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ON THE CONVERGENCE OF OPERATORS

BEATA STEHLIKOVA

1. Introduction

This paper is a contribution to the non-commutative probability theory. The
folloving Theorem is known in the conventional probability theory [3].

Theorem 0. Let (2,7, P) be a probability space and let {x,} be a sequence of
random variables. If x, converges in probability to x, then x, converges in distribu-
tion to x.

We obtain in consequence of Theorem 0 that if x, converges in the square
mean to x, then x, converges in distribution to x.

In the generalized probability theory the o-algebra of subsets of a set is
replaced by the lattice of all closed subspaces of a Hilbert space. The random
variables are replaced by self-adjoint operators and the probability measures by
states. Our aim is to prove a non-commutative version of Theorem 0.

2. Convergence of operators

Let us begin with some notations and preliminaries. Let H be a complex
separable Hilbert space, dim H > 3. Let L(H) be the set of all closed linear
subspaces of H (or equivalently, the set of all projections on H). If e€ H is a unit
vector (i.e. |le|| = 1), then a mapm,: L(H) — <0, 1) such that m,(P) = (Pe,e) is
a vector state on L(H). By the Gleason theorem [4], every state can be written

X
in the form m = ), cim,, where {e;} is a complete orthonormal system with

i=1

¢;=0(@=1,2,...)and ) ¢, = 1. Recall that a state m on L(H) is called faithful

i=1

if the equality m(P) = 0 implies P = 0. It can be easily seen that if a state
m =) ¢m, is faithful, then ¢;>0 for all ie N.

i=1
Let 4,A4,, A,, ... be bounded self-adjoint operators on H. We say that the
sequence {A,} converges on A in the measure [m] if for any € > 0 we have
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lim m(P, ,{—¢¢y)=1, where P, ,isthespectral resolutionof 4, — 4. We

say that the sequence {A4,} converges on A in the square mean with respect to

xX

the state m if lim m((4, — A)*) =0 <i.e. if lim (Z (4, Ay (),,c),)) =0,
n-— 1

n— x 1

xX
where m = Z cm, .
=1 !

If A is a self-adjoint operator on H and m is a state on L(H), the1 the
distribution function of the operator A is the map F": R — <0,1), where
Ry (t) = m(P,(—o00,1)) (te R). (We put R for the 1eal numbers and B(R) for the
o-algebra of the Borel subsets of R.) We say that the sequence {4,} converges
to A in distribution (with respect to m)1f Fy'(t) — Fy'(¢) in every continuity point
t€ R of the function F}'(¢).

Finally, let us define the characteristic function of a elf-adjoint operator A4

in the state m as the map @' : R — C, where @} (1) = j e m(P,(ds)).
R

Similarly as in the conventional probability theory, we can prove the follow-

ing statement.
Proposition 1. The sequence {A,} of bounded self-adjoint opcrators on H con-

verges on the self-adjoint operator A in distribution if and only if m @] (1) =

= @J'(¢t) for all te R.

The proof of the main result will be performed in several steps.

Proposition 2. Let {A,} be a sequence of bounded self-adjoint operators such
that the sequence {A, @} is Cauchy for every @< H. Then there is a bounded
self-adjoint operator A such that A, — A in the strong topologyv.

Proof. Let pe H. By the assumption the sequence {A4,¢p} is Cauchy.

From the completness of H, there is a vector ywe H such that lim |A4,¢ —
— |l = 0. Put Ap = y. It can be easily seen that the map 4: ¢ — /:I:pxis linear.
From the equality lim ||4,¢ — Ag| = lim lim |4, — A,¢| — 0it follows that
A, — A in the strorrxé :opology. The coilv;ré;r:ce in strong topology implies the
convergence in weak topology and therefore

(p. Ay) = nlirr; (9. A,y) = "lig (A,0.v) = (Ao, v)

for every ¢, we H, which implies that A is self-adjoint. We shall prove that the
operator A is bounded. By the principle of uniform boundedness we have that
the sequence {||4,[} is bounded. From this we obtain that [Ag| =
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= lim ||4,¢| < K||@| for every gpe H, where |4,|| < K (n=1,2,...). This

completes the proof.

Proposition 3. Let m be a faithful state on L(H) and let {A,} be a sequence of
uniformly bounded self-adjoint operators such that m((A, — A;)*) - 0 (r,s - ).
Then the sequence {A,p} is Cauchy for every vector g€ H.

o0 0
Proof. By the Gleason theorem we have that m = ) ¢;m, where ) ¢;=

i=1 i=1
=1, ¢;> 0 for every ie N (as m is faithful) and {e;} is a complete orthonormal
system in H. Since

em (4, — A)) < 3. em, (4, — A)) = m((4, — A)) 0,

we have m,(4, — A)) -0 for every e, (i=1,2,...). Take @peH. Then
®= ) (p,e)e. Let M < oo be such that sup |4, < M. Choose & > 0 and let

i=1 n

ke N be such that ) (¢,e)e; < ﬁ/[ We have

i=k+1
mei((Ar - As)z) = ”(Ar - Ac) e["Z -0
for r,s — oo and for every e¢; (i = 1,2, ...). This implies that there is nye N such

that for r,s > n, there holds (4, — 4,)el <i for i=1,2,...,k, where

D =} |(¢,e). Then we obtain
i=1

(4, — 4,) 9]l = H(A, ~4) 3 (ne)e| <
k 0
< Y lo.e)lI(, = A)el + (14,1 + 14,1) |z (pede) <c

From this we see that the sequence {4,¢} is Cauchy for every ¢e H. This
concludes the proof.

Proposition 4. Let m be a faithful state on L(H) and let {A,} be a sequence of
uniformly bounded self-adjoint operators on H. Let m((4, — A,)*) =0 for
r,s - 00. Then there is a bounded self-adjoint operator A such that
m((A, — A)*) = 0 for n —» .

Proof. From Proposition 2 and Proposition 3 it follows that there is a
bounded self-adjoint operator 4 such that 4, — A4 in the strong topology. Write

m=y ¢;m, , where ¢; > 0 for every i and Y ¢;=1. Let M < co be such that

i=1 i=1
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x

€
sup ||[4,l < M. For every ¢ > 0 there is ke N such that Z ;< " The

.
1 —h+ 1

strong convergence 4, — A implies that especially [(4, — A) ¢l - O foreverye,.
. 2 €
Then there is ny,€ N such that for every n > n, there holds [[(4, — A)e;|” < 5 for

i=1,2,..k Forn>n,we have
x* A

m((A, — A?) = Y ¢|(4,— el = ¥ ¢4, — Del’ +
o j— 1

/ /-

x

x* 5 A £ 2
Y gl = el < X 62+ (4l + 14D X o<
j=1 /

j=h+1 -k 1

which implies lim ((4, — A)*) = 0.

Proposition 5. Let m be a faithful state on L(H) and let {A,} be a sequence of
uniformly bounded self-adjoint operators such that m((4, — A)Y) = 0. Then
A, — A in the strong topology.

Proof. Let m= ) ¢m,, where ¢;>0 for every ieN. Similarly as in

i=1

Proposition 3 we can show that m, ((4, — A)) =0 for any e,(i = 1,2,...). Let

M < oo be such that sup ||4,]| < M. Let pe H. Then ¢ = ) (¢, ¢,)e,. Choose

i=1
X

e>0 and keN such that Y ||((p,ef)e,§<£;. Since we have

i=h+1

m, (4, — A)P) = |(A4, — A)e;|* >0 (n— o) for every e,, there is nye N such

that for n > n, there holds [[(4, — A) ¢, < % fori=1,2, ..., k, where D =

k
= ) (¢, ¢)|. Then we have

i=1

ke

P

I, = 4) 01 < 3 0.4, = Dell + (AL +141) 3 H(oeel.
Therefore A, — A4 in the strong topology.

We note that making use of a similar method the converse of Proposition 3
and Proposition 5 can be also proved.

Theorem 6 (Trotter). Let A, {A,} be self-adjoint operators. Then
(Al — A,)"" = (A — A)~" for every complex number A such that Im A # 0 if and
only if e"" — e in the strong topology for every te R.

The Theorem 6 is proved in [2].

Proposition 7. Let {A,} be uniformly bounded self-adjoint operators. Then
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A, — A in the strong topology if and only if (AI — A,)™" = (Al — A)~" for every
complex number A such that Im A # 0.

Proof. Suppose that 4, — A4 in the strong topology, i.e. ||(4, — A) ¢|| =0
for every pe H. Then if ImA # 0, then (4, — A)(4 — A)~' - 0 in the strong
topology (since for every pe H we have

(A4, — A)(A4 = ) 'oll < [I(4, — A) @l I(4 = 2)7"|).
Using the identity
(A4, —= ) "'=(A-)" U+, — A=)

we obtain
(4, —A)"'o—(4—2)"p| =

=4 -2+ U, —-DA-2))"-Do| <
S A, = A= D)@l 1A = )7 (4, = )7 (4 = A)|| <

<4, — DA - 2)"o| (sup |4, ]| + 121"

Since ||(4, — A)(4 — A)"'@|| = 0 and (sup |4, + |A])~" is bounded, we obtain

(Al —A4,)""' - (Al — A)~" (n—> o) for every A such that Im A # 0.
Now we shall prove the converse implication. We use the identity

(A, —A) =, — (A - —(4,— ) )4 -1).
We obtain
14, — Aol = (4, — DA =)' = (4, — )N — Dol <

<lA4-)"'o— 4, — )"0l (sup [|4,]| + D(llA] + 1).

From this we obviously conclude that 4, — A4 in the strong topology.

Theorem 8. Let m be a faithful state on L(H) and let {A,} be a sequence of
uniformly bounded self-adjoint operators on H such that m((A, — A)*) —» 0. Then
A, converges on A in distribution (with respect to m).

Proof. By Proposition 5, 4,— A in the strong topology. By Trotter’s
theorem and Proposition 7, this is equivalent to e > e in the strong topol-
ogy for every ¢. The convergence in the strong topology implies the convergence
in the weak topology. therefore for every @, ye H we have

(""" — &™) @, y) > 0 (n - o).
itA

Letm=") ¢;m,. Then ((e " — e")e;, e;) — 0 holds for every e,. therefore we
i=1
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have

N 3 .
Y cl(e" —e")e,e)| <

j=1
Z A
Z (,/_((e n__ e:m)e’,(,/) i

j=k+1

A i .
<Y c,((e'm” —e")e,e)| +
J=1
Pe

As Y ¢; =1, for given £ > 0 we can find k € N such that Y ¢< é where

j=1 J—h+1

oo > M > sup ||4,||. The convergence " = e" in the weak topology implies
that for every € > 0 there is nye N such that for every n > n, there holds

I((e""" — e")e;e)l <§ (G=1,2,....,k). We have proved that the sequence of

characteristic functions @7 converges on @, which by Proposition | is equiv-
alent to the convergence A, — A4 in distribution (with respect to m).

Theorem 9. Let m be a faithful state on L(H) and let {A,} be a sequence of
uniformly bounded self-adjoint operators such that A, converges on A in measure
[m]. Then the sequence of operators {A,} converges on A in distribution.

Proof. It follows from Theorem 8 and Lemma 5.4. [1].

Corollary 10. Let m be a faithful state on L(H) and {A,} be a sequence of
uniformly bounded self-adjoint operators such that A, converges on A in the square
mean with respect to m and let the distribution function of A, (n =1,2,...) be
Gaussian. Then the distribution function of A (with respect to m) is Gaussian, too.

Proof. It follows from Theorem 8 and Lemma 16.10. [3].

Finally we shall show that the assumption of uniform boundedness is necess-
ary to prove that the convergence in the square mean with respect to m,

0
<m =Yy Cime> implies convergence in the square mean with respect to m.

i=1

Example 1. Let {¢,} be a complete orthonormal system in A and {P,} be the
projections on the subspaces generated by {e,}. Let the spectra of the operators
A, (n=1,2,...) consist of 0 and 2"2. Put A4,{2"*} =P, (n=1,2,...) and

i=1

m,(4}) =2"8, (i,n=1,2,...). Then m,(4;)—0 for every state e, but
m(A}) = 1.

m=5y %mei. Clearly A, = 2"?P,(n = 1,2, ...) and there holds m, (P,) = &, and
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