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SOME COMMENTS ON A RESULT OF HANS
ON STRONG CONVERGENCE OF SEQUENCES OF
RANDOM ELEMENTS IN SEPARABLE BANACH SPACES

A. BOZORGNIA—M. BHASKARA RAO
1. Introduction

Let (2, </, P) be a complete probability space and X,, n > 1 a sequence of
random elements defined on £2 taking values in a separable Banach space B. The
starting point of this paper is a result of Han$ on convergence almost every-
where of the sequence X,, n > 1. Before we state this result, we need the
following set.

A ={we2; {X,(w), n > 1} is relatively
strongly compact in B}.

One can show that A€ .o/ and that A is a tail set. See Hans [4, p. 88].
Theorem 1 (Hans [4, Theorem 19, p. 89]. Let T be a total subset of B*, the dual
of B. Then X,, n > 1 converges a.e. [P] if and only if the following hold.

Han$§ conditions. (a) P(4) =1
B) f(X,), n = 1 converges a.e. [P] for every
finT.

This paper has three objectives to achieve. The first objective is to examine
Hans§ conditions (o) and (B) in relationship to the following condition.

(v) X,, n > 1 converges in probability.

Using Theorem 1, Han$ characterized almost sure convergence of sequences
of random elements taking values in some special Banach spaces c,, /, etc. Some
of these characterizations are not right. The second objective is to provide the
relevant counter examples. Section 2 of this paper focuses on these two objec-
tives.

The third objective is to establish a result in the spirit of the Han§ Theorem
above for convergence in probability and this is covered in Section 3.
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2. Han$ conditions, convergence in probability, and convergence
in some special Banach spaces

Suppose X,, n > 1 converges in probability. Then every subsequence of X,
n > 1 admits a further subsequence which converges almost surely [P]. (See
Lemma | below.) Then it might be tempting to conclude that the Hans condition
(o) and convergence in probability are equivalent. We give examples to show
that these two concepts are different.

The following is an example to show that the validity of Han$ condition (a)
does not imply convergence in probability.

Example 1. Let 2 = {0, 1}¥, o its Borel o-field and P the product mea-
sure 4, x 4, x ..., where each 4,({0}) = 1/2 = A,({1}) and N is the set of all natural
numbers. Let B = R, the real line. Let for each n > 1,

Xn(xla X2s ) = X,

for every (x,, x,, ...)€£. X,, n> 1 is'a sequence of independent 0-1 valued
random variables. It is obvious thatd = {we 2; {X,(w), n > 1} is relatively
strongly compact in B} = 2 and consequently P(4) = 1. But X, n > 1 does not
converge in probability.

Suppose X,, n > 1 converges in probability. Does this imply that P(4) = 1?
The answer is no. The answer is still no even when the Hans condition () holds
for the sequence %, n > 1 additionally. The relevant counter example is given
below.

Example 2. Beck and Warren [2, p. 922] exhibited a sequence Y,, n > 1
of random elements taking values in ¢, with the following properties. (i) Y,
n > 1is uniformly bounded in norm. (ii) Y,, n > 1 is identically distributed. (iii)
EY, = 0 for every n > 1. (iv) Y,, n > | is weakly orthogonal, i.e., f(¥,),n > 11is
a sequence of pairwise uncorrelated random variables for every fin B*. (v) X, =
= (;+ Y.+ ... + Y)/n, n > 1 does not converge almost surely [P].

This sequence X,, n > 1 is the sequence of interest. By Theorem 5.1.2 of
Chung [3, p. 103], it follows that f(X,), n > 1 converges a.e. [ P] for every fin B*.
Thus the Han$ condition (B) holds for X, n > 1. By Theorem 2.3 of Wang and
Bhaskara Rao [5, p. 128], it follows that X,,, » > 1 converges in probability. But
the Han$ condition (a) evidently is not valid by (v) above.

Hans [4] gave several applications of Theorem 1 to /? spaces, ¢, (the space of
sequences of real numbers converging to zero), ¢ (the space of all convergent
sequences of real numbers), L?[0, 1] spaces and C[0, 1]. See Theorems 25 to 37
of Hans [4]. Now we look at some of these applications.

First, consider the Banach spaces /”, 1 <p < o, ¢ and c¢,. Consider the
functionals

Jn(X1y Xay cees Xpy Xpy1s --2) = X, n>l1.
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Each of these functionals can be defined on every one of the spaces mentioned

above and they constitute a total subset of the corresponding dual spaces.
The following is Theorem 25 of Hans$ [4, p. 92]. “Let (2, o/, P) be a

probability space and X,, X,, ... a sequence of random elements with values in I'.

Then X,, n > 1 converges to X, almost surely [P] if and only if the following two

conditions (a) and (b) hold.

(a) For every € > 0 there exists a positive integer k. (dependent on € only) such

that for everyn =1, 2, ...

P{we!); Y X (@)l < g} =1.
i2k,
(b) fi(X,), n = 1 converges to f,(X,) almost surely [P] for every i=1,2,...”
The conclusion of this theorem as it stands is false. We have checked the
sufficiency part of this theorem to be correct. The necessity part of this theorem
is false. We give the following counter example to substantiate our claim.
Example 3. Let §, = (x;, x,, ...) be defined by x,=1 for i=n, and =0
fori#n, n> 1. Let 2= {w,, w,, ...} be countable and P({w,}) > 0 for every
k > 1. For each n > 1, define
V.(w) = 6; forl1 <i<n,
=nd,,, fori>n+1.

Also define Vy(w;) = &,i > 1. Itiseasy to check that lim V,(w) = V,(w) for every

we L. Further, it can be checked that (a) does not hold for this sequence.

Hans$ has a similar theorem for /” spaces for 1 < p < o0. See-Theorem 31
[4, p. 93]. One can give an example to show that the necessary part of this
theorem is not true.

The following theorem is stated by Han$ [4, Theorem 27 and 28, p. 92].
“Let (£2, o/, P) be a probability space and V,, n > 0 a sequence of random elements
taking values either in c or c¢,. Then V,, n > 1 converges to V, almost surely if and
only if the following two conditions (a) and (b) hold.

(a) For every € > 0 there exists a positive integer k, (dependent on € only) such
that for every i > k,andn=1,2, ...,

Ploe2; |f(V (o) < & = 1.

(b) £i(V.), n > 1 converges to f(V;) almost surely [P], for every i=1, 2,3, ...”
We claim that the necessary part of this theorem is false. The example given
above also serves here.

3. Convergence in probability

In this section, we characterize convergence in probability in the same spirit
as Theorem 1 above. We also give some applications of this result in some
special Banach spaces.
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Lemma 1. Let V,, n>0 be a sequence of random elements defined on a
probability space (L2, 7/, P) taking values in a separable Banach space B. Then V,,
n > 1 converges to V; in probability if and only if every subsequence of V,, n > 1

admits a further subsequence V..» k =1 converging to Vy almost surely [P].

Proof. This result is well known for the case when B is the real line and
the same proof goes through for the general case. See Chung [3, Theorem 4.2.3,
p.- 73].

Theorem 2. Let X,, n > 0 be a sequence of random elements defined on a
complete probability space (£2, o/, P) taking values in a separable Banach space B.
Suppose the following two conditions are satisfied
(1) f(X,), n = 1 converges to f(X,) in probability for each f in A, where A is some

total subset of B*.
(i) Every subsequence of X,, n > 1 admits a further subsequence X, , k > 1 such
that P{we Q2; {X,,k(a)); k > 1} is relatively strongly compact} = 1.
Then X,, n > 1 converges to X, in probability. Further, conditions (i) and (ii) are
also necessary for convergence in probability.

Proof. Sufficiency. In view of Lemma 1, it suffices to show that given
any subsequence of X, n > 1, it admits a further subsequence which converges
to X, almost surely.

Since B is separable, we can find a countable subset C of 4 which is total. See
Banach [1, Theorem 4, p. 124]. Let C = {f,, f, ...}. For the given subsequence
of X,, n > 1 choose a further subsequence X, k=1 such that

P{loeQ; {X, (0); k > 1} is relatively strongly compact} = 1.

Since f,(X,,), kK > 1 converges to f,(Xj) in probability, we can find a subsequence
fi(X,), r = 1 converges to f)(X,) almost everywhere. By a similar argument, we
can find a subsequence X,,,r=1of X, ,r>1such that fo(X,,), r = 1 con-
verges to f,(X;) almost everywhere. Continuing this process for each f;, we get

a double array
LX)y [, ). fi(X,),
LX), (X)), fi(X,), -

where each row sequence is a subsequence of the row sequence just ahead of it.
It has the following properties:
(i) X,k = 1is a subsequence of X, , k > 1 and hence a subsequence of the
given subsequence with which we originally started.
(i) £,(X,, ), k = 1 converges to f,(X,) almost surely for each p > 1.

(ili) P{weR; {X, (w), k > 1} is relatively strongly compact} = 1,

kk
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since the set involved with in the flower brackets contains {we 2; {X, (@), k > 1}
is relatively strongly compact}.

By Theorem 1, X, , k > 1 converges to X, almost surely [P].

Necessity. Necessity of the conditions (i) and (ii) follows from Lemma 1
and from the necessity part of Theorem 1.

We now apply Theorem 2 to some special spaces.

Theorem 3. Let V,, n > 0 be a sequence of random elements defined on a
complete probability space (£2, o/, P), taking values in I’, 1 < p < c0. Then V,,
n > 1 converges to V, in probability if the following two conditions are satisfied.
(@) Every subsequence of V,, n > 1 admits a further subsequence V, , k > 1 such

that for every € > 0 there exists a positive integer k_ satisfying

P{weQ; Y 1A, (@) < g} =1 foreachk>1.
i2k,
(b) fi(V,), n = 1 converges to f,(V,) in probability for every i > 1.

Proof. We want to apply Theorem 2 to prove this result. We will show
that (a) and (b) together imply (i) and (ii) of Theorem 2. Suppose (a) and (b)
hold. (b), obviously, implies (i) if we take 4 = {f,, n > 1}. Now, we will show
that (a) + (b) implies (ii). Let V, , k > 1 be any arbitrary subsequence of V,,
n > 1. Since f(V, ), k > 1 converges in probability to f(¥;) for each i > 1, by
Cantor’s diagonal technique we can find a subsequence 17,,, pxlofl  k>1
such that f,(V,,), p =1 converges to f;(¥;) almost surely [P] for each i > 1.

There exists a set De .o/ such that P(D) = | and for each we D, fi(V,(0)),
p =1 converges to f;(V;(®)). Assume, without loss of generality, that for the
subsequence IZ,, p > 1, (a) is satisfied. If not, we can take a further subsequence
of V,, p > 1 satisfying (a).

For & = 1/n, denote k,, by k,. Let

E= rDI nQI {wEQ’ i;( If;(Vr(w))lp = l/n}

Then condition (a) implies P(E) = 1. Let F= Dn E. We have P(F) = 1. Now,
we claim that for each we F, V,(w), r > 1 is a Cauchy sequence.
Let we F. Let € > 0. Then we can find n > 1 such that (1/n) < &.

V(@) = V(o)|? = _ZI /(7 (@) = (T (@) =
ky—1

A B CAC) e

i=1

T U7 @) ~ @) <
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Ay 1
P (V@) = fi(T ()] + 2/n.

Since f;(V (w)), r > 1 converges for each i = 1 to k, — 1, we can find M > 1 such
that
|f,(V@)) — [V (@) < g/k, — 1)

foreveryi=1tok,—land r,m> M.
Consequently, if r, m > M,

1V(@) — V()" < 3.
From this, it follows that
Plwe Q; {V.(w), r > 1} is relatively strongly compact} = 1.

This proves that (a) and (b) imply (ii) of Theorem 2.

Theorem 4. Let V,, n > 0 be a sequence of random elements defined on a
complete probability space (€2, &/, P) taking values in c¢,. Then V,, n > 1 converges
to V, in probability if the following two conditions are satisfied.

(a) Every subsequence of V,, n > 1 admits a further subsequence V, , k > 1 such
that for everv € > 0, there exists a positive integer k, satisfying

PloeQ: |fi(V, ()| < g =1

for every i > k_and k > 1.
(b) fi(V), n = 1 converges to f.(V,) in probability for every i > 1.
Proof. A proof can be supplied in the same way as that of Theorem 3.
Hans [4, Theorem 34, p. 94] characterized convergence almost surely in
L*[0, 1] for p > 1. Here the measure on [0, 1] is the Lebesgue measure. We give
a characterization of convergence in probability for general L” spaces.
Theorem 5. Let (Y, €, u) be a probability space, where € is a separable o-field
onY. Let E,, n>1 be a generator of € closed under finite intersections and
containing Y. Let V,, n> 0 be a sequence of random elements defined on a
complete probability space (£2, 4, P) taking values in L*(Y, €, n) for somep > 1.
Then V,, n > 1 converges to V, in probability if the following two conditions are
satisfied.
(a) Every subsequence of V,, n > 1 admits a further subsequence V, , k > 1 such
that

J IV, (@) )P u(dy), k > 1 converges to
Y

J |Vo(@) W)I?u(dy), for almost all we £2.
Y
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(b) J V.(:-)Y(»)u(dy), n = 1 converges to

f Vo(+) (») u(dy) in probability for every i =1, 2, ...
E;

i

Proof. A proof of this result can be patterned along the lines of the
proof of Theorem 3.
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HEKOTOPBIE 3AMEUYAHMUS IO MOBOAY BbIBOJAOB 'AHIIA O CUJILHOM
CXOJANMOCTH MOCJELOBATEJILHOCTEN CJTYYAMHBIX JIEMEHTOB
B PA3IEJIbHbIX BAHAXOBbBIX MPOCTPAHCTBAX

A. Bozorgnia—M. Bhaskara Rao
Pe3ome

B paGore paccMaTpuBarOTCA BbIBOAbI laHIa O CHUJIBHOH CXOAMMOCTH MOCJIEI0BATEILHOCTH
Cﬂy‘laﬁHle JJIEMEHTOB B pa3/icJibHOM 6aHaxoBOM TPOCTPAHCTBE B COMOCTABJICHUU C No0OHBIMHU
pe3yjibTaTaMH, UMECIOLIMMHUCA B JIHTEPATYypE.

PaCCManHBaeTCﬂ TAKXE€ HUCNOJIb30BAHUE ITHUX BLIBOAOB B HEKOTOPLIX creuMabHbli GaHa-
XOBbIX MPOCTPAHCTBAX.
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