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ON THE DIRECT POWER OF RELATIONAL SYSTEMS 

JOSEF SLAPAL 

In the paper relations are considered in a general sense, i.e. as sets of 
mappings. We introduce three direct binary operations of addition, multiplica­
tion and exponentiation for relational systems which generalize the three cardi­
nal operations for ordered sets discussed by G. Birkhoff in [1] and [2]. The aim 
of this note is to find a sufficient condition for the direct power of relational 
systems to have a certain property that is characteristic for powers in cartesian 
closed topological categories. 

Let F and / be non-empty sets. Then a set of mappings R <= F1 is called a 
relation and the ordered pair 3F = (I7, R) is sasid to be a relational system. The 
set Fis called the carrier of 3F and the set / i s called the domain of # \ If 3F and 
^ are relational systems of domains / and / respectively, then J* and ^ are said 
to be of the same type iff there exists a bijection of / onto / , i.e. iff / and J are 
equipotent. 

Let 3F = (i7, R) of domain / and ^ = (G, S) of domain J be two relational 
systems of the same type. Let a: /-> J be a bijection and let cp: F-> G be a 
mapping. If the implication fe R => (p°f° a~[ eS holds, then cp is called a homo-
morphism of F into <& with regard to a. By Homa(J^, ^ ) w e denote the set of 
all homomorphisms of F into ^ with regard to a. If / = / and a = id, (by idr 

we denote the identity mapping of / ) , then we write Hom(J% ^ ) instead of 
Homa(jF, <g). 

If !F = (F, R) and ^ = (F, S) are two relational systems of the same domain 
and with the same carrier, then we put J* = ^ iff R 91 S, i.e. iff idFe Horn (J% 
^ ) . Clearly, ^ is an order on the set of all relational systems of the same domain 
and with the same carrier. 

1. Example . Let I? be a ternary relation on a set F or, in other words, 
let 8F = (F, R) be a relational system of the domain {1,2, 3}. By R denote the 
cyclic closure of I?, i.e. R is the least (with respect to the set inclusion) ternary 
relation on F such that R ~l R and that the implication fe A => g e R is valid 
whenever geF^ 2- 3> is the mapping with g(\) =f(2), g(2) =f(3), g(3) = f ( l ) . 
Put fF = (F, /J). It can be easily seen that the following assertion is true: The 
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identity mapping of F is a homomorphism of F into F with regard to any even 
permutation of the set {1, 2, 3}. 

2. Definition. Let F = (F, R) of domain I and & = (G, S) of domain J be two 
relational systems of the same type. Let FnG = 0 and let a: I -+ J be a bijection. 

a 

The direct sum F + <$ of F and <$ with regard to a is the relational system 
Ff = (H, T) of domain a, where H = F u G and T ^ Ha is defined in the following 
way: h e Ha, h e To there exists fe R such that h (x, y) = f(x)for all (x, y) eaor 
there exists geS such that h(x, y) = g(y) for all (x, y)e a. 

3. Definition. Let F = (F, R) of domain I and & = (G, S) of domain J be two 
relational systems of the same type. Let a: I -> J be a bijection. The direct product 

F a y of F and<S with regard to a is the relational system FC = (H, T) of domain 
a, where H = F x G and T ^ Ha is defined as follows: h e Ha, h e T<=> there exist 
fe R and geS such that h(x, y) = (f(x), g(y))for all (x, y)ea. 

4. Definition. Let F = (F, R) of domain I and<£ = (G, S) of domain J be two 
relational systems of the same type. Let a: I-+ J be a bijection. The direct power 

a 

F A& ofF and<§ with regard to a is the relational system Ft = (H, T) of domain 
a where H = Homa-i (<&, F) and T ^ Ha is defined in the following way: h e Ha, 
he TolheRfor all teG. Here, whenever teG and heHa, 'h is the mapping 7l: 
/ -• F defined by *h (x) = h (x, a(x)) (t) for all xel. 

The following two assertions are proved in [6]: 

5. Proposition. Let F = (F, R) of domain I and<S = (G, S) of domain J be two 
relational systems of the same type. Let F n G = 0, let a: I -> / be a bijection and 

let #e = (H, T) = F + <$. Then 2tf the least element (with respect to S) in the 
set of all such relational systems J5f of the same domain a and with the same carrier 
H for which the following two conditions are fulfilled: 

(i) id^eHom^J^, J5f), Where ft: I-+ a is the bijection defined by P(x) = 
= (x, a(x)) for all xel, 

(ii) idGeUomy(^, <£), where y: / - * a is the bijection defined by y(y) = 
= (a~l(yly)for allyeJ. 

6. Proposition. Let F = (F, R) of domain Iand& = (G, S) of domain J be two 
relational systems of the same type. Let a: I -+ J be a bijection and let Jf = (H, 

T) = F a <3. Then 2tf is the greatest element (with respect to ^ ) in the set of all 
such relational systems 5£ of the same domain a and with the same carrier H for 
which the following two conditions are fulfilled: 

(i) prFHe Hom^J^7, F), where p.a-> lis the bijection defined by P(x, y) = 
= x for all (x, y) e a, 
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(ii) prGHe Hom-,(JS?, ̂ ) , where y: a-+J is the bijection defined by y(x, y) = y 
for all (x, y) e a. 
Here prF / / and prG// denote the projections of H onto F and G, respectively. 

NOW there arises the question whether the direct power of any two relational 
systems of the same domain can be described in a similar way as the direct sum 
and product of them are described in sections 5 and 6. The answer is negative 
in general. However, we discover such a condition for relational systems under 
which this answer is positive. 

7. Definition. Let 3? = (F, R) be a relational system of domain I. 
1. The system 3* is called reflexive iff for any constant mapping c: I -> F there 
holds ceR. 
2. Let J be a set equipotent with I and let a: I -• J be a bijection. The system SF 
is called diagonal with regard to a iff the following condition is valid: 

If {fy\yeJ} is a family with fy e R for all ye J and if the family {gy \ y e J} of 
elements of F\ defined by gv(x) = fa(X)(a~](y)) for all xel and yef has the 
property gveRfor every ye J, then putting h(x) ==f«(.x)(x)for each xel we get 
heR. 

8. Re m a rk . Let / b e a set with card / = n < K0. Then .the relations of 
domain /coincide with the n-ary relations, obviously. The homomorphism and 
the direct operations of addition, multiplication and exponentiation for sets 
equipped with the n-ary relations introduced in [5] correspond to those for 
relational system with regard to the identity mapping of the set /. Also the 
diagonality of sets with the n-ary relations defined in [5] is equivalent with the 
diagonality of them with regard to the identity mapping of the set /. The 
statements of sections 5 and 6 generalize the corresponding statements of [5]. 

9. Lemma. Let & = (F, R) of domain I and & = (G, S) of domain J be 
relational systems of the same type. Let a: I-*J be a bijection and let J^ = 

= (H9 T) = 3?k<S. Let P: J-+a and / : /?-• I be bijections defined by p(y) = 
= (a~] (y), y)for all ye J and y(y, x, y) = xfor all (y, x, y)ep. If& is diagonal 
with regard to a, then the mapping e: G x / / - > F , defined by e(t, <p) = (p(t) 

whenever (t, <p)eG x H, fulfils eeHomy(^ "-JT, 3?). 

Proof. Denote (M, U) = ^ " Jf and let reU. Then there exist peS and 
qeT such that r(y, x, y) = (p(y), q(x, y)) holds for all (y, x, y)e)3. For each 
ye J put fy = piy)q. Since 'qeR for all teG, we have fvei? for all ye J. For each 
xel and ye J put gy(x) =fa(x)(a-](y)). There holds gv(x) =fa{x)(a~](y)) = 
= p{a{x))q(a-](y)) = q(a-](y), y)(p(a(x))) = ((q(a~](y),y))opo a)(x) for all 
xel and ye J, hence gv = ( q ^ ' ^ y ) , y))°p° a for each ye J. As q(a ](y) ,y)e 
eH = Homfl-i(^, J2"), there holds gveR for each ye J. For any x e / w e have 
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e(r(Y (x))) = e(r(a(x\ x, a(x))) = e(p(a(x)), q(x, a(x))) = q(x, a(x)) 
(p(a(x))) = p(aix))q(x) = f ( v )(x) . Now, putting h(x) =fa{x)(x) for each xel we 
%ete(r(Y~](x))) = h(x) for each xel, thus e°r x y"1 = /L If #" is diagonal with 

regard to a, then eoro y-1 _= heR and consequently eeUomY(^ *#?,&). 

10. Theorem. Lel .^ = (F, R) of domain I and<£ = (G, S) of domain J be two 
relational systems of the same type. Let a: I' -> J be a bijection. Let (5: J" -> a and 
7: /?-> I be r//e bijections defined by P(y) = (cT1 (y), y)/or all ye J and y(y, x, 
v) = x/flr a// (y, x, y)e/?. .//"^ is diagonal with regard to a and rS is reflexive, 

a 

then the direct power JF = (H, T) = 3F A& is the least element (with respect 
to ^ ) in the set of all such relational systems ££ of the same domain a and with 
the same carrier H which have the following property: 

For any relational system Ji = (M, U) of domain a and for any homomorphism 

p H o m ^ ? J/, 2F) the mapping y/*: M-> H, defined by y/*(u)(t) = y/(t, u) 
whenever ueM and teG, fulfils y/*eHom(J/, j£?). 

Proof Let re U be a mapping and denote (TV, V) = <&? J(. For any teG 

and any ( r, x, y) e /?put 8,(y, x, y) = (t, r(x, y)). Then the reflexivity of {S implies 
8,6 V for each teG. Thus, for each teG there holds y/ostoY~]eR. For any 
elements reU, teG and xel we have *(y/*or)(x) = (y/*or)(x, a(x))(t) = 
= y/*(r(x, a(x)))(t) = y/(t, r(x, a(x))) = y/(st(a(x), x, a(x))) = y/(st(Y~\x))). 
Hence f(y/*c r) = y/ostoY~]eR for each teG. Consequently y/*oreT, which 
yields y/*e\\om(Ji, jtf). Thus Jf has the property of the theorem. 

Let ¥ = (H, W) be a relational system of domain a fulfilling the property of 

the theorem. Put e(t, cp) = (p(t) for each (t, (p)eG x H. Since eeHom7(^ 

^Jf, J^) by Lemma, we have e*eHompf, J^). But e*(<p)(0 = e(t, cp) = <p(t) 
for all teG and <pe//. Therefore e* = '\dH and hence id^eHompf , J5f). Thus 
J>f = J^ and the proof is complete. 

It 3F = (F, i?) and ^ = (G, S) are sets Fand G equipped with binary relations 
R and 5, respectively, then by 3F • ^ and J* * we denote their usual direct product 
and power ([5]). It is clear what is meant by a homomorphism of 3F into ^ . We 
obtain: 

11. Corollary. Let 3F = (F, R) and<§ = (G, 5) be sets Fand G equipped with 
binary relations R and S, respectively, and let (H, T) = cF '*. If R is transitive and 
S is reflexive, then T is the least binary relation (with respect to the set inclusion) 
in the set of all such binary relations U on H which have the following property: 

For any set equipped with a binary relation Jt = (M, V) and for any homomor­
phism y/ of y-Jt into 3F the mapping y/*: M-+H, defined by y/*(m)(h) = 
= y/(h,m) whenever meM and heH, is a homomorphism of M into (H, U). 
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Proof. In [5] it is shown that a set equipped with a binary relation (7\ R) 
is diagonal iff i? is transitive. Regarding the section 8, the Corollary follows from 
the Theorem. 

12. R e m a r k . For preordered sets 3F and ^ the statement of Corollary 
follows also from the fact that the category of preordered sets is a cartesian 
closed topological category — see [4]. 
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О ПРЯМОЙ СТЕПЕНИ РЕЛЯЦИОННЫХ СИСТЕМ 

^о5еГ §1ара1 

Р е з ю м е 

Реляционная система — это упорядоченная пара (I7, I?), где Г — непустое множество и Я 
— множество отображений какого-нибудь непустого множества в Р. Для этих реляционных 
систем определяются три прямые бинарные операции суммы, произведения и возведения в 
степень. В статье надо достаточное условие для того, чтобы возведение в степень для 
реляционных систем обладало определенным свойством, которое является характеристичес­
ким для возведения в степень в декартовско замкнутых топологических категориях. 
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