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ON THE CONVERGENCE OF OPERATORS 

BEÁTA STEHLÍKOVÁ 

1. Introduction 

This paper is a contribution to the non-commutative probability theory. The 
folloving Theorem is known in the conventional probability theory [3]. 

Theorem 0. Let (Q, 3~, P) be a probability space and let {xn} be a sequence of 
random variables. Ifxn converges in probability to x, then xn converges in distribu­
tion to x. 

We obtain in consequence of Theorem 0 that if xn converges in the square 
mean to x, then xn converges in distribution to x. 

In the generalized probability theory the cr-algebra of subsets of a set is 
replaced by the lattice of all closed subspaces of a Hilbert space. The random 
variables are replaced by self-adjoint operators and the probability measures by 
states. Our aim is to prove a non-commutative version of Theorem 0. 

2. Convergence of operators 

Let us begin with some notations and preliminaries. Let H be a complex 
separable Hilbert space, d i m / / > 3, Let L(H) be the set of all closed linear 
subspaces of H (or equivalently, the set of all projections on H). If e e H is a unit 
vector (i.e. ||e|| = 1), then a mapra(J: L(H) -> <0,1> such that me(P) = (Pe, e) is 
a vector state on L(H). By the Gleason theorem [4], every state can be written 

00 

in the form m = £ ctme, where {e,} is a complete orthonormal system with 
/ = i 

00 

Cj>0(i= 1,2,...) and £ c, = 1. Recall that a state m on L(H) is called faithful 
/ = i 

if the equality m(P) = 0 implies P = 0. It can be easily seen that if a state 
00 

m = YJ cime is faithful, then c,>0 for all ieN. 
/ = i ' 

Let A,AUA29... be bounded self-adjoint operators on H. We say that the 
sequence {An} converges on A in the measure [m] if for any s > 0 we have 
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lim m(PA A( — s, £}) = 1, where PA A is the spectral resolution of An — A. We 
-> x n n 

say that the sequence {An} converges on A in the square mean with respect to 

the state m if lim m((An - A)2) = 0 (i.e. if lim ( £ Cl((A% A)2e„e,)) = 0, 

where m = £ clmt ). 
/ = i ' / 

If A is a self-adjoint operator on H and m is a state on L(/7), the i the 
distribution function of the operator A is the mapF™: K-* <0, 1>, where 
R™(t) = m(PA(- oo, t)) (te R). (We put R for the ieal numbers and B(R) for the 
tr-algebra of the Borel subsets of R.) We say that the sequence {An} converges 
to A in distribution (with respect to m) \£FA(t) -* F™ (t) in every continuity point 
t e R of the function F? (t). 

Finally, let us define the characteristic function of a elf-adjoint operator A 

in the state m as the map 0>;' : R -> C, where d>;' (/) = e,tsm(P4(ds)). 

Similarly as in the conventional probability theory, we can prove the follow­
ing statement. 

Proposition 1. The sequence {An} of bounded self-adjoint operators on H con­

verges on the self adjoint operator A in distribution if and only if lim @4
f (t) = 

n -» x " 

= ®A"(t)for all teR. 
The proof of the main result will be performed in several steps. 
Proposition 2. Let {An} be a sequence of bounded self adjoint operators such 

that the sequence {An(p} is Cauchy for every cpcH. Then there is a bounded 
self adjoint operator A such that An -> A in the strong topology. 

Proof . Let cpeH. By the assumption the sequence {Ancp} is Cauchy. 

From the completness of H, there is a vector yeH such that lim \An<p — 
7 - » X 

— y/\\ = 0. Put Acp = y/. It can be easily seen that the map A: <D-> Acp is linear. 

From the equality lim \\Arcp — A(p\\ = lim lim \\Ar(p — Ascp\\ — 0 it follows that 
r -» X r -» X .s —» X 

An -> A in the strong topology. The convergence in strong topology implies the 
convergence in weak topology and therefore 

(cp.Ay/) = lim ((p,Any/) = lim (Anq>, y/) = (Acp, y/) 
n -» x n -» x 

for every (p, y/e / / , which implies that A is self-adjoint. We shall prove that the 
operator A is bounded. By the principle of uniform boundedness we have that 
the sequence {MJ|} is bounded. From this we obtain that \\Acp\\ = 
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= lim ||A„<p|| < K\\<p\\ for every <peH, where \\A„\\ < K (n = 1,2,...). This 
n -* oo 

completes the proof. 
Proposition 3. Let m be a faithful state on L(H) and let {An} be a sequence of 

uniformly bounded self-adjoint operators such that m((Ar — As)
2) -> 0 (r, s -+ oo). 

Then the sequence {An<p} is Cauchy for every vector cpeH. 
00 00 

Proof. By the Gleason theorem we have that m = £ ctme where ^]c, = 
1 = 1 ' / = i 

= 1, c, > 0 for every ieN (as m is faithful) and {e,} is a complete orthonormal 
system in H. Since 

ctmei((Ar - As)
2) < £ c{me((Ar - Af) = m((Ar - As)

2) - 0, 
i = i 

we have me(Ar — As)
2) ->0 for every e, ( i = l , 2 , . . . ) . Take <psH. Then 

00 

<P = Z (<P>ei)ei- Let M < oo be such that sup |MJ| < M. Choose € > 0 and let 
i= \ n 

oo £ 

keN be such that £ (P>*/)*/ < • We have 
/ = k + i 4 M 

m ^ r - ^ ) 2 ) = | | K - - ^ ) e , . | | 2 - > 0 

for r,s -> oo and for every e, (i = 1,2,...). This implies that there is A20eIV such 
£ 

that for r,s>n0 there holds \\(Ar — AJe^W <— for / = 1 , 2 , ...,k, where 

D = X l(^-e/)l- Then we obtain 
/ = i 

\\{Ar-As)<p\\ (Ą-AJZiџeдe, < 

k oo II 

< Z \<P,e,)\ \\(Ar - A,)e,\\ + (\\Ar\\ + \\A,\\) £ ( p , ^ < *. 
/ = 1 II i = A: + 1 II 

From this we see that the sequence {Ancp} is Cauchy for every cpeH. This 
concludes the proof. 

Proposition 4. Let m be a faithful state on L(H) and let {An} be a sequence of 
uniformly bounded self-adjoint operators on H. Let m((Ar — As)

2) —> 0 for 
r,s->oo. Then there is a bounded self-adjoint operator A such that 
m((An — A)2) -> O/or n -> oo. 

Proof. From Proposition 2 and Proposition 3 it follows that there is a 
bounded self-adjoint operator A such that An -> A in the strong topology. Write 

oo oo 

m = YJ cime 9 where c, > 0 for every i and £ c, = 1. Let M < oo be such that 
. = I ' / = i 
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sup | | A J < M. For every c > 0 there is keN such that X f/ < ;• T ^ e 

/» / - A + i 8A/~ 
strong convergence A,, -> A implies that especially ||(/-„ — -4)?,|| -• 0 for every er 

Then there is n0eN such that for every n > n0 there holds \\(An — A)etII" < - for 

/ = 1,2,..., k. For n > n0 we have 

m((A„ - A)2) = £ c;n(A„ - A)e;n
2 = £ c;n(A„ - Ak;ii

2 + 
/ i / - i 

+ £ f;||(A„-A)e;||
2< £ c ; i + (||/(„|| + ||A||)2 £ c,<e, 

i-k + i / - i 2 i-k \ 

which implies lim ((An — A)2) = 0. 
n -*• x 

Proposition 5. Let m be a faithful state on L(H) and let {An} be a sequence of 
uniformly bounded self-adjoint operators such that m((An — A)2) -* 0. Then 
An^> A in the strong topology. 

QC 

Proof . Let m= £ c.-m,, w h e r e ^ > 0 for every ieN. Similarly as in 
/= I 

Proposition 3 we can show that me((An - A)2) -> 0 for any e,(i = 1,2,...). Let 
X 

M < oo be such that sup \\An\\ < M. Let cpeH. Then q> = £ (^ei)er Choose 
n / = 1 

x s 
£ > 0 and keN such that £ ||(<p, <?,)£,£< . Since we have 

/ = k + i 4M 
mejL(.An ~ Af) = W(An " A)ei\\2 "* 0 (W "^ °°) ^OV eVerY *f t h e F e iS n0E N S U c h 

that for n > nQ there holds \\(A„ - A)e(\\ < — for / = 1, 2, ..., k, where D = 

k 

= Z l(^e/)l- Then we have 
/ = i 

ll(A„-A)<?|| < £ \((p,ei)\\\(A„-A)ei\\ +(||A„|| + IIAII) £ 11(̂ ,̂ )̂ ,11. 
/ = 1 ' / = k + 1 

Therefore A„ -> A in the strong topology. 
We note that making use of a similar method the converse of Proposition 3 

and Proposition 5 can be also proved. 
Theorem 6 (Trotter). Let A, {An} be self-adjoint operators. Then 

(XI — An)~
] —> (AI — A)~x for every complex number X such that ImX ^ 0 if and 

only if V " -> eltA in the strong topology for every teR. 
The Theorem 6 is proved in [2]. 
Proposition 7. Let {An} be uniformly bounded self-adjoint operators. Then 
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An-> A in the strong topology if and only if (XI — An)~
x -* (XI — A)~* for every 

complex number X such that Im X ^ 0. 
Proof. Suppose that An->A in the strong topology, i.e. \\(An — A)<p\\ -• 0 

for every (peH. Then if Im A 7-= 0, then (An — A)(A — X)~x -• 0 in the strong 
topology (since for every cpeH we have 

||(A„ - A)(A - A)-VII < \\(An - A)<p\\ \\(A - A)"11|). 

Using the identity 

(A„ - A)"1 = (A - X)-\I+(A„ - A)(A - A)-')"1 

we obtain 

ii(^-A)-v-(A-Arvn = 
= ||04 - A)"'((/+ (A„ - A)(A - A)-')"' - I)<p\\ < 

< \\(A„ - A)(A - A)" VII \\(A - A)-'|| ||(^„ - A)"11| ||(^ - A)|| < 

< \\(A„ - A)(A - A)" VII (sup IIAJI + |A|)-». 
n 

Since \\(An — A)(A — X)~lcp\\ -> 0 and (sup ||A.J| + |A|)_1 is bounded, we obtain 
n 

(XI — An)~
] -* (XI — A)~l (n -+ oo) for every X such that ImX # 0. 

Now we shall prove the converse implication. We use the identity 

(A„ -A) = (A„ - i)((A - / ) - ' - (A„ - i)~l)(A - /). 

We obtain 

\\(A„ -A)<p\\ = \\(A„ - i)((A - / ) " ' - (An - i)~x))(A - i)<p\\ < 

< \\(A - / ) - V - ( ^ - i r V l l ( s u p M J | + 1KHAII + 1). 
n 

From this we obviously conclude that An -• A in the strong topology. 
Theorem 8. Let m be a faithful state on L(H) and let {An} be a sequence of 

uniformly bounded self adjoint operators on H such that m((An — A)2) -» 0. Then 
An converges on A in distribution (with respect to m). 

Proof. By Proposition 5, An-+A in the strong topology. By Trotter's 
theorem and Proposition 7, this is equivalent to elt n -> eitA in the strong topol­
ogy for every /. The convergence in the strong topology implies the convergence 
in the weak topology, therefore for every <p, y/e H we have 

((eitAn - eitA) <p9y/)^0(n^ oo). 
00 

Let m = £ ctmem. Then ((elt n — eitA)ehe) -• 0 holds for every et. therefore we 
1 = 1 
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have 

< 

І cЩLeм-
/ = 1 

-e>,A)epe,) < 

І cДe^ -
. / = 1 

-e,,A)Єj,e,) + І cДeйA'-
j = k+\ 

-e,,A)eneï 

As y c,-,= 1, for given £ > 0 we can find k e N such that y c. < , where 
• ; ' • • 4M 

oo > M > sup \\An\\. The convergence e 

i-k + i 

in the weak topology implies 

that for every s> 0 there is n0eN such that for every n > n0 there holds 

|((e" " — eitA)ehe)\ <- (j = 1,2, . . . ,k ) . We have proved that the sequence of 
2 

characteristic functions 0™ converges on <P™, which by Proposition 1 is equiv­

alent to the convergence A„^> A in distribution (with respect to m). 
Theorem 9. Let m be a faithful state on L(H) and let {An} be a sequence of 

uniformly bounded self-adjoint operators such that An converges on A in measure 
[m]. Then the sequence of operators {An} converges on A in distribution. 

Proof . It follows from Theorem8 and Lemma5.4. [1]. 
Corollary 10. Let m be a faithful state on L(H) and {An} be a sequence of 

uniformly bounded self-adjoint operators such that An converges on A in the square 
mean with respect to m and let the distribution function of An (n = 1, 2,. . .) be 
Gaussian. Then the distribution function of A (with respect to m) is Gaussian, too. 

Proof . It follows from Theorem8 and Lemma 16.10. [3]. 
Finally we shall show that the assumption of uniform boundedness is necess­

ary to prove that the convergence in the square mean with respect to me 

m = £ c(me I implies convergence in the square mean with respect to m. 

Example 1. Let {en} be a complete orthonormal system in H and {P„} be the 
projections on the subspaces generated by {en}. Let the spectra of the operators 
A„ (n= 1,2,...) consist of 0 and 2n/2. Put ^„{2n2} = P„ (n = 1,2,...) and 

oo 1 

m = y - m e . Clearly An = 2n/2Pn (n=l,2,...) and there holds me (Pn) = Sm and 
/ = i 2l ' 

mei(A
2) = 2nSin ( / , « = 1,2,...). Then me(A

2)-^0 for every state e„ but 

m(A2)=\. 
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О СХОДИМОСТИ ОПЕРАТОРОВ 

Веа1а 8^еЫ^коVа 

Резюме 

В этой статье доказывается, что если последовательность равномерно ограниченых само­
сопряженных операторов сходится по мере и если состояние точное, то сходится и по 
распределению. 
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