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ON THE DIRECT POWER OF RELATIONAL SYSTEMS

JOSEF SLAPAL

In the paper relations are considered in a general sense, i.e. as sets of
mappings. We introduce three direct binary operations of addition, multiplica-
tion and exponentiation for relational systems which generalize the three cardi-
nal operations for ordered sets discussed by G. Birkhoff in [1] and [2]. The aim
of this note is to find a sufficient condition for the direct power of relational
systems to have a certain property that is characteristic for powers in cartesian
closed topological categories.

Let F and I be non-empty sets. Then a set of mappings R < F' is called a
relation and the ordered pair & = (F, R) is sasid to be a relational system. The
set Fis called the carrier of # and the set I is called the domain of #. If # and
% are relational systems of domains / and J respectively, then % and ¥ are said
to be of the same type iff there exists a bijection of I onto J, i.e. iflf I and J are
equipotent.

Let # = (F, R) of domain I and 4 = (G, S) of domain J be two relational
systems of the same type. Let a: I — J be a bijection and let ¢: F— G be a
mapping. If the implication fe R = o foa~'e S holds, then ¢ s called a homo-
morphism of & into 9 with regard to a. By Hom, (%, 4) we denote the set of
all homomorphisms of & into ¢ with regard to a. If / = J and @ = id, (by id,
we denote the identity mapping of I), then we write Hom (¥, ¢) instead of
Hom,(#, 9).

If % = (F, R)and 4 = (F, S) are two relational systems of the same domain
and with the same carrier, then we put # < ¢4 iff R = S, i.e. iff id,e Hom (£,
%). Clearly, < is an order on the set of all relational systems of the same domain

and with the same carrier.

1. Example. Let R be a ternary relation on a set F or, in other words,
let # = (F, R) be a relational system of the domain {1, 2, 3}. By R denote the
cyclic closure of R, i.e. R is the least (with respect to the set inclusion) ternary
relation on F such that R < R and that the implication fe R=ge R is valid
whenever ge F'" 2 ¥ is the mapping with g(1) = f(2), g2) = f(3), g(3) = f(1).
Put % = (F, R). It can be easily seen that the following assertion is true: The
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identity mapping of Fis a homomorphism of # into % with regard to any even
permutation of the set {1, 2, 3}.

2. Definition. Let # = (F, R) of domain I and 9 = (G, S) of domain J be two
relational systems of the same type. Let F NG = 0 and let a: I — J be a bijection.

The direct sum F + 9 of # and 94 with regard to a is the relationul system
H = (H, T)of domain a, where H = FU G and T < H° is defined in the following
way: he H° he T<> there exists f€ R such that h(x, y) = f(x) for all (x,y)e a or
there exists g€ S such that h(x, y) =_g( y) for all (x, y)ea.

3. Definition. Let & = (F, R) of domain I and 4 = (G, S) of domain J be two
relational systems of the same type. Let a: I -» J be a bijection. The direct product

F Y of F and G with regard to ais the relational system # = (H, T) of domain
a, where H=F x G and T = H" is defined as follows: he H® he T <> there exist
S€R and ge S such that h(x, y) = (f(x), g(»)) for all (x, y)ea.

4. Definition. Let # = (F, R) of domain I and 4 = (G, S) of domain J be two
relational systems of the same type. Let a: I - J be a bijection. The direct power

FAY of F and % with regard to a is the relational system # = (H, T) of domain
awhere H=Hom,-1 (¥4, # ) and T < H° is defined in the following way: he H®,
heT<>'heR for all te G. Here, whenever te G and he H®, 'h is the mapping 'h:
I - F defined by 'h(x) = h(x, a(x)) (¢) for all xe L.

The following two assertions are proved in [6]:

5. Proposition. Let & = (F, R) of domain I and % = (G, S) of domain J be two
relational systems of the same type. Let FN\ G = 0, let a: I — J be a bijection and

let # =H,T)y=9T -T— %. Then 5 the least element (with respect to <) in the
set of all such relational systems & of the same domain a and with the same carrier
H for which the following two conditions are fulfilled:
() idreHomy(F, &), where B: I — a is the bijection defined by P(x) =
= (x, a(x)) for all xel, '
(i) idgeHom (¥, &), where y: J— a is the bijection defined by y(y) =
= (a'(p), y) for all yeJ.

6. Proposition. Let # = (F, R) of domain I and % = (G, S) of domain J be two
relational systems of the same type. Let a: I — J be a bijection and let # = (H,

T)=%F “%. Then S is the greatest element (with respect to <) in the set of all
such relational systems & of the same domain a and with the same carrier H for
which the following two conditions are fulfilled:

(i) prrHeHomy (%, ), where p: a — I is the bijection defined by B(x, y) =
= x for all (x, y)€a, :
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(i) prgcHeHom (&, %), where y: a — J is the bijection defined by y(x, y) =
for all (x, y)ea.
Here prH and pr; H denote the projections of H onto F and G, respectively.

Now there arises the question whether the direct power of any two relational
systems of the same domain can be described in a similar way as the direct sum
and product of them are described in sections 5 and 6. The answer is negative
in general. However, we discover such a condition for relational systems under
which this answer is positive.

7. Definition. Let & = (F, R) be a relational system of domain I.

. The system F is called reflexive iff for any constant mapping c: I — F there
lzolds ceR.

2. Let J be a set equipotent with I and let a: I - J be a bijection. The system F
is called diagonal with regard to a iff the following condition is valid:

If {f.lyeJ} is a family with f,e R for all yeJ and if the family {g,|yeJ} of
elements of F', defined by g,(x) = f,(@™'(»)) for all xel and yeJ, has the
property g.€ R for every y€eJ, then putting h(x) = f,,(x) for each xel we get
heR.

8. Remark. Let I be a set with card I =n < X,. Then .the relations of
domain [ coincide with the n-ary relations, obviously. The homomorphism and
the direct operations of addition, multiplication and exponentiation for sets
equipped with the n-ary relations introduced in [5] correspond to those for
relational system with regard to the identity mapping of the set I. Also the
diagonality of sets with the n-ary relations defined in [5] is equivalent with the
diagonality of them with regard to the identity mapping of the set I. The
statements of sections 5 and 6 generalize the corresponding statements of [5].

9. Lemma. Let % = (F, R) of domain I and 4 = (G, S) of domain J be
relational systems of the same type. Let a: I1— J be a bijection and let # =

=(H,T)= FAY. Let B: J— a and y: B— 1 be bijections defined by B(y) =
= (a”'(y), y) forall yeJ and y(y, x, y) = x for all (y, x, y)€ B. If ¥ is diagonal
with regard to a, then the mapping e: G x H— F, defined by e(t, ¢) = ¢(t)

whenever (t, )€ G x H, fulfils ee Hom (% . H, F).

Proof. Denote (M, U)=¥% " # and let re U. Then there exist peS and
qe T such that r(y, x, y) = (p(»), q(x, y)) holds for all (y, x, y)e B. For each
yeJ put f, = ?Yq. Since ‘g€ R for all te G, we have f,€ R for all yeJ. For each
xel and yeJ put g,(x) = fuy(@'(»)). There holds g,(x) = fo(@™' () =
=g (a='(y)) = q(a ' (), »)(p@)) = (g(a'(»),y)epea)(x) for all
xeland yeJ, hence g, = (g(a”'(y), y))opoa for each yeJ. As qgla”'(y),y)e
€ H = Hom,-(9, %), there holds g € R for each yeJ. For any xeI we have
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e(r(y”' (V) = e(r(a(x). x. a(x) = e@a). ¢(x. a(x) = glx. ax)
(P(a(x))) =g (x) = £, (x). Now, putting /(x) = fuw(x) for each xel we
gete(r(¥~'(x))) = h(x) for each xe I, thus eor x y~' = h. If F is diagonal with

B
regard to @, then e>roy' = he R and consequently e Hom (4 - #, F).

10. Theorem. Let # = (F, R) of domain I and 9 = (G, S) of domain J be two
relational systems of the same type. Let a: I — J be a bijection. Let B: J — a and
y: B— I be the bijections defined by B(y) = (a”' (), y) for all yeJ and y(y, x,
V) =X for all (y, x, y)e B. If F is diagonal with regard to a and 9 is reflexive,

then the direct power # = (H, T) =% A% is the least element (with respect
to <) in the set of all such relational systems & of the same domain a and with
the same carrier H which have the following property:

For any relational system ./ = (M, U) of domain a and for any homomorphism

we Hom (% Cat, FY the mapping v*: M — H, defined by y*(u) (1) = y(t, u)
whenever ue M and te G, fulfils y*e Hom (4, ).
Proof. Let re U be a mapping and denote (N, V) =%* 4. For any teG

and any (J, x, y)€ Bput s,(y, x, y) = (1, r(x, y)). Then the reflexivity of 4 implies
s,e V for each reG. Thus, for each teG there holds yos,cy 'eR. For any
elements re U, teG and xel we have "(y*or)(x) = (y*or)(x, a(x))(t) =
= y*(r(v, a(x)) (@) = w1, r(x, ax)) = yis(a(x), x, a(x)) = y(s,(r~"(x)).
Hence '(y*<r) = wes,oy '€ R for each teG. Consequently y*ore T, which
yields y*e Hom (.#, # ). Thus s# has the property of the theorem.

Let & = (H, W) be a relational system of domain « fulfilling the property of

the theorem. Put e(¢, @) = @(¢) for each (¢, @)e G x H. Since eeHomy(%-ﬂ

" #, Z ) by Lemma, we have e* e Hom (#, ). But e*(9) (1) = e(t, ¢) = ¢(?)
for all te G and @€ H. Therefore e* = id, and hence id,e Hom (¢, £). Thus
K < & and the proof is complete.

It# = (F,R)and 4 = (G, S) are sets F and G equipped with binary relations
Rand S. respectively, then by # -4 and # ¢ we denote their usual direct product
and power ([5]). It is clear what is meant by a homomorphism of % into 4. We
obtain:

11. Corollary. Let & = (F, R) and 4 = (G, S) be sets F and G equipped with
binary relations R and S, respectively, and let (H, T) = & *. If R is transitive and
S is reflexive, then T is the least binary relation (with respect to the set inclusion)
in the set of all such binary relations U on H which have the following property:

For any set equipped with a binary relation # = (M, V') and for any homomor-
phism v of 4.4 into F the mapping w*. M — H, defined by w*(m)(h) =
= y(h,m) whenever me M and he H, is a homomorphism of M into (H, U).
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Proof. In [5] it is shown that a set equipped with a binary relation (F, R)
is diagonal iff R is transitive. Regarding the section 8, the Corollary follows from

the Theorem.

12. Remark. For preordered sets & and ¥ the statement of Corollary
follows also from the fact that the category of preordered sets is a cartesian
closed topological category — see [4].
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O IMNPAMOM CTEIEHU PEJISALUIMOHHbBIX CUCTEM
Josef Slapal
Pe3ome

PensiumonHas cucrema — 3To ynopsinoueHHas napa (F, R). rae F — HenycToe MHOXeCTBO U R
— MHOX€ECTBO OTOOpaxeHUH KaKoro-HUOy b HENMYCTOro MHOXecTBa B F. JLisl 3TUX peJISLUOHHBIX
CHUCTEM OTIPENENSIOTCS TPU NpsAMble OMHAPHBIE ONMEPALUM CYMMBI, IPOU3BEACHUS U BO3BEACHHUS B
cTeneHb. B cTaTbe HamoO MOCTaTOYHOE yciaOBHE IUISI TOTO, YTOOBLI BO3BEAEHME B CTEMEHb 11s
PEJISIIMOHHBIX CHCTEM 00J1a1a510 ONPENEIEHHBIM CBOHCTBOM, KOTOPOE SIBJISIETCS XapaKTepHCTHYEC-
KUM ISl BO3BEJCHHUS B CTENEHb B IEKAPTOBCKO 3aMKHYTBIX TOMO;IOIMYECKHX KATErOpHUsX.
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