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ON TOTALLY NON-COMMUTATIVE CONVERGENCE 
GROUPOIDS 

JAN SIPOS 

In this note we give new proofs of the results of [2] and [3] and generalize them 
in two directions. Namely: we need no topology (only convergence structure) 
and we need no associativity (only alternativity). Here the emphasis is on the 
totally non-commutative case. 

We start with some notations and preliminary results. 
A groupoid is said to be alternative iff its every two-element generated 

subgroupoid is a semigroup. 
In an alternative groupoid the power an of an element a is unambiguously 

defined. 
A groupoid is called totally non-commutative if it has at least two idem-

potents and for every pair of idempotents e,fwith e ^ / w e have e/Vfe. 
A convergence space is a set F with a distinguished family of sequences {an} 

(aneF), which we shall call convergent. We assume that for every convergent 
sequence {an} there exists exactly one element aeF, which we shall call'the limit 
of {an} (in symbol an -> a or \imnan = a). We assume that the constant sequence 
{an} (an = a) converges to the limit a, and that every subsequence of a convergent 
sequence converges to the same limit as the original sequence. 

A convergence groupoid is a groupoid S endowed with the structure of a 
convergence space in which the multiplication is continuous, i.e., an-> a and 
bn-*b imply anbn -• ab. 

An alternative convergence groupoid is called sequentially point compact iff 
every subsequence of 

a, a2, a3, ... 

contains a convergent subsequence. 
Throughout, by a groupoid we mean an alternative, sequentially point-

compact groupoid. The structure of such groupoids is described in [4]. We recall 
some results of [4] which we shall need later. 

Denote by E the set of all idempotents of the groupoid S. We say that the 
element a belongs to the idempotent e iff there exists a sequence {nk} with 
ak -> ee E. Let Ke be the set of all elements of S belonging to e. Then S can be 
written as the union of a disjoint family of sets S = u {Ke; eeE}. 
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To every eeE there exists a maximal quasigroup Hc in which e is a unit. 
Clearly Hc a Kc and ae = ea for every a in Ke. Further, Kce = e- Ke = Hc and 
Hc coincides with the family of all elements a e Ke with ae = ea = a. The sets Kc 

need not be groupoids in general; however, if E is in the centre of 5, then Kc is 
always a groupoid. 

First we show: 
1. Theorem. The centre of a totally non-commutative groupoid is empty. 
P r o o f Let ceS commute with all xeS, then clearly c" (n= 1) also com

mutes with all elements of S. Let c"k -+ eeE and let XES, then 

ex = (limjtc',*)-x = \imk(c"k-x) 

= \\mk(X'Cnk) = X'\'\mkc
nk 

= x - e. 

Let n o w / G f with/7-= e; then ef = fe, a contradiction. 
It is interesting that a totally non-commutative groupoid has some similar 

properties as a commutative one. For example Ke is a groupoid. For proving this 
we need the following lemma. 

2. Lemma. (Lemma 18 of [4]) Let x and y be elements of S belonging to an 
idempotent e and let xy belong to an idempotent f Then ef = fe. 

An immediate consequence of this lemma is the following: 
3. Theorem. Let S be a totally non-commutative groupoid. Then Kc is a 

groupoid. 
4. Theorem. Let S be a totally non-commutative groupoid. Then Ke is sequenti

ally closed. 
P r o o f Let anGKe, n= 1, 2, ... with an-+b and let beKf. We have to 

show that e =f Since aneKe for every n = 1, 2, ..., we have ean = ane. Passing 
to the limits we get eb = be. Now let 

then ebnik = bmke and so ef — fe. So we get e = f. 
5. Lemma. Let S be totally non-commutative. Ife.feEe J^j and ef = e, then 

fe=f 
P r o o f Since e/=e we get (e/)-e = e and f-((ef)-e) =fe. By the alter-

nativity of S, (fe)2 =f-e and hence fe is an idempotent. Putje = g, then 

g-f=(f-e)-f = f-(e-f)=fe = g, 

f-g=f-(f-e)=f-e = g. 

Thus we get g-f = f-g and so f= g. 
6. Theorem. Let J be a two-sided ideal of a totally non-commutative grou

poid S. Then Ea J. 
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P r o o f Let aeJ and aeKc\ then, since J is an ideal e-a = a-eeJ. Since 
e-ae Hc and Hc is an alternative quasigroup there exists an element be Hc with 
b-(e-a) = e and so e = b-(e-a)eb-J a J. Therefore J contains at least one 
idempotent. Let fe£; then, since J is an ideal, e-feJ and also (e-f)"eJ. The 
product e-f need not be an idempotent, but there exists an heE with (e-f)"k -» 
-• //. Clearly e• // = h. Since eGJ we get h = e-heJ. As h -f = /?, by Lemma 5 we 
havef h = f Since h e J we getf = f /? Gf / cz J and sofG 7. This completes the 
proof 

Denote by IV the following set 

IV = u{/f; eeE}. 

7. Lemma. Let S be a totally non-commutative groupoid and let J be a two-sided 
ideal of S. Then IV cz J. 

P r o o f We know — by the preceding theorem — that E a J. If aeHc, 
then a-e = a and so a = a-eea-J a J. 

The following result is quite surprising since we do not assume the compact
ness of the groupoid. 

8. Theorem. IfS is a totally non-commutative alternative and sequentially point 
compact groupoid, then S contains the least two-sided ideal N. 

P r o o f Let us prove that IV is a two-sided ideal at first. Let aeS and 
bGIV; then beHc for some eeE and b-e = e-b = b. Let (a-b)"k -+feE, i.e. 
a-beKf. Clearly f-e =f and by Lemma 5 e-f=e. We have to show that 
(a>b)-f= a-b. Since the closure of the groupoid generated by elements a and b 
contains e and f by the alternativity of S we get 

(a-b)f = r/-(b-e)-f= (a-b)'(e-f) = (a-b)-e = a-(b-e) = a-b 

and so a • b e Hf cz IV. 
Similarly one can show that also b-aeN and so IV is a two-sided ideal. Since 

it is contained in every two-sided ideal it is easy to see that N is the least 
two-sided ideal. 

To illustrate our results, we give now an example. 
9. Example . Let S be the set of all pairs (t, c) where te(0, 1) and c is a 

Cayley number with \c\ = 1. Let the convergence be defined by an ordinary 
topology in the 9-dimension Euclidean space. If 8, = (f,, e,) and s2 = (t2, e2), we 
put .sv.v2 = (ti, ere2). Clearly we get a sequentially point-compact alternative 
groupoid. The set of its idempotents is E = (0, 1) x {1}. Put Ht = {t} x {e; |e| = 1}. 
Then it is easy to see that Ht is a maximal quasigroup in S and that all maximal 
quasigroups are isomorphic. 

If S is a totally non-commutative convergence semigroup then by Theorem 8, 

S contains the least two-sided ideal IV. 
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In this case it is a known fact (see [1]) that N is the disjoint union of its 
maximal subgroups and these are isomorphic. So we have: 

10. Theorem. If S is a totally non-commutative semigroup, then its maximal 
subgroups are isomorphic. 

With this in mind, recalling Example 9, we add the following conjecture: 
11. Conjecture. The maximal sub-quasigroups of a totally non-commutative 

alternative quasigroup are isomorphic. 
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О ВПОЛНЕ НЕКОММУТАТИВНЫХ ПОЛУГРУППАХ СХОДИМОСТИ 

5ап §1ро5 

Резюме 

Альтернативный группоид сходимости называется вполне некоммутативным, если он 
содержит по крайней мере два идемпотента и для яюбых двух идемпотентов е ф / имеет 
место е(ф [е. 

В работе доказываются следующие теоремы: 
а) Центром такого группоида является пустое множество. 
б) Множество всех элементов, принадлежащих к фиксированному идемпотенту — замк

нутый группоид. 
в) Существует минимальный двусторонний идеал группоида 5, и он является соеди

нением максимальных квазигрупп в 5". 
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