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IDEMPOTENTS OF COMPACT MONOTHETIC 
SEMICLOSURE SEMIGROUPS 

JAN SIPOS 

One of the most unusual things about compact monothetic semigroups is that 
a compact monothetic semigroup may have more than one idempotent [1]. It 
was shown, using deep results of functional analysis, that any finite lower 
semilattice is the set of idempotents for some compact monothetic semitopologi-
cal semigroup. With respect to this result, Berglund [2] stated the follow
ing problem. 

Problem: Find a topologico-algebraic construction of a compact 
semitopological semigroup with many idempotents. 

We give a construction of a sequentially compact monothetic semiclosure 
semigroup with countably many idempotents. Unfortunately, the closure struc
ture of this semigroup cannot be topologized. 

We start with notes about terminology and definitions. 
Let A" be a nonempty set. With any point x in X there will be associated a 

collection of subsets of X denoted by °U(x). The map ^(xi->$r(x)) is called a 
closure structure on X if the folowing conditions are satisfied for each x in X: 

(i) ^ ( x ) ^ 0 . 
(ii) For each Ue<%(x\ xeU. 
(iii) For each U and V in °tt(x) there exists a W in °U(x) with W a U nV. 
(iv) If x T* y, then there exists a Ue6U(x) and a Ve(JU(y) with Un V = 0. 
The set X, together with a closure structure °ll, is called a closure space. A 

sequence <c„} of elements of X is said to converge to c iff for every Ucetft(c) 
there exists an n0 such that c„e Uc for n — n0. The element c is called a limit of 
the sequence c„ and is denoted by c = \im„c„ (or simply c„ -> c). 

A closure space is called sequentially compact iflf every sequence {a„} of 
elements from X contains a convergent subsequence. 

A semiclosure semigroup S is a semigroup provided with a closure structure 
in which multiplication is continuous in one variable, i.e. if a„ -* a, then a„b -> ab 
and ba„ -> ba (the elements a„, a and b being in S). 

The continuity of the multiplication in a commutative semigroup can be 
defined as follows: For every UxveW(xy) there exists a Ure<tt(y) with 
x.UvcUv xy 
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The construction 

Let ql9 ql9 ... be the increasing sequence of all prime numbers. Put 

Pun^tix-qi-.-qi)" 

for i, n = 1, 2, 3, — 
1. Lemma. The double sequence {pin} has the following property: For every 

fixed integers i9j9 r ands with i9j > 0 and i ^j there exists an integer n0 such that 
the following two sets are disjoint 

iPun + r, -Pun + r; n = n0} 

{Pj,n + S> -Pj,n + S\ n = n0}. 

Proof. Since i ^ j we may and do assume without loss of genrality that 

Choose an n0 with p,;„o > \r - s\, pUllQ + r > 0, pJtHQ + s > 0, -p,-,,o + r < 0 
and —pjjno + s < 0. Let n9 m = n09 then 

.A.* + *" - (/>j,m + 5)l = P].nt\Pun-nMj+ 1 - * ) * " # . - - ' J ~~ | r ~~ 5 ' 

^p , ,„0 -k-* l>o, 

where we used the fact that 

\Pun-n0(qj+\ - tf/)"0 - P > , « - J = 1 • 

Similarly we can get that 

\-Pun + r-(-Pj,m + s)\ > 0 , 

thus the assertion of the lemma is true. 
Let G = {... a"3, a~2

9 a~\ a0, a, a2, a3,...} be a group and E = {0, eX9 e2,...} 
be a commutative semigroup of idempotents with etej = 0. eif = 0 if / # j . 
Let 

S = {a, a2,a3,...}u£u{awe/;i=l, 2, . . . ,n = 0, 1, - 1 , 2 , - 2 , . . . } . 

Define a commutative binary operation on S as follows: an .e{ = anei9 

an.amei = an + mei9 anei.a
me), = (a \am)(e , .e ,) and 0 . x = 0 for every x in 5. 

Then 
00 

S = {a, a2, a3, . . . }uJ~u(J Gef, 
i = i 

£ is exactly the set of all idempotents of S and Get is a maximal subgroup of 5 
for every / = 1, 2, . . . . 
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Define now the closure structure on S. Let r be a positive integer. Put 

Br(a») = {an}9 

Br(ei) = {eha
Pi%aPisei;s^r}9 

Br(a"ei) = a"Br(ei)9 

m(x) = {Br(x); r = 1, 2, ...} for x # 0, 

^ (0) = S - { ^ 1 ( x 1 ) u . . . u J S 1 ( x w ) ; x / # 0 , i = 1,2, . . . ,n , n = 1,2, . . . } . 

2. Lemma. (S, ^ ) is a closure space. 
P r o o f (i) Clearly, °U(x) # 0 for every x in 5. 

(ii) For each U in ^ ( x ) , xe U by definition. 
(iii) Let £/ and F be in °U (x), we have to show that there exists &Win°U (x) with 
Wa UnV. 
(iii), If x # 0, then [/ = J?r(x) a n d V = 2?5(x) for suitable r and s. It is enough 
to put W = Bq(x) with q = max{r, s}. 
(iii)2 If x = 0, then 

U=S-Bx(xx)u ...\JBX(X„) 

V = S-Bx(yx)u...vBx(ym) 

for suitable n, m and suitable x/9 yy-e 5 — {0}. 
Put H ^ - = 5 - 5 1 ( x 1 ) u . . . u J S 1 ( x J u j B 1 ( y 1 ) u . . . u 5 1 ( y m ) , then WczUnV. 
(iv) Let x, yeS with x -̂  y; we have to show that there exists Ue°U(x) and 
F e ^ ( y ) with C / n F = 0 . 
(iv)j If x, ye S — {0}, then by Lemma 1 there exists an r with Br(x) n Br(y) = 0. 
It is sufficient to put U = Br(x) and V = £ r(y). 
(iv)2 If x = 0, then put U = £- (y) and K = S - Bx (y). 

3. Lemma. S is a sequentially compact closure space. 
Proof. Let {cn} be a sequence in S. 

(i) If {cn} n JB1 (x) is an infinite set for some x # 0, then clearly {cn} contains a 
subsequence which converges to x. 
(ii) Let {cn} n Bx (x) be finite for every x e S - {0}. We shall show that cn -> 0. Let 
UeW(0) with 

£/ = s - ^ (x , ) u ... u ^ ( x * ) . 

Since {cn}nBx(xf) is finite for every i, there exists an n, with 
{en}n £ n , n Bx (xt) = 0. Put n0 = max {n,, n2,..., nk}. Then clearly c„ € U for n ^ n0. 

4. Lemma. 77*e set {a, a2, a3, ...} is dense in S. 
Proof. We have to show that to every xeS there exists a sequence {n*} 

with a"k -• x. 
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(i) If x = e,, then put nk = Pu-
(ii) If x = asei9 then put nk = Au + •*• 

(iii) If x = 0, then put nk = (qi. q2 •• •?*)*• 
Before proving the continuity of multiplication in one variable we prove some 
technical lemmas. 

5. Lemma. If xy # 0, then x. #r(y) <-= iBr(xy). 
Proof, (i) Let x = e, and y = e,, then 

x. 5r(y) = e,. *,(«?,) = {e„ aPue„ a~^e;-; s = r} c *,(<?,) = £ r(xy). 

(ii) If x = a"e, and y = ame,, then 

x./?,(y) = anei.Br(a
mei) = a" + m.e,. 2?r(e,) c an + m.Br(e() = 

= 5 r(aV,.ame /) = Jfir(xy). 

The other cases are trivial. 
6. Lemma. 7j x, ye 5 — {0} and xy = 0, then for every nonzero zeS there 

exists an integer r = r(z) sweh that 

x.Br(y)nB](z) = Q. 

P r o o f Let x = e,, y = e, (/ # j) , then 

x. 5 r(y) = e,. J5r(e,) = {0, a^e,; s = r}. 

If z = a"e,, then the assertion follows by Lemma 1. 
If z ^ a"e,, then the assertion holds trivially. The case x = arte,, y = ame7 is 
similar. 

7. Lemma. For every x, z # 0, there exists a t ^ 0 sweh that 

x.(5- £ , ( 0 ) 0 5 , (^ = 0. 

P r o o f If z = a", then put t = aw_m if x = a", else t is arbitrary. 
If x = am and z = a"e,, then it is enough to put t = an~mei. 
If x = ame, and z = a"e„ then put t = aw~me,. 
If x = ame;, z = aVy and i # j then the assertion holds true for every t # 0. 

8. Theorem. (S, °U) is a sequentially compact monothetic semiclosure semi
group. 

Proof. The sequential compactness of S was proved in Lemma 3. 5 is 
monothetic by Lemma 4. We have to show that the multiplication in S is 
continuous in each variable separately, i.e. to every Uxye°ll(xy) there exists a 
UyeW(y) with x. t/, c Uxy. 
(i) If xy # 0, then it is enough to show that for every Br(xy), x. Br(y) c: Br(xy), 

but this is true because of Lemma 5. 
(ii) Let xy = 0 and x # 0 ¥" y. Let 
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Uxy^S-B](zl)v...uB](zn) 

be from ^(0). Then by Lemma 6 for every z,(i = 1, 2, ..., n) there exists an 
integer r, with 

Jc.^(^)nB l(z /) = 0; 

put r = max{r,; / = 1, 2, ..M A} and put Uy = #r(y), then clearly x.Uya Uxy. 
(Hi) Let x ^ 0 and y = 0, let 

[ / , ^ 5 - f i 1 ( z 1 ) u . . . u f i 1 ( z J . 

By Lemma 7 for every z, (z = 1, 2, ..., n) there exists a t, such that 

x.(S-Bx(tl))nBl(zl) = Q 
and so 

x.(5-^1(t/))c:5-^(z/) 

for every / = 1, 2, ..., n. Put 

C ^ - = . 5 - 5 1 ( t 1 ) u . . . u ^ 1 ( t J , 

then x. Uycz Uxy. 
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ИДЕНПОТЕНТЫ МОНОТЕТИЧНОЙ КОМПАКТНОЙ ПОЛУГРУППЫ 
ПОЛУСХОДИМОСТИ 

^ап §1ро§ 

Резюме 

В этой статье дана конструкция монотетичной компактной полугруппы полусходимости, 
которая содержит бесконечно много иденпотентов. 
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