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IDEMPOTENTS OF COMPACT MONOTHETIC
SEMICLOSURE SEMIGROUPS

JAN SIPOS

One of the most unusual things about compact monothetic semigroups is that
a compact monothetic semigroup may have more than one idempotent [1]. It
was shown, using deep results of functional analysis, that any finite lower
semilattice is the set of idempotents for some compact monothetic semitopologi-
cal semigroup. With respect to this result, Berglund [2] stated the follow-
ing problem.

Problem: Find a topologico-algebraic construction of a compact
semitopological semigroup with many idempotents.

We give a construction of a sequentially compact monothetic semiclosure
semigroup with countably many idempotents. Unfortunately, the closure struc-
ture of this semigroup cannot be topologized.

We start with notes about terminology and definitions.

Let X be a nonempty set. With any point x in X there will be associated a
collection of subsets of X denoted by # (x). The map «(x+> % (x)) is called a
closure structure on X if the folowing conditions are satisfied for each x in X:

(1) %(x)#0.

(i) For each Ue% (x), xe U.

(iii) For each U and V in % (x) there exists a Win % (x) with Wc Un V.

(iv) If x # y, then there exists a Ue % (x) and a Ve (y) with UnV = 0.

The set X, together with a closure structure %, is called a closure space. A
sequence {c,} of elements of X is said to converge to c iff for every U .e %(c)
there exists an n, such that c,e U, for n = n,. The element c is called a limit of
the sequence ¢, and is denoted by ¢ = lim, ¢, (or simply ¢, = ¢).

A closure space is called sequentially compact iff every sequence {a,} of
elements from X contains a convergent subsequence.

A semiclosure semigroup S is a semigroup provided with a closure structure
in which multiplication is continuous in one variable, i.e. if a, — a, then a,b — ab
and ba, — ba (the elements a,, a and b being in §).

The continuity of the multiplication in a commutative semigroup can be
defined as follows: For every U, e%(xy) there exists a U,e(y) with
x.UcU,.
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The construction

Let q,, ¢», ... be the increasing sequence of all prime numbers. Put

Pin=(01-9,...q)"

fori,n=1,2,3, ....

1. Lemma. The double sequence {p,,} has the following property: For every
fixed integers i, j, r and s with i, j > 0 and i # j there exists an integer n, such that
the following two sets are disjoint

{Pintr, —pi.tr; ”;”0}
{P,;,,‘FS, —Pj.,,+S; .ngno}.

Proof. Since i #j we may and do assume without loss of genrality that
i>]. .
Choose an n, with p;, >|r —sl|, pi,, +r>0,p,, +s>0, —p,, +r< 0
and —p;, +s5<0. Let n, m 2 ny, then

1Pin+ T = Pim + N 2 Py Pin (@1 4 = Py | — I = 51
2 Pjn,—Ir—s1>0,
where we used the fact that
1Pin—ng @1+ 9)™° = Pim—ng) Z 1.
Similarly we can get that
|=pintr—(=pim+ >0,

thus the assertion of the lemma is true.

LetG={..a3,a%a',d a a’ a’..} beagroupand E ={0, e, €5, ...}
be a commutative semigroup of idempotents with e;e; = 0.¢; = 0 if i # J.
Let

S={a,a’a’,..}UEU{a"e;i=1,2,...,n=0,1, —1,2, =2, ...}.

Define a commutative binary operation on S as follows: a”.e; = a"e,
—_ gn+ _ . _ .
%’;1. a"e;=a"*"e;, a"e;.a"e;= (a".a™)(¢;.¢) and 0.x =0 for every x in S.
en

S={a,a’a* .JUEU| Ge,

i=1

E is exactly the set of all idempotents of S and Ge,; is a maximal subgroup of S
foreveryi=1,2, ....
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Define now the closure structure on S. Let r be a positive integer. Put
B,(a") = {a"},
B,(¢;) = {e;, a”, a"#e;; s = 1},
B.(a"e;)) =a"B,(e),
U(x)={B,(x);r=1,2,..} forx #0,
A0)=S—{B/(x)U...UB(x,); x;#0,i=1,2,....,n,n=1,2, ...}.

2. Lemma. (S, %) is a closure space.

Proof. (i) Clearly, % (x) # 0 for every x in S.
(ii)) For each U in % (x), xe U by definition.
(iii) Let U and ¥V be in % (x), we have to show that there exists a W in % (x) with
WcUnV.
(iii), If x # 0, then U = B,(x) and V = B,(x) for suitable r and s. It is enough
to put W = B, (x) with ¢ = max {r, s}. '
(iii), If x =0, then

U=S—-B/(x)uv...uB(x,)
V=S—-B()v..vB (¥

for suitable n, m and suitable x;, y,e S — {0}. )
Put W=S8—B/(x)uv..UB(x,)uB(y)uY..uB(y,), then W UnV.
(iv) Let x, ye S with x # y; we have to show that there exists Ue % (x) and
Vet (y) with UnV = 0. ,
(iv), If x, ye S — {0}, then by Lemma 1 there exists an r with B,(x) n B,(y) = 0.
It is sufficient to put U = B,(x) and V = B,(y).
(iv), If x =0, then put U = B)(y) and V' = S — B,(»).

3. Lemma. S is a sequentially compact closure space.

Proof. Let {c,} be a sequence in S.
(i) If {c,} N B,(x) is an infinite set for some x # 0, then clearly {c,} contains a
subsequence which converges to x.
(ii) Let{c,} n B,(x) be finite for every xe S — {0}. We shall show that ¢, — 0. Let
Ued (0) with

U = S - B](xl)u eee UBl(xk).
Since {c,} N B,(x;) is finite for every i, there exists an =, with
{Cntnzn 0 Bi(x;) = 0. Put ny = max{n,, n,, ..., m; }. Then clearly c,€ Uforn = n,.
4. Lemma. The set {a, a*, a’, ...} is dense in S.

Proof. We have to show that to every xe S there exists a sequence {n,}
with a™ — x.
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(i) If x = ¢,, then put n, = p;«-
(ii) If x = a’'e;, then put n, = pix + 5.
(iii) If x = 0, then put n, = (¢,-9> --- a)"
Before proving the continuity of multiplication in one variable we prove some
technical lemmas.
5. Lemma. If xy # 0, then x.B,(y) < B,(xy).
Proof. (i) Let x = ¢, and y = ¢, then

x.B,(y) =e,.B,(e,) = {e;, a"*e;,, a " e;; s 2 1} < B,(e;) = B,(xp).
(i) If x =a"e; and y = a™e;, then
x.B(y)=a"e,.B,(a"e;) =a"*".¢;.B,(¢e;) ca"*".B,(¢;) =
= B,(a"e,-.a"’e,-)\.= B,(xy).

The other cases are trivial.
6. Lemma. If x, ye S — {0} and xy =0, then for every nonzero z€S there
exists an integer r = r(z) such that

x.B.(y)nBi(2)=90.
Proof. Let x=¢, y = ¢; (i # ), then
x.B,(y) =e.B.(e) =10, a"e;s21r}.

If z = a”¢;, then the assertion follows by Lemma 1.
If z # a"e;, then the assertion holds trivially. The case x = a"¢;, y = a™e¢; is
similar.

7. Lemma. For every x, z # 0, there exists a t # 0 such that

x.(S=B,(t))nB,(z2)=0.

Proof. If z = a” then put t = a" " if x = a”", else ¢ is arbitrary.
If x = a” and z = a"e,, then it is enough to put t = a" ~"e,.

If x =a"e, and z = a"¢,;, then put t = a" "e,.
If x=a"e;,, z=a"e; and i # j then the assertion holds true for every ¢ # 0.

8. Theorem. (S, %) is a sequentially compact monothetic semiclosure semi-
group.

Proof. The sequential compactness of S was proved in Lemma 3. S is
monothetic by Lemma 4. We have to show that the multiplication in S is
continuous in each variable separately, i.e. to every U, e % (xy) there exists a
Ueu(y) withx.U,c U,,.

(i) If xy # 0, then it is enough to show that for every B,(xy), x. B,(y) = B,(xy),
but this is true because of Lemma 5.
(ii)) Let xy =0and x # 0 # y. Let
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(j.\'_rt S_ Bl(zl)u UBI(Z,,)

be from % (0). Then by Lemma 6 for every z; (i = 1, 2, ..., n) there exists an
integer r; with

x.B,(y)nBi(z) =0;
put r = max{r;i=1,2, ..., n} and put U, = B,(»), then clearly x. U, < U,,.
(iii) Let x # 0 and y = 0, let
U,=S—-B(z)u..uBl(,).
By Lemma 7 for every z; (i = 1, 2, ..., n) there exists a ¢, such that

X.(S—=B ()N B(z)=9
and so
x.(S—B(1) = S - B(z)

foreveryi=1,2, ..., n. Put
U,V = S - B,([I)U cen UBl(tn),

then x.U, < U,,.
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WIAEHIOTEHTHI MOHOTETUYHOM KOMITAKTHOM MOJIVIPVIIIbI
MOJYCXOAUMOCTH
Jan Sipos
Pe3ioMme

B 310l cTaThe faHa KOHCTPYKLIMA MOHOTETHYHOH KOMINAaKTHO#M NoJyrpymnibl 1OJ1jyCXOOMMOCTH,
KOTOpasi COOCPXHT 6EeCKOHEUHO MHOIO MIOCHIIOTEHTOB.
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