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ON TOTALLY NON-COMMUTATIVE CONVERGENCE
GROUPOIDS

JAN SIPOS

In this note we give new proofs of the results of [2] and [3] and generalize them
in two directions. Namely: we need no topology (only convergence structure)
and we need no associativity (only alternativity). Here the emphasis is on the
totally non-commutative case.

We start with some notations and preliminary results.

A groupoid is said to be alternative iff its every two-element generated
subgroupoid is a semigroup.

In an alternative groupoid the power a” of an element « is unambiguously
defined.

A groupoid is called totally non-commutative if it has at least two idem-
potents and for every pair of idempotents e, f with e # f we have ef # fe.

A convergence space is a set F with a distinguished family of sequences {a,}
(a,€ F), which we shall call convergent. We assume that for every convergent
sequence {a,} there exists exactly one element a € F, which we shall call the limit
of {a,} (in symbol a, — a or lim, a, = a). We assume that the constant sequence
{a,} (a, = a) converges to the limit a, and that every subsequence of a convergent
sequence converges to the same limit as the original sequence.

A convergence groupoid is a groupoid S endowed with the structure of a
convergence space in which the multiplication is continuous, i.e., @, — a and
b,— b imply a,b, — ab.

An alternative convergence groupoid is called sequentially point compact iff
every subsequence of

a,a’, a’, ...

contains a convergent subsequence.

Throughout, by a groupoid we mean an alternative, sequentially point-
compact groupoid. The structure of such groupoids is described in [4]. We recall
some results of [4] which we shall need later.

Denote by E the set of all idempotents of the groupoid S. We say that the
element a belongs to the idempotent e iff there exists a sequence {n,} with
a™ — ee E. Let K, be the set of all elements of S belonging to e. Then S can be
written as the union of a disjoint family of sets S = U{K,; e E}.
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To every ee€ E there exists a maximal quasigroup H, in which e is a unit.
Clearly H. = K, and ae = ea for every a in K,. Further, K,-¢ = ¢- K, = H, and
H, coincides with the family of all elements a € K, with ae = ea = a. The sets K,
need not be groupoids in general; however, if E is in the centre of S, then K, is
always a groupoid.

First we show:

1. Theorem. The centre of a totally non-commutative groupoid is empty.

Proof. Let ce S commute with all xe S, then clearly ¢" (n= 1) also com-
mutes with all elements of S. Let ¢™ - ee E and let xe S, then

ex = (lim, ¢™)-x = lim, (¢"*-x)
= lim, (x-¢™) = x-lim, ¢™
=x-e.
Let now fe E with f # e then ef = fe, a contradiction.

It is interesting that a totally non-commutative groupoid has some similar

properties as a commutative one. For example K, is a groupoid. For proving this
we need the following lemma.

2. Lemma. (Lemma 18 of [4]) Let x and y be elements of S belonging to an
idempotent e and let xy belong to an idempotent f. Then ef = fe.
An immediate consequence of this lemma is the following:

3. Theorem. Let S be a totally non-commutative groupoid. Then K, is a
groupoid.

4. Theorem. Let S be a totally non-commutative groupoid. Then K, is sequenti-
ally closed.

Proof. Let a,eK,, n=1, 2, ... with a¢,— b and let béKf. We have to
show that e = f. Since a,€ K, for every n = 1, 2, ..., we have ea, = a,e. Passing
to the limits we get eb = be. Now let

b™ .

then eb™ = b™e and so ef = fe. So we get e = f.
5. Lemma. Let S be totally non-commutative. If e, fe E e # f and ef = e, then

fe=/.
~ Proof. Since ef =e we get (ef)-e =e and f-((ef)-e) = fe. By the alter-
nativity of S, (f*e)’ = f-e and hence fe is an idempotent. Put fe = g, then
gf=(f-e)-f=f(e))=fe=¢g
fg=f(fey=fe=g
Thus we get g-f = f-gand so = g.

6. Theorem. Let J be a two-sided ideal of a totally non-commutative grou-
poid S. Then E < J.
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Proof. Let aeJ and a€K,; then, since J is an ideal ¢-a = a-eeJ. Since
¢-ae H, and H, is an alternative quasigroup there exists an element be H, with
b-(c-a)=¢ and so ¢ =b-(e-a)eb-J < J. Therefore J contains at least one
idempotent. Let fe E; then, since J is an ideal, e-feJ and also (e-f)"eJ. The
product ¢-f need not be an idempotent, but there exists an he E with (e-f)" —
— h.Clearlye-h = h. SinceeeJwegeth =e-heJ. As h-f = h, by Lemma 5 we
have f-h = f. Since he J we get f = f-hef-J = J and so feJ. This completes the
proof.

Denote by N the following set

N=uyu{H,; eeE}

7. Lemma. Let S be a totally non-commutative groupoid and let J be a two-sided
ideal of S. Then N c J.

Proof. We know — by the preceding theorem — that Ec J. If ae H,,
then v-¢e =aandsoa=a-¢ea-J < J.

The following result is quite surprising since we do not assume the compact-
ness of the groupoid.

8. Theorem. If'S is a totally non-commutative alternative and sequentially point
compact groupoid, then S contains the least two-sided ideal N.

Proof. Let us prove that N is a two-sided ideal at first. Let aeS and
be N; then be H, for some ecE and b-e =e-b=b. Let (a-b)* > f€E, ie.
a-beK,. Clearly f-e =f and by Lemma 5 e-f=e. We have to show that
(a-b)-f'= a-b. Since the closure of the groupoid generated by elements « and b
contains ¢ and f, by the alternativity of S we get

(a-b)-f=a-(b-e)-f=(a-b)-(e-f)=(a-b)-e=a-(b-e)y=a-b

and so a-he H, < N.

Similarly one can show that also b-a€ N and so N is a two-sided ideal. Since
it is contained in every two-sided ideal it is easy to see that N is the least
two-sided ideal.

To illustrate our results, we give now an example.

9. Example. Let S be the set of all pairs (¢, ¢) where te(0, 1) and ¢ is a
Cayley number with |¢| = 1. Let the convergence be defined by an ordinary
topology in the 9-dimension Euclidean space. If s, = (¢,, ¢,) and s, = (1,, ¢;), we
put s,-5, = (¢, ¢,-¢,). Clearly we get a sequentially point-compact alternative
groupoid. The set of its idempotents is E = (0, 1) x {1}. Put H, = {t} x{c:|c| = 1}.
Then it is easy to see that H, is a maximal quasigroup in S and that all maximal
quasigroups are isomorphic.

If S is a totally non-commutative convergence semigroup then by Theorem 8,
S contains the least two-sided ideal N.
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In this case it is a known fact (see [1]) that N is the disjoint union of its
maximal subgroups and these are isomorphic. So we have:

10. Theorem. If' S is a totally non-commutative semigroup, then its maximal
subgroups are isomorphic.

With this in mind, recalling Example 9, we add the following conjecture:

11. Conjecture. The maximal sub-quasigroups of a totally non-commutative
alternative quasigroup are isomorphic.
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O BIMTONMTHE HEKOMMVYTATUBHGLIX IMOJIVIPYIIITAX CXOAUMOCTHU
Jan Sipos
Pe3omMme

A IbTEpHATHBHBIA I'PYNMNOU CXOAHMOCTH HA3bIBAETCH BIMNOJIHE HEKOMMYTATHBHbBIM, €CJIM OH
COAEPXHT MO KpailHel Mepe /1Ba MAEMIOTCHTA M s sStoObIX ABYX MIAEMIIOTCHTOB ¢ # f uMeeT
MecTo ef # fe.

B paboTe noKa3bIBAOTCS CIIEAYIOUIME TEOPEMBI:

a) LleHTpoM Takoro rpynnouaa siBAaseTcs NyCTOe MHOXECTBO.

6) MHOXeCTBO BCEX 3I€MEHTOB, NPUHAMIEKAIINX K PUKCUPOBAHHOMY UAEMIMOTEHTY — 3dMK-
HYTBIH IPYNMOUA.

B) CyluecTByeT MUHMUMAJIbHbIA [ABYCTOPOHHMI Waean rpynnouaa S, ¥ OH SBJSETCS COEIM-
HEHHEM MAaKCUMA/bHbIX KBA3urpynm B S.
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