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RENYI’'S FORMULA WITH REMAINDER TERM
ON ARITHMETICAL SEMIGROUPS

STEFAN PORUBSKY

A free commutative semigroup G with identity element 1; generated by a
countable set P is called arithmetical if in addition there exists a real-valued
norm mapping |-| on G such that
i) |ab| = |a|-|b] for all a,be G,

ii) the total number N;(x) of elements ne G of norm |n| < x is finite for each real
x.

The elements of P, i.e. the generators of G, are called primes. Plainly, every
element # # 1;in G has a unique (up to the order of factors) factorization of the
form

(1) n=p"p’...p,

where p; are distinct elements of P.
In the following we shall always suppose not only the finiteness in ii), but that
the following asymptotic axiom is satisfied [6, p.75]:

Axiom A. There exist positive constants A and 8, and a constant n with
0 < h < 6, such that
Ng(x) = Ax°+ O(x") as x - oo.

Complex valued functions defined on an arithmetical semigroup are called
arithmetical. Generalizing the standard arithmetical functions known from the
classical number theory, one can define
a) the Mobius function pg; as follows

1, ifn - IG,
pe(m) =< (=1, ifa,=a,=...=a,=1in (1),
0 otherwise,

b) the functions ®; and Qg through

ag(lg) = Qs(1g) =0
and

ogn)=r, Qsn)=a +a,+ ... +a,.
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Similarly, the notion of the asymptotic density d(T) of a subset T of an-
arithmetical semigroup G can be generalized as expected. If 7'(x) denotes the
total number of elements of T of norm at most x and if there exists

lim T'(x)/Ng(x), as x — o0,
then
A(T) = lim L&),
x=>o Ng(x)
For the sake of simplicity we shall often omit the index G if the basic
semigroup G can be deduced from the context. For further details and proper-
ties of arithmetical semigroups and arithmetical functions on them we refer the

reader to Knopfmacher’s book [6].
Let A; = A denote the pointwise difference Q — o, i.e.

An) = QUn) — o(n) for ned.

If G=2Z, the set of positive integers, then the already classical result of
Rényi [12] says that the set 4, of positive integers for which

A,(n) = q

has asymptotic density d, which is given by the generating series

p p—z/ m 1—z/p

for |z] < 2, where the products are extended over all the rational primes. This
contains as a special case for ¢ = 0 the well-known fact that the asymptotical
density d(Q) of the set Q of all squarefree integers is 6/n’. However, since 1909
it has been known [8] that for the number Q(x) of squarefree integers below x
we have

) Q(x) = 6x/n* + o(x'?).
Landau proved this result using the fact that the sum function
M(x) = Y, un),

of the Mobius function p(x) satisfies
3) M(x) = o(x).

Previously he showed [9] that this result can be derived from the prime number
theorem without using the method of complex integration and later [10] that
also the fact that (3) implies the prime number theorem can be proved without
using these analytic tools.
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Unfortunately, Rényi’s method does not give a possibility of obtaining an
asymptotic estimate for the density of the set 4,. This gap was subsequently
filled by several authors, e.g. Cohen [1], Katai [5], W. Schwarz [13] and
Delange [2—4], to mention a few. Thus Cohen proved that

Y 1=dx+ O(x"?loglog x).
Ay =1

and Delange using analytic means gradually improved this estimate for the
general index q. However, Katai showed that the first improvement of Delange
that

Y 1=dx+ o(x'?(loglog x)?)
Az"(ns)iq

can be deduced from Landau’s estimate (2) for squarefree numbers without
using analytic tools applied by Delange.

In [6, p.151] it is proved that Rényi’s original result can be extended to
arithmetical semigroups:
Let G be an arithmetical semigroup satisfying Axiom A. Then the asymptotic
density d,  of the set A, ; of those elements ne G for which Ag(n) = q exists for
each q =0, 1, 2, ... and may be calculated from the power series formula

% dyoz* = [10 = 1p7900 +(pl* = 7).,

-

From a result of [11] an analogue of the above Cohen estimate follows for
d, ¢ if G satisfies Axiom A. The aim of this paper is to show that combining the
ideas of [5] and [11] it is possible to prove an asymptotic estimate for the density
of the set 4, ; also in the case of arithmetical semigroups satisfying Axiom A.

Recall that the zeta function (g of an arithmetical semigroup G is defined by
the formal Dirichlet series

o) = X lal™*.

aeG

If G is an arithmetical semigroup satisfying Axiom A, the series on the right
hand side is absolutely convergent for Re (z) > d and divergent for Re (z) < 66,
p. 84].

First of all we shall prove an estimate for the set Q, ; of k-free elements in
an arithmetical semigroup satisfying Axiom A. Here as usual, given an integer
k > 2, an element n€ G is called k-free if a; < k for every i < r in (1). Then for
the total number O, ¢(x) of k-free elements of norm at most x in G we have:
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Lemma 1. Let G be an arithmetical semigroup satisfying Axiom A written in
the following form

[Ng(x) — Ax°| < K-x".

Then
A5 O (max (42 AK, K*) x ), if n<dlk,
Qk.G(x) - = o (max (A 27 AK’ Kz) xd/k log X), !f n= 6/ka
Gs(k0) O (max (42, AK, K?) x"), if 1> dlk,

where the O-constants do not depend on A and K.
Proof. Using standard ideas we immediately obtain the well-known for-
mula

4 Qk,G(x) = Z ue(d) Nc(x/|d|k)-
|k < x
Consequently, .
Or.6(x) = Ax°C5' (k) + O(Ax‘; Y ldl"“’) + O(Kx” Y |d|""’)
1dk > x ldik < x

with O-constants not depending an 4 and K.
Partial summation then gives

X'y |d|"‘"=—NG(x”")+x‘s6kf Ng(t)t~*=1dr =

\d) > xlk xl/k

= O(max (4, K) x%*).

Similarly,
X1k
xT Y |d|TF = Ng(x'*) + x"nkj Ng()t=%1-1dt =
|d] < x/k 1
O (max (4, K) x %), if n< dlk,
=< O(max(4,K)x"logx), if n=J/k,
O (max (4, K) x"), if 1> ok,

and the lemma follows.

If M;(x) denotes the summation function of the Mdbius function pg of an
arithmetical semigroup G, then Lemma 1 is based on the trivial estimate
M(x) = O(x?%). To improve the result of Lemma 1 better estimates for M;(x)
are needed. Concerning this note that if an arithmetical semigroup G satisfies
Axiom A, then the prime number theorem is true in G [6, Chapter 6]. However,
it can be shown on the other hand that if G satisfies Axiom A, then the prime
number theorem for G and the estimate M (x) = o(x?) are equivalent. (Note
that the prime number theorem and the assertion that M(x) = o(x°) are not
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equivalent in general arithmetical semigroups; see [14] for more detail.) But
using more subtle techniques one can prove more:

Lemma 2. [7, Theorem 6.4] If G satisfies Axiom A, then for every a > 0 we

have :
Mg(x) = O(x°(log x)~%).

Lemma 1 can be now strengthened as follows:

Theorem 1. Let the arithmetical semigroup G satisfy Axiom A and let us have
for a positive integer k > 2

nk < 6.
Then for the set Qy ¢ of k-free elements in G we have
0. 6(x) = Ax°C5'(kS) + R(x),

where the estimate M;(x) = o(x°) yields

(5) R(x) = o(x )
and Lemma 2 implies
(6) R(x) = O(x % (log x)~9)

for every a > 0.

Proof. We prove first (5) Since the function M(x)-)c“s “increases’’ only
in those points x which are values of the norm function, then M (x) = o(x?%)
implies that the function

|M(0)]

kS [ ———

té'
takes its maximum on each interval (x‘/2k, o) for every x > 1. Denote this
maximum by 7(x). The function 7(x) is clearly nonincreasing and let
€= &(x) = max {x V% p(x!2%)},

Then &(x) is also nonicreasing and

Y lim &(x) = 0,
Then for y = x'%* e have
M)
@®) MO == "< (nx"PYyd <
< £(x)% )0,
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Let x'* = z for the sake of simplicity. Then (4) can be written in the form
Qc(x) = Z He(n) = Z wn) Z 1.
Inkm| < x Inl <z Im| < x/Inlk
and consequently

Ous(X)= Y pm) Y 1+ Y Y wn -

In| < &z Im| < x/|n| Im| < e~k |n| < &/x]|m]

- X Y Hm) =S+ 8-S,

ni<ezm<ek

where ¢ = &(x).
For the first sum we have

Si= 2 wm Ne(x/In[) = Ax® ¥ p(n)In|™ +

In| < ez nl < ez
+O(x" y Inl""’) = Ax%5'\ (k) — Ax®° Y w(n)n|™* +
Inl< e Inl > &z

+0(x" y |n|-'"r>.

In| < &z
The last term can be estimated easily as
O(x" ¥ ) = 0% = o),
In| < &z

Here the last equality follows from (7) and the fact that § — kn > 0.
Partial summation gives for the second term in S, that

3 Wit = —M(e2)- () + k6 | M)y~ dy

In| > &z &

Since

) £z > x P x Wk = x 12k,

and because the function ¢ is nonincreasing, the relation (8) yields
IM(gz)_(gz)—ktil < gkﬁ.(gz)cs. (82)—k6 = gz -k — eax—éxé’/k.

Similarly we have for B = 1/(6 — k6)

Jw M(y)y %! dy‘ < s’“‘jwy“’“’”-‘ dy = Be*¥(ez)’0 -0 = BeSx ~Sx %,

[~4
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Thus together
S, = Ax%C;'(kS) + o(x ).

For the second sum we have

S,= ¥ Y Hm= Y kM((X/IrnI)’”‘)-

il < &= |n) < K/l il <=
If |m| < £7*, then owing to (9)
(x/Im)"* > gz > x'*
and (8) gives
M((x/Im)"*) < e(x)*- (x/iml)7,

which in turn yields that

IS, < 6(xfx T |~ =

Imj < e=k

=0(8k5x5/k(8—k)¢5‘(1 - l/k)) — 0(85_x5/k) = o(xﬁ/k)'

Finally, the relations (7), (8) and Axiom A give for the sum S,

S;=M(z) ) 1=0M(e) e )=

Im) < g—k

= 0(6°- (e2)"- 67%) = O(°x ™) = o(x ),

which proves (5).
In the proof of (6) let

&(x) = (log™/x)= =
and let x, = x,(a, k, &, 17) be such that for x > x&*
(log Zk\/;)—a/k(a— M > x 12k,
Then for x > x¢* we have
8(x)-z > x "k x k= x12% > x,.

Therefore we obtain along the lines of the preceding part of the proof that for
x> x2

S, — Ax%CG'(kS) = O(e?*1.2%(log ez) =" + &%~ *.2%) =
= 0(e®*.2%1 + £ 7*®~ 7 (log £2) 7).
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Since (log?)~“ is a decreasing function and &z > %X/x,
(log£2)~* < (log4/x)™* = (s(x))*®~ ™,

and thus
14+ g *="(logez)=* < 2.
Further
g5~ k1 = (log 2"\/})—«(5— k@ = = ((1/2k) log x) ¢~ kmikE—n

With a also r = a(6 — kn)/k(6 — n) runs through positive real numbers and
therefore
S, = Ax% ;' (kS) + O(x¥ (logx)™")

for every r > 0 with the O-constant not depending on r.
Similarly we can prove that

S, = 0<x5/"(log£"x)‘“ Y |m|“’/"> =
|m| < ek

= 0(z°¢° ¥ (log €2)™°) = O(z°e° (¢ *®~ M (log £2) ™)) =
= 0(z%°~*7) = O(x " (log x)™").

For S; we get analogically

Sy=M(ez) Y 1=0(¢z)’(logez) e ) =

|m| < e—k
= 0(z%° (e ¥4~ M (log £2)~?)) = O(x T (log x)™"),
and the theorem is proved.
The following analogue of a classical result will be useful in the proof of the
next theorem.

Lemma 3. [6, p. 165] If an arithmetical semigroup G satisfies axiom A, then

Y |pI~? = loglog x + B; + O (1/log x).

peP
lpl<x

In the proof of the following theorems we shall use the “descent’ technique,
which is based on the following result and which shows certain advantages of
the abstract approach through arithmetical semigroups:

Lemma 4. [6, p. 77] Let a be an arbitrary element of an arithmetical semigroup G.
Let G{a) denote the set of all the elements of G which are coprime to a. Then
i) G{a) is also an arithmetical semigroup,
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ii) if G satisfies Axiom A, then also G{a) does and
Nay(x) = Apfa)lal°x° + O(x™), x— oo,
where for real w we define

0,(a) =Y w(d)la/d|*.

dla
This result can be proved by induction on the number of the prime divisors
of a. If a has a unique prime divisor p, then
Ngay(x) = Ng(x) — Ne(x/Ipl) = Ax® + O(x") — A(x/|pl)’ +
+ O0((x/Iph)™) = A1 = |p|=°) x° + O(x"(1 + |p|™")
and the lemma follows because

[Ta=1pI"% =Y ps(@ld=°.

peP deG
pla dla

An element ne G will be called squarefull if for every prime divisor pe P we
have "
if pln then p?|n.
Lemma 5. Let G be an arithmetical semigroup satisfying Axiom A and m a
positive integer. If S denotes the set of squarefull elements in G with at most m
prime divisors, then
SiR(x)= Y 1=0(x"(loglogx)"'/logx).

neS(z"'%.
In] < x

Proof follows the ideas of [5]. If |p?| < x, then a = O(log x), where the
O-constant does not depend on p. Then the prime number theorem for arith-
metical semigroups satisfing Axiom A [6, p. 154] implies

S = Y 1=ms(x") + me(xP)+... = me(x"?) +

Pl < x

a>?2
x5/2
+ O(ng(x'?) log x) = 0( )
log x
Thus the lemma is true for m = 1. For m > 2 we have
(10) S =Y 1+ ¥ 1
nsS(sz) nesgm();
wn=l ez
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The first sum is S§%. Rearrange the terms ne S{") in the second sum as
follows: Let g° be one of the powers p;" in the canonical decomposition
n=p..pm where a,>0 and p, # p; for which g;>0 and in which the
minimum

min{|p"; i=1, ..., m}.

is taken. Then |¢°| < x'? and the second sum is

s 1=0( ¥ 1)-o0( 3 stieie)-

s lgoh| < x lg9] s x12
ne 2.3 a22,(q,h)]==l a2
u?f:lg)szx "es(Z’,”G— )
_0( x“wwbgﬂmm””)_
wass2 g% log x/lq°|
a2
__0()c“"2(lo‘glogx)'"‘2 1 >
log x wa'sen |g??)
a=2
Further,
(11) Y g =Y 4+ Y g™ %
lg? < x'12 lgl < x4 lg9 < x112
ax2 ax>3

Lemma 3 implies that the first sum in (11) is O (loglog x). In the second sum we
have for b(a) = [a/3]

) /Zlq”l“”2 Y lgI7*O” < 3-85(3672),

gy gs”
as ;(2) converges for complex z with Re (z) > 6. Thus the left-hand side of (11)
is O (loglog x). After substituting into (10) the mathematical induction finishes
the proof.
In the next two theorem we shall give an estimate for densities in Rényi’s
result.

Theorem 2. Let G be an arithmetical semigroup satisfying Axiom A. Then there
exists a constant d, ; for which

O(x**(loglog x)%), if n < 92,
A,6(x) =d, ox°+ < O(x%logx (loglogx)’), if n=5/2,
o™, if n> 82

Proof. From the remark following Lemma 4 we obtain that
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Nogr.np@ = AL = 1255+ 0 (x* T A +1pI™) .
i=1 i=1
where the O-constant depends on G but not on the primes p,, ..., p,. Since
§G<pl,....p,>(z) = L6(2) n (I —=1pd™),
i=1

then from Lemma 1 we have

ATLO ~1p9x*

1

Qz,G<p. ...p,>(x) = +

@8) 1 0 = IpI™)
(12) _
(o(Ia+ipps), it n<an

el

\ O(iill(i + |p.~r")2x"), it 7> 82,

~

(1+|p,-|"’)2x"logx), if n=252,
1

]

where the O-constants do not depend on p,, ..., p,.

Let A denote the set of squarefull elements from A4, ;. Every element
ne A, can be uniquely written in the form n = km, where ke A¥; and m is
squarefree with (k,m) = 1. This uniqueness and (12) yield

5 ) ' .
(13) 4,6 = T ook =22 Y k=TI +1pI75)" +
Uas Sol20) fig, o
04 (x/lk[)72)), if <82
+ ¥ < 0@ OK/k)"og (x/IkD), if n =52,
e L 0@ B (x/lk)™), if n> 6.

Expanding the inner product in the above main term we obtain the following
infinite series

YA |v]7°,
where A(v) = (—1)* is the Liouville function and v runs over the set
Sy = {veG; p|v implies p|k for every pe P;}.
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Thus the main term leads formally to the series

(14) Y M) kol 4.

ke A% G
VE k
Let ke A}; and k = p{"...p,". Then a,> 2 for every i = 1, ...,r and simul-
taneously a, + a, + ... + a, = r + q. This implies firstly that 2r < a, 4 a, + ...
..t+a =r+gq,ie. r <q. Theequality a, + a, + ... + a, = r + q gives further
that for every fixed r there exist only finitely many r tuples (a,, ..., a,) satisfying
it. Since r < ¢, the total number of possible exponent r tuples (q,, ..., q,) of
elements in 4% is finite.
Now

e o}

Y, k|7 = ) S kol

Jkv| > x j=0 2ix < kv <2/ +1x
ke A§.G,veS; ke A},G,veS,

Fix one of the possible above mentioned exponent r tuples, say, (a,, ..., a,). Then
every element in G can be expressed at most once in the form kv, where

k=p...pJ and veS,. The product kv is squarefull and has at most r < ¢
prime divisors. Therefore
lkv| =% < 277%. x7%. §{0(2/* 1 x).
x < |kv| <2/ +1x

ke A} G,veS;

Thus using Lemma 5 we get together

Y kv TP < x7?Y 2708020 x) =
=0

lkv| > x J=
= x % i 2550 ((log ((j+ 1)log2 + log x)?~ )-20‘+ né2 _
j=0 (j+1)log2 + logx

= x~92.292.0((log x)~' - (loglog x)? ') - " 27792 =
j=0

J
= 0(x"%.(logx)~"-(loglog x)?~ ).

Since the number of possible exponent r tuples (q,, ..., a,) is finite as we have
seen, we have proved that (14) is convergent and that

Ax’® -5 —&y-1
Y kT TTa+1p17) " =
C6(26) wi=x plk
ke A§.G

= d, ¢x° + O(x**(logx)™"- (loglog x)* ),

48



where

d,g=AG5'(28) Y Mo)lko|™.

ke A§.G
ve Sy

We saw that o(k) < ¢ and therefore it is enough to realise the following two
estimates:
Similarly as in (11) we can prove that

3 tkr”s( 5 lp"r"”)q:0(<loglogx)q),

k| < x P < x
ke A} G a>2

which settles the case 1 < §/2.
For 1 = /2 we have

Y. k"% logx/lk] < logx Y, |k|"% = O(log x-(loglog x)).
lyé'faf‘(,- k";iASajs

Finally, in the case 17 > 6/2 note that if ke 4% ; and

k=p"..p"
then g;>2,i=1,...,r. Thus |k|~">|p,... p,|~?". Since 21 > 6, then

Y k7" =0Q1),
k| < x
ke A§.G

and the proof is finished.
In the next theorem we show that under certain circumstances the previous
estimates can be improved.

Theorem 3. Let G be an arithmetical semigroup satisfying Axiom A for which
21 < 8. Then for every q > 1 the estimate (5) implies

Aq‘G(x) = d

q

¢x° + o(x7* (loglog x)?),
whereas the estimate (6) implies
A, ¢(x) = d, ;x°+ O(x% (loglog x)* ).

Proof. As a first step we prove an identity. Namely that for every ke G
of the form

k'==Pf'~-Pf3
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we have

(15) Qs gy (x) = Z Mo) @, 6(x/Iv]),

el < x

where v runs over all the elements of the form

k=pt..pl by, ...b=01,..

and where A(v) = (—1)%®,

To see (15) note that |ug(n)| is the characteristic function of the set of
squarefree elements in G and that

2 = =TT A +1pI™) =

neG<ky peP;
prk
—1
= ( [Ta+ |pl“)> [TA+1pI™)=
pPeP; pepP;
plk
k
-3 h(") S ()1l
’ neG

Let
R(x) = 0y 6(x) — A-(5'(26) - x°.

Then (13) gives
A= Y Qrgu(X/k) = Y Mv) Qy 6(x/lkv]) =

k| < x lkv| < x
ke A§.G

(16)
=A-05'28)x° Y, Mv)-lko| P+ Y Mo) R(x/Ikv]).

lkv| < x lkv| < x
As in the proof of the previous theorem we have

0 ((loglog x) ‘) .

x.log x

ACg

Let us estimate the second term in (16). If M(x) =o0(x?), then (5) implies the

existence of a decreasing function A(x) with lim A(x) = 0 and for which

|R(x)| < h(x)x%?
Then for every fixed function g(x), which monotonically tends to infinity, we
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have

2. A R(x/lkvl)

lkv| < x

< Y IRGkoD+ Y IRG/IkvDI-

lkv| < x/g(x) x/g(x) < lkv| < x

<

Moreover,

Y IRGx/IkoD] < hg())x” Y Jkol™" <

lkv| < x/g(x) lkvl < x

<h(g(x))x’5/20<< > Ipl'"‘s’z)q>

lpal < x
a>?2

Similarly as in (11) we obtain that the last expression is h(g(x)) X g ((loglog x)?).
Further,

Y RGMkoDI= Y O(x/lko))™) =

x/g(x) < lkv] < x x/g(x) < lkv| < x

- (g(x))“/ZO( 5 1) — )OS <

x/g(x) < lkv| < x

-0 ((g(X))"/ZX‘”2 (loglog x)? ! )
log x .

Now the first part of the theorem follows with g(x) = (log x)'/%, whereas the
second part for .

h(x) = 1/logx, g(x)= (logx)°.
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®OPMVIJIA PEHbHU C OCTATOYHBIM YJIEHOM
A1 APUGMETUYECKHUX TTOJIVIPYIIII

Stefan Porubsky
Pe3ome

Apudmetudeckas nojyrpynna G — 3TO MYJbTHIUIMKATHBHO 3amucaHnas cBoOoaHas KOM-
MyTaTHBHAs MOJIYrpynna ¢ eIKRHHUIEH CO CYETHOH cucTeMOil obpa3ylouux, HaieneHas roMOMOp-
$u3MoOM — HOpPMOIi || B MyJIbTHIUIMKATHBHYIO NOJIYTPYIIY NOJIOXKUTELHBIX AEHCTBUTEIBHBIX
qycel, B KOTOPOii [UIa kaxaoro x > 0 HaliAeTca TONLKO KOHEYHOE YUCIIO IEMEHTOB 1€ G TaKHX,
uto |n| < x. IlycTs mna 310ro uucna N (x) BemomHseTcs ycnosue Ng(x) = Ax® 4+ O(x") ansa
X — 00. YTOUHAIOTCS pe3ybTaThl 06 aCHMIITOTHYECKOI OLieHKe YHCIa k-CBOOOJHBIX 37IEMEHTOB B
G v Ans 4HCcna 3JIEMEHTOB

A, 6(x) = {neG; in| £ x, Qn) — w(n) = q},

kae k,q — HaTypasbHbie yucna, k > 1.
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