + fig is integrable too and 
(*b /%b /%b 

(af(x) + pg(x))dx = a\ f(x)dx + p\ g(x) dx. 
Ja Ja Ja 

8. Proposition. If (fn)n is a sequence of integrable functions converging uni
formly on f then f is integrable and 

* / > »b 

lim d( í f(x) dx, í fn(x) dx) = 0. 
"-"°° \Ja Ja / 

9. Proposition. Iff is integrable on <a, 6>, then it is integrable on <a, c> and 
<c, b> and 

*b (%c <*b fO (%C (*Ь 

f(x) dx = f(x) dx + f(x) dx. 
Ja Ja Jc 

Proof. The only interesting point is to prove thatfis integrable on<a,c>. 
It follows by the following Bolzano-Cauchy criterion: Vs > 0 35 > 0 VZ)l9 D2: 
|| D, || < 5 A \\D2\\ < 5 => d(S(f D,), S(fD2)) < s. Indeed, if this condition is 

satisfied, then we can choose to £ = corresponding 5n and then put 
n + 1 

An = {S(fD); \\D\\ < max5,}. Then diam An < - and the element I can be 
i<n n 

oo 

obtained by {I} = Q An. 
n= 1 

10. Examples. The most interesting example is the set L(R) of all fuzzy 
numbers, i.e. functions ft: R -> <0,1> satisfying the following properties: 

1. There is x0eR such that fi(x0) = 1. 
2. There is a compact set K cz R such that {x; fi(x) > 0} cz K 
3. For every ae(0,1> the set /ia = {x; n(x) = a} is convex. 
4. /j. is upper semicontinuous, i.e. {x; n(x) < a} is open for every ae <0, 1>. 
It follows that fiia = <aa, ba) for every ae(0,1>. If va = <cff, da}; then we 

define fj. = v if aa = ca, ba ^ da for every a and we define n + v by 
(/* + ^)a = (aa + ca9 ba + day and A/i by (A^)a = <Aaff, Aba> for A = 0, 
(A//)a = <Aba, Aaa> for A < 0. It is not difficult to see that L(R) satisfies the 
assumptions 1. Another example of a set A satisfying these assumptions is any 
boundedly complete linear lattice. 

If we define d(n, v) = sup{d(jua, va)\ ae <0,1>}, where d(jia, va) = max{|ca -
— aaV \da — ba\}9 then also the assumptions 5 are satisfied. Another example 
satisfying 5 is any Banach space with d(a,b) = \\a — b\\. 
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ЗАМЕТКА ОБ ИНТЕГРАЛЕ М. М А Т Л О К И 

В е 1 о 8 ^ Клесап 

Р е з ю м е 

В теории Матлоки изучаются отображения с значениями в множестве ^(Я) так называем

ых нечётких чисел. В настоящей работе показано, что множество ^(К) можно заменить 

упорядоченным пространством или метрическим пространством. 
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