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SOME REMARKS ON ALMOST CONTINUOUS 
FUNCTIONS *) 

ZBIGNIEW PIOTROWSKI 

1. Introduction 

Nearly continuous functions (known also as almost continuous, or densely 
approaching functions) arise naturally when we study Open Mapping and the 
Closed Graph Theorem [3] (in fact, this "somewhat continuity" goes back to 
S. Banach, compare [5] p. 214) or the Blumberg Theorem [1]. 

A function/': X -> Y is said to be nearly continuous at x0 e X if for every open 
V9f(x0) the set Clf_,(K) contains a neighborhood of x0. We say thatfis nearly 
continuous if it is nearly continuous at every xeX. 

We shall consider here a relationship between separate and joint near con­
tinuity (on product spaces). 

Generally, neither separate near continuity does imply joint near continuity, 
nor vice versa [6]. 

T. N e u b r u n n ([6]. Example 1, p. 308) proved, however, that there is a 
nearly continuous function f: [—1, 1]2->I? which is not separately nearly 
continuous at (0, 0); i.e. none of the sectionsf andf is nearly continuous at 0. 
Next, he proved the following. 

Proposition 1. ([6] Thm. 1, p. 308—310). Let X, Y be separable metric spaces 
which are dense-in-themselves. Then there exist a real function f: XxY -> R such 
that f is nearly continuous on Xx Y and there is countable, dense set C a Xx Y 
such that for each (x0, y0)eC, the sections f andf. are not nearly continuous. 

In the following Example 1, which illustrates clearly Neubrunn's result, we 
explicitely construct a function for a special, important case. The existence of 
such a function is proved in Proposition 1 (of course for a wider class of spaces). 

Example 1. Let I = [0, 1] and let R be the set of reals. Put Dn = l(x, y): 

*) This research was supported by Youngstown State University, Research Council Grant 672. 
AMS (MOS) Subject Classification (1980). Primary 54B10, 54C10; Secondary 26B99, 54C30. 
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- , v = —, where k and p are all odd numbers between 0 and 2n>. Let 
" ' 2n J 

D = \J D„. It is easy to see that CID = I2. Now, let us define / : I2 -> /? by: 

/ (x , y) = 1, for (x, y)eD and / (x , y) = 0 if (x, y)$D. The function/is nearly 
continuous and for (x0, y{))eD the sections/ a n d / are not; every such section 
has finitely many "points of the jump" off. 

Our approach in Example 1, of using the characteristic function of a special 
"thin" subset of the product, was based on the following observations: 
1. The characteristic function of a dense co-dense subset of a space is nearly 
continuous. 
2. The characteristic function of a nowhere dense subset is not nearly con­
tinuous at points of this set. 

So, combining 1. and 2., if D is a dense subset of the product Xx Ysuch that 
its intersection with any vertical and horizontal line is nowhere dense in these 
lines, then its complement is again dense, so that the characteristic function of 
such a set D is nearly continuous but the sections / and / are not nearly 
continuous for every x belonging to the projection of the set D on X and for 
every y belonging to the projection of the set D on Y. 

In particular, when D has at most one point in common with vertical and 
horizontal lines, then the sections are not nearly continuous on at most one 
point. Clearly, such functions can be viewed as "minimal" with respect to this 
property. 

In the forthcoming section we shall construct special dense subsets with the 
properties we have just discussed. 

II. Special subsets of product spaces 

Following [8] we have the following two definitions. Assume X = f ] Xa and 
letDczX. 

We say that D is thin if whenever x, yeD and x # y, then 

\{a< x: xa¥^ya}\ > 1. 

A set D is said to be very thin if for every a < x and p e Xa, 

\{xeD:xa = p}\^ 1. 

Clearly, every very thin set is thin. In the product of two spaces, these two 
notions of thinness coincide. 

Geometrically, in the case x = 3, no two points of a thin set in P can be 
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on a line parallel to either of the axes; i.e. if D is thin and xeD a P, x = 
= C*o» yo* ZQ)" then x is the only point in 

[({*>} x iyo) xZ) v ({x0} x Yx {z0}) u ( Jx{y 0 } x {z0})] n /). 
Similarly, in the case of a very thin set D, no two points can lie on a plane 

parallel to one of the three main planes, i.e. if xeD a /3, then x is the only 
point in 

[({x0} x Y x Z) u (X x {j;0} x Z) u (X x Y x {y0})] n D. 

Proposition 2. (see [8]) Let X be the product ofT0 many dense-in-themselves, 
separable spaces Xa with countable dense subsets Da — {x(a, n): ne co}, respective­
ly. Then there is a countable, dense and thin subset of X. 

The assumption that all spaces Xa are dense-in-themselves is essential. In fact, 
let X = [0, 1] u {2} and Y = [0, 1]. Consider Xx Y as a subspace of the plane. It 
is clear that every countable dense subset of Xx Yhas infinitely many points in 
the fiber {2} x Y. 

Following J. C. Ox to by [7] we say that a family J1 of non-empty open 
sets in a space is a pseudo-base if every non-empty open set contains at least one 
member of ;#. It is clear that every base is a pseudo-base and that every space 
having a countable pseudo-base is separable. 

The Stone — Cech compactification (3 TV of naturals is an example of a space 
having a countable dense set of isolated points (hence, it has a countable 
pseudo-base) but no countable base, cf. [7] p. 159. 

The property of possessing a countable pseudo-base is intermediate between 
that of having a countable base and that of being a separable space. For 
metrizable spaces all three properties are equivalent, see [7]. 

Proposition 3. (see [8]) Let X be the product of 2(0 many dense-in-themselves 
spaces with countable pseudo-base 38h respectively. Then there is a countable dense 
and very thin set D in X. 

III. Near continuity on products 

Let X = f l xa a n d l e t x = (xa)e X. 
a < x 

The set Wa(x) = {yeX: xa = ya} will be called the a-wall of x in X. 
The set La(x) = {yeX: (p ^ a) => (xp = y^)} will be called the a-line through 

x in X. 
Observe that a set A a X is thin (resp. very thin) if for every xeX and every 

p < x, the /2-line through x in X(resp. a-wall of x in X) has at most one element 
of A. 

Consequently we have the following two notions of "separate" near continu­
ity on arbitrary products. 
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A function/: Y\ Xa-> Y is called L-nearly continuous (resp. W-nearly con-
a < x 

tiiuious) if V.ve LI X«V V sf(x)3B< x: C\ f-\V)n LJx) (resp. C\f~\V)n 
x L open * ' 

a < x * 

n Wp(x)) is a neighbourhood of .Y in Lp(x) (resp. in ff^(x)). 
The following two statements easily follow from Propositions 2 and 3. They 

both strongly generalize T. Neubrunn's result, Proposition 1. 
Proposition 4. Let X be the product of2C0 many separable (resp. having count­

able pseudo-bases) dense-in-themselves spaces and let Y be a Hausdorff space 
containing at least two points. 

Then there is a nearly continuous function f from X into Y and there is a 
countable dense set D cz X such that for every xe Z), / is not L-nearly continuous 
(resp. W-nearly continuous). 

Remark. As it is observed in [8], Propositions 2 and 3 hold for any x > &>, 
where separability and countable pseudo-basis are replaced by density x and 
/r-weight x respectively. Hence Proposition 4 can be even further generalized. 

IV, A dual problem 

The following Lemma 5 will be used in the sequel. 
Lemma 5. Let X be arbitrary, Y be regular and let f: X —• Y be quasicontinuous 

and nearly continuous at x0. Then f is continuous at x0. 
Proof: Suppose f is not continuous at x0. Then there exists V open , 

Vsf{x0) such that for any open U containing x0 there is x e U such thatf(x) £ V. 
Take W open such thatf(x0)e W cz CI W cz V. Using near continuity at x{) we 
have an open neighbourhood £/, of .v0 and a dense set H cz U] such that 
f(H) cz W. Take x, e t7, such thatf(jc,)£ V. Then by quasicontinuity o f / a t v, 
there exists a nonempty open set G a U} such thatf(G) cz Y\C\ W, which is a 
contradition with f(H) cz W. 

T. Neubrunn [6] in Ex. 2 p. 310 showed that there is a separately nearly 
continuous functionf: I2 -• R which is not nearly continuous at (0, 0). However, 
the following general result is true. 

Proposition 6. Let X be Baire, Y be a space such that any point y e Ypossesses 
a neighbourhood satisfying the second countability axiom and let Z be regular, or 
let X, Y and Z be metrizable and let f: X x Y -> Z be any separately continuous 
function which is not continuous on a set D cz X x Y. Then any point of D is a point 
at which f is not nearly continuous. 

Proof: Clearly, as separately continuous, such / i s separately nearly con­
tinuous. So, we only need to show that fis not nearly continuous on D. 
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Case I. Xis Baire, Y-every point ye Y possesses a neighbourhood satisfying 
the second countability axiom, Z is regular. Suppose, to the contrary, that f is 
nearly continuous on D. Then as separately continuous, it is, by [6] Thm. 2 
quasi-continuous (= the inverse image of every open set lies between an open 
set and its closure) on D. And now, by Lemma 5 we get that f is continuous 
on D, which is is a contradition. 

Case II. Let X, Y and Z be metric. Again, we suppose that f is nearly 
continuous. Then as separately continuous, it has, by [4] Thm. 4, p. 148, the 
Baire property. And now by [9] Thm. 4, p. 152,fis continuous, a contradiction. 

Remark 7. Obviously it is sufficient to assume in Proposition 6, Case I, 
that f, f are quasi-continuous. Moreover, it is sufficient to suppose (see [6] 
Thm. 2) that f's are quasi-continuous with the exception of a set of the first 
category. 

It is not clear [6] whether a dual question to that answered by Thm. 1 of [6] 
has the positive answer for some classes of spaces X, Yand Z. Here is this dual 
problem: 

Let X, Y and Z be "nice" spaces. Does there exist a function / : Xx Y -> Z 
and a dense set D c: Xx Ysuch thatfis separately nearly continuous or rather, 
in view of Proposition 6, separately continuous, and which is not nearly con­
tinuous at every point of/)? 

The first and already completely satisfactory answer to this question in case 
X = Y = Z = / came in 1910(!) by W. H. Young and G. C. Young [10]. 

They showed an example of a function which is continuous along every 
straight line (in I2) but which has uncountably many points of discontinuity in 
every rectangle contained in I2. J. C. Breckenr idge and T. N i sh iu r a 
([2] Thm. 5.2, p. 201) showed that: 

If A and B are sets of first category in metric spaces X and Y, respectively, 
if H is an F^-subset of Xx Y with H a Ax B, then there is a separately con­
tinuous function f: Xx Y-+ R (= the real line) such that H is the set of points 
of discontinuity. The following Proposition 8 is derived from the above result 
and Proposition 6; it gives an andwer to our dual problem. 

Proposition 8. Let X and Y he metric, separable dense-in-themselves spaces. 
Then there is a real-valued, separately continuous function f: XxY-^R and there 
is a dense subset D c: Xx Y such that f is not nearly continuous at points of D. 

The author would like to express his thanks to Professor T. Neubrunn who 
suggested a stronger version of Case I of Proposition 6, as well as an improve­
ment of the first version of Proposition 8. 
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НЕКОТОРЫЕ ЗАМЕЧАНИЯ О ПОЧТИ НЕПРЕРЫВНЫХ ФУНКЦИЯХ 

2Ы§те\у р1о1гош$к1 

Резюме 

В работе даются некоторые применения теорем Хьюита —Марчевского —Пондичеры 
к почти непрерывным функциям. Изучается обобщенная непрерывность по каждой перемен­
ной отдельно на произведение большого количества пространств. 
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