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ON A CLASS OF UNIFORMLY DISTRIBUTED 
SEQUENCES 

STEFAN PORUBSKY*—TIBOR SALAT**—OTO STRAUCH* 

In [4] K n a p o w s k i investigated the question of the uniform distribution 
of sequences of rational numbers of the form 

m{A) "* ~ - * • ~ * * « - l 

where 

A = {a, < a2 < a3 < ...} 
is a given sequence of positive integers. He proved that this sequence is uniform­
ly distributed in [0, 1] if 

lim 2» + ] = o, (1) 
"~*°° ^ + a2+ ... + an 

Knapowski's paper also contains a condition on aw's guaranteeing that co(A) is 
not uniformly distributed in [0, 1]. 

In this paper we shall investigate sequences 

* = { x ( l ) , x ( 2 ) , x ( 3 ) , ...,x(n), ...} 

of real numbers from the unit interval [0, 1] composed of blocks Xn9 n = 1,2, 
..., where the nth block Xn contains an terms of X. In other words, if A = {an}^ , 
is a given sequence of positive integers, not necessarily increasing and 

Nn = a, + a2 + ... + a„ for n = 1, 2, ... with N0 = 0, 

then 

X={x(0r=„ *(0e[<U] | 
A„ = {x(0}/vn_ , < i s Nn* j 

We show that (1) is a sufficient and necessary condition for a block sequence 
(2) to be uniformly distributed in [0, 1] provided .Yis uniformly distributed in 
blocks and the terms of blocks are ordered according to their magnitude, i.e. if 
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Hm AV> *"> = |/| (3) 

for every interval / <= [0, 1] where as usual A(I9 Xn) denotes the number of terms 
of Xn which belong to I and |/| is the length of I9 and 

Xn = {x{Nn„x + \)£ x(Nn_x + 2)£...£x(Nn)}. (4) 

This implies, among others, that (1) is a sufficient and necessary condition also 
for Knapowski's sequence m(A). 

In the first part of the paper we prove a general result concerning block 
sequences (2) satisfying (3). In the second part we shall investigate in detail the 
sequences A = {an}n = x of positive integers which satisfy condition (1). In part 
three we show some metrical and topological properties of the system of all such 
sequences. 

1. Basic properties of block sequences. 

We shall use the following notation and definitions from [5]: 
A(I9 IV, X) for the number of terms x(n)eX9 1 ̂  n ^ N for which x(n)el9 

RN(x) for the remainder function 

RN(x) = A([09 x)9 N9 X) - Nx 

if0 = x< 1, while i J ^ l ) = 0, 
D% for the discrepancy, 

/ > • - . sup l ^ J 
o^x^ i N 

D(
N

] for the L2 discrepancy, 

П(2) „ 
U ы — N . 

dx 
1/2 

Given a sequence M,, M2, ... of positive integers we say that a sequence X 
is {M„},^=, almost uniformly distributed in [0, 1] if 

lim A('' M- *> - 1/1 
n -> x jy 

1¥J-n 

for every interval I c [0, 1]. 
Our first result reflects some relations between the uniform distribution of the 

sequence (2) and the order properties of its blocks Xk9 k = 1, 2, 3, .... 
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Proposition 1. Let a block sequence X of real numbers from interval [0, 1] be 
composed of blocks Xn9 n = 1, 2,... as in (2) satisfy (3) for every interval I c [0, 1]. 
Then we have 

(i) The sequence X is {iVJ^ i almost uniformly distributed in [0, 1]. 
(ii) If (I) holds then X is uniformly distributed in [0, 1] independently of the 

ordering in which the terms of the blocks Xk9 k = 1, 2, ... are given. 
(iii) If 

lim sup ^ > 0, (5) 
"-*00 a, + a2 + ... + a„ 

then it is possible to rearrange the terms of the blocks Xk for every k = 1, 2, ... 
in such a way that the corresponding sequence X is not u.d. 

(iv) If the sequence X is not u.d.9 then the terms of the blocks Xk9 k = 1, 2, ... 
can be so rearranged that the corresponding sequence X is u.d.. Moreover, if the 
terms of the blocks Xk9 k = 1, 2, ... are originally ordered according to their 
magnitude, then there exists such a rearrangement which depends only on the 
number of terms in Xk and not on the terms of Xk9 k = 1, 2, .... 

(v) If the sequence X corresponding to a given ordering of terms of the blocks 
Xk9 k = 1, 2 , . . . is not u.d.9 then there exists a sequence {mk}^ , of positive integers 
with the property that the sequence X' corresponding to the sequence of blocks 
constructed by listing successively mk copies of Xkfor each k = 1, 2, ... is u.d.. 

Proof. The proposition can be deduced directly from the definition. 
However, we shall use the L1 discrepancy to prove it. 

Every positive integer N can be written in the form 

N = Nn + k9 where 0£k<an + }. (6) 

Let further 

Ra(x9 X() = A([09 x), a, X) -ax for 0 ^ x < 1 
and 

Ra(l9Xt) = Q for x=l. 
Then 

R„(:c)= X R<,(*,X,.) + R,(х,Xя + I) 
/«1 

and consequently 

N-21 R2

N(x)dx = (N„ + kГ2 Г (ţ Rai(x, X,)jdx 

+ (N„ + kГ2 í RÀ
2(х,X„+1)dх + 

Jo 

+ 
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+ 2(N„ + k)'2 j * Rk(x, Xn + l) ( t R4X> */)) dx- <7> 

C o n d i t i o n (3) is equivalent t o o n e of the following three relat ions 

IRa (X, X„)\ 
lim D* = lim sup " = 0 

w -> x. " л -»<» o £ дг £ 1 a 

lim a„ ' 
и-*x Jo 

(8) lim (D{2))2 = lim a" 2 f /?2(x, JTJdx = 0 

|/?Jx,*w) |dx = 0. 
Jo ' 

Moreover , (3) implies t h a t 

lim an = oo. (9) 
n —> x 

T h e relations (8) a n d (9) imply using the so-called C a u c h y — S t o l z t h e o r e m [4, 
p. 78, E X . 5] t h a t the first a n d the third te rm o n the r ight-hand side of (7) 
converge to zero if N-+ oo a n d k, n are arb i t rary integers satisfying (6), i.e. 

TV"2 \ R2(x)dx = N~2 f /? 2 (x , Xn + ])dx + o(l). (10) 
Jo Jo 

Part (i) n o w follows easily for k = 0. 
N o w write 

\]Ri(x,Xnv d x = *' + ' - -j- ^ f' Rfrx, Xn+[)dx. (11) 
Jo (N„ + k)2 a2

+] k2 Jo (N„ + k)2 

Note that 

I £*(*)/' j :\ 1 and k/a„ + , ^ 1. 

Then (1) implies that the right h^nd side of (11) converges to zero for n -> oo 
and k in the range 0 :g k < #„ ̂ , which proves (ii). 

(iii) We prove more than stated in the theorem. Namely, given a subinterval 
/ cz [0, 1] with 0 < |/| < 1, there exists such a rearrangement of terms in Xn for 
every n = 1,2, ... that A(U N, X)/N does not converge to |/| for N-+ oo. 

Fix /<=[0, 1] with 0 < |/| < 1. Let 

A/w+l = a,7 + , - A(U X„+i) for n = 0, 1, ... 

denote the number of terms of the block Xn + , which d o not belong to /. Then 
relabel the terms of the block X„ + , in such a way tha t its first M„ + , terms 
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x(Nn + 1), x(Nn + 2), ..., x(Nn + Mn+X) 

will lie outside /. 
The integration over [0, 1] in (10) can be replaced by one over any interval 

I c [0,1]. Further, the following estimation from below is true over any interval 
not containing the terms of the sequence 

i - f Rh (x9Xn + l)dx>^±l- |/P = f—^-.Y • f ^ Y • L II3-
N 2 h M" + [K' n + X) ""12/V2 \Nn + Mn+J \an+J 12 

Since the right-hand side does not converge to zero, A(N9 I9 X)/N does not 
converge to the length of / for N = Nn + Mn + , with n -» oo, as claimed. 

Note that if we want only to show that .Yis not u.d. in the case when the terms 
of blocks X„9 n = 1, 2, ... are originally ordered according to their magnitude, 
then it suffices to take I = [1/2,1] and the above reasoning works without the 
necessity to relabel the terms of X„ for every n = 1, 2, .... 

(iv) Without loss of generality we can suppose that the terms of blocks X„9 

n = 1, 2, ... of the sequence Xare ordered according to their (non-decreasing) 
magnitude. Put 

and 

-"„ = k/ÆГ7l + i foг n^г. 
Now split each of the blocks X„9 n = 1, 2, ... in the following subblocks ordered 
according to their (non-decreasing) magnitude 

Ki = {*W,- i +j)-j = Kmods„)9 1 Sj ^ «„} for i = 1, ..., s„. 

It is not difficult to see that the blocks XnJ of the sequence 

A = { A | j , . . . , Xl ^ , A 2 j , . . . , X2nS29 ...} 

satisfy the relations (3), (1) and by (ii), X' is u.d.. 
(v) To prove this statement it is sufficient to show that the condition (1) is 

fulfilled in the form 

lim - ^ = 0. 

"•+<* mla] + m2a2 + ... + mnan 

One of the possibilities is 

m„ = n.a„+l9 

and the Proposition is proved. 
Parts of Proposition 1 are certainly used at least implicitly in literature, e.g. 

a result of the type (v) is used in [2]. However, in spite of this fact we have not 
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found these results explicitly stated elsewhere and we hope that these simple but 
useful properties can be of some independent interest. For instance, (iv) shows 
that the von Neumann theorem can be proved without transfinite rearrange­
ment provided that (3) is satisfied. 

For our purposes the main consequence of Proposition 1 is the following 
result: 

Theorem 1. Let X be a block sequence of real numbers from the interval [0, 1] 
composed of blocks X„,n= 1,2, ... which satisfy condition (3). Let the terms of 
each block Xn, n = 1, 2, ... be ordered according to their non-decreasing mag­
nitude. Then X is uniformly distributed if and only if the sequence {aj^-. i of the 
length of blocks X„ fulfils the condition (1). 

Let now A = {#„}*_ i be an arbitrary sequence (not necessarily increasing) of 

positive integers for which lim an = oo. Let 
n -~* x 

v _ J1 2 a«~ x 

for every n — 1, 2, .... Then 

A(I, «„, X„) - \I\/(l/a„) + O(l) - (a„ - 1)|I| + O(l) 

and Theorem 1 implies that the Knapowski type sequence X = co(A) is uniform­
ly distributed if and only if 

lim °"+l~ l = 0, 
( a , - l) + ( a 2 - 1 ) + . . . + ( « „ - 1) n -> X 

which is obviously equivalent to (1). 
We conclude this section with the determination of the L2 discrepancy of a 

slightly modified Knapowski sequence X = co'(A) composed of blocks 

f 1 2 a„ 

la„ a„ a„ 

for n = 1, 2, .... 
In the next theorem (a, b) denotes the g. c. d of a and b, and {x} the fractional 

part of x. 

n 

Theorem 2. Let A = {an}nz= l be a sequence of positive integers. Let N„ = ^ a, 
/ « i 

and N = N„ + k with 0 ^ k < an + ,. Then for the L2 discrepancy of the sequence 
CQ'(A) we have 
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(„_w_±„= + ± î _____!+ (___Y(łť +ł i t + Г ) + 
4 12,./_i afl, Va„+,/ Vз 2 6/ 

+ (___)(__ ť_ł* + Г ) + ł ť + ł i t„ + l*£І + 
\öл + l/ V 3 2 6 / 3 2 6 /=. a, 

Í
* lЧ+l / n \ Л^ö« + 

{^w+i}( Z {xaù)åx-~2an + x 

./__ i * ( -
Jo \ i -= i 

{xa,}) dx — 

-2*f ( І 
J*/--+i \ ' - i 

{xa,}) dx. 

To compute the integrals one can use the following formulae 

rb i /i 
{xb}{xa}dx = - -

Jo _> \3 

a& 1 Â: 1 Ч /2 1 , ( a _ l ) _ a + _ + 

3 _> 2 _>a Vз 6/ 

a - 1 k - 1 

+ 1 1 
2_ + 1 f _: + ífl 

o , = o 2 a 
0 __ k = b, 

. . . 1 2 , 1 ł* 1 {tfl}3 , 1 t{tfl}2 1 t{tfl} , 
x{л;a}dл = - Г Ң — L H — — + 

4 1 2 a 2 a 2 2 a 2 a 

1 {ta}2 1 {ta} 

4 ' fl2 12 ' a 2 ' 

{xa}dл: = - . + - • — - + - l ' 
Jo 2 2 a 2 a 

Proof. We have 

A ([0, x], a„ Ҳ) = [лa,|, 

A([0, л], А:, _¥„+,)-= min{/., [xa„+ ,]}. 

Then using [5, p. 163] we obtain 

»1 / n \2 

f (iRfl.(x,X,)N)dx = I«2 + -L £ ____«_ 
Jo \/ = o / 4 12 /,j-=i 0,0, 

and from [5, p. 145] 

Rk(x, Xn +1 
Jo 

i tfdx = -k2 + k 
3 

(12) 

(13) 

(14) 

(15) 

l ( — ) + I — -2 1 / — 
/- i \a« + i/ / - i an + i / - i a„ + i 
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Further 

+ 

^ Ыx, X„ + ì).(£ Rai(x, X,)\dx = 

(min{k, [xa„ + í]}-кx).(- £ {xa,}j dx = 

x l £ {xat}) dx + 

ixa»+1} ( Z (*«/} ) d x - к (Ë M ) d x 

V = ! / Jкla„ + , \í = 1 / 

i i w i fklan+\ 

= ~*kn + -^k Z - - a - + i 
4 12 ,• = i a. 

Relation (12) now follows using (7). 
To prove relation (13) note that 

•(/+ \)fb 

ifb 

{xb}. {xa} dx = -
b 

, a . a , 

If s/a < y < (s + l)/a then 

a . a\ a s (s + ia 
j - + l ~ > = y 1~ 

b b) b b 
and thus 

'(s + D/йf 

sja 

І a . a\ л 

= - L «. + ,)> - ,3, + /f£±tol _ A . X . ((, + ,,. _ ,.,. 
3ba2 VI b J b/ 2a2 

The summation of the last integral over / = 0, 1, ..., k — 1, s = 0, 1, ..., a — 1 
gives (13). The integrals (14) and (15) can be evaluated directly. 

2. Basic properties of sequences A = {a„}̂ -_ - satisfying condition (1) 

and lim an = oo. 
« ~» oo 

In this section we shall investigate on the one hand the relationship between 
property (1) of a sequence A = {an}n =, of positive integers and the behaviour of 
an9 N„9 an/an + l and the asymptotic density of A on the other hand. 
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Note that condition (1) is plainly equivalent to each of the following three 
ones 

lim ^ = 0, (16) 
"-*00 a, + a2 + ... + a„ 

lim --- = 0, (17) 

»-*»a, + a2 + ... + a„_k 

l i m a , + a 2 + . . . + a „ _ , = 1 ( l g ) 

1 + «2 ' 

я-*°° a, + a2+ ... + a 

where k is an arbitrary but fixed positive integer. 
Having in mind the application of the proved results to the Knapowski type 

sequences we shall assume in the next results that investigated sequences will be 
monotone. The reader can easily decide where such assumptions are not necess­
ary from the point of view of the fulfilment of relation (1). 

2.1. Estimates. 

Theorem 3. Let A = {aJ^L, be an increasing sequence of positive integers. 
Then A satisfies condition (1) if one of the following four conditions is fulfilled: 
(a) There exists a = 1 such that 

lim inf ^ > 0 and an = o(na+1). 
«-*oo yf 

(b) There holds an = o(n2). 
(c) There exists (5 > 1/2 such that 

l i m i n f f lM>o, 
«—> oo Yl^ 

where A(n) = ]T 1. 

(d) The sequence A has positive lower asymptotic density. 
Proof . It is not difficult to see that it is enough to prove that (a) implies 

(1). But this can be easily done. The condition on the limes inferior implies 

2= < c °z < C ' a" 
a, + a 2 + . . . + a „ l a + 2 a + ... +na n a+ I 

and the condition on a„ implies (16) and thus finishes the proof. 
If A = JP, the set of primes, then Theorem 3(b) shows that P satisfies (1). A 
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refined version of this result was shown by Knapowski [3]. The sequence P 
shows at the same time that (d) does not give a necessary condition for (1) and 
that not even the positivity of the upper asymptotic density is necessary for this 
conclusion. 

Although conditions (a) and (b) of Theorem 3 are not eqivalent (take an = p„2, 
pn the nth prime), condition (b) is best possible in the sense that the o-symbol 
cannot be replaced by the 0-symbol without further additional assumptions. 
Namely, there exists sequence A = {a{ < a2 < ...} with an = 0(n2) for which (1) 
does not hold. To construct such a sequence we first construct a sequence of 
indices n{ < n2 < ... inductively in the following way: 

a) n, = 2 
b) if nk is already known, let nk + , be a positive integer n satisfying the 

following three inequalities 

n2 _ n(4n2 _ 2nk _ i) _ 4nt + 4n"k + n2 - nk > 0, (19) 

2n2 -n- Inl + nk + 1 > 0, n > nk, (20) 

then the sequence A in question is defined as follows: a, = 1, a2 = 2, ..., and 

an = 2nk + n — nk — 1 for nk+ 1 _ _ « ^ % + l . 

The inequality (20) guarantees that A is increasing and (19) implies that 

a H ± ± + X -> _... 2nh I > 2, 
ax +a2+ ... + Ć C , 1 + 2 + 3 + ... + Ű L - 1 +a„ 

* + i 

Thus the condition (17) is not satisfied. 
Choosing the smallest possible nk, k = 1, 2, ..., the initial segment of the 

sequence A is 

a, = 1, a2 = 2, a3 = 8, a4 = 9, ..., a14 = 19, a15 = 392, a16 = 393, 

..., a912= 1289, a913= 1663488, a914 = 1663489, ..., a4013813 = 5 676 388, 

4̂013814 = 32221 389 597938, a4013815 = 32221 389 597939, ... 

The next result contains an information about the speed of divergence of Nn 

if (1) is satisfied. 

Theorem 4. If a sequence A = {aw}̂ °= { of positive integers satisfies (1), then 

lim - log(aj + a2 + ... + an) = 0. (21) 
n-+ oo n 

Proof. Niederreiter [7] proved that if {xn}n
X)^{ is a monotone uniformly 

distributed sequence mod 1, then 
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lim |xw|/logn = oo. (22) 
n~* oo 

Let 

xn — k H , 

where 

fl = £ ay + /, 0 ̂  i < ak. 
7 = 1 

If (1) is satisfied and if lim an = oo, then {xJ^L, is uniformly distributed mod 
n~* oo 

1 and (22) implies that 

lim k/log iVfc = oo 
k-+ 00 

and the result follows. 

Another proof of the previous result, which does not depend on the assump­

tion that lim an = oo, follows using upper and lower Riemann's sums of the 
n~* oo 

function l/x over the interval [1, iVJ. These sums over the subdivision on the 
intervals [ 1, IV, ], [iV,, iV2],..., [Nn „, , Nn] and the integral (after division by n) give 
the following inequalities 

l£^<!logNfl<!i-^-. • (23) 
n i-\ N{ n n i~\ N(_{ 

The relation (21) follows now immediately from (23) and (1). 
Note that from (23) one obtains Abel's theorem [1] stating that the divergence 

00 

of the series ]T an is equivalent to the divergence of each of the series 
n- 1 

00 

a„ ..-, a„+x 

n-\ Nn n-\ Nn 

which shows that the convergence in (1) cannot be too quick. 
The next two simple results can be useful. Their proofs follow from the 

Toeplitz theorem for xn = an_ Jan. Then a, +: ... + an_, = a2x2 + ••• + a***-

Theorem 5. Let A = {a, < a2 < ...} be a sequence of positive integers. 
i) If A satisfies 

lim ^ - 1 = 1 (24) 
n-+ oo rt 
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then (1) is true for A. 
ii) If A satisfies (1) then 

lim sup ——- = 1 

Theorem 5 ii) indicates that the condition (24) cannot be necessary for a 
sequence A satisfying (1). In fact, given any a, 0 < a < 1 there exists a sequence 
A = {ax < a2 < ...} of positive integers with 

lim inf -^^ = a 

and satisfying (1). To see this let c be a positive integer with c = I/a. Then the 
sequence A9 which we obtain from the sequence of positive integers after 
deleting all the segments of the form 

c2k + \c2k + l + h ..., c2* + 2-~ l , c 2 k + \ k= 1,2, ... 

has the required properties. 

The analysis of the points of accumulation of the sequence {an _ \/an}nax 2 for 
the just constructed sequenced = {ax < a2< ...} suggests the conjecture that for 
"almost a i r n, an _ x/an converges to 1 provided that (1) is true. This is really so, 
as the next result shows. 

Theorem 6. Given a real number 8 and a sequence A = {ax < a2 < ...} of 
positive integers, let 

A{8) = \n;-2L-£S\-

If the sequence A satisfies (1) then for every 0 < S< 1 the upper asymptotic 
density <i(A(8)) = 0. 

Proof. Let A(8) = {nx <n2< . . .} . Since A is monotone, an/an = 1/8 for 
every i = 2, 3, .... Thus 

aM. a, 2 ^ -> /1 / ^ V - l 
I 

Then 

- log H,, è - logflB/ ^ -—-- log(l/<5) 
n; n; ft, 
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If A satisfies (1), then (21) implies that lim i/nf = 0, which is equivalent to 
I-> 00 

d(A(5)) = 0. 

Note that the condition of Theorem 6 is not sufficient. We shall see that there 
exist sequences A^{an}™==x which satisfy (1) but for which the sequence 
B = {a«}r= i does not satisfy (1). On the other hand 

{A(5);0<8< 1} = {B(5);0<8< 1} 

here. 

2.2. Subsequences. 

The next result may be instrumental in many proofs of results of the inves­
tigated type. 

Theorem 7. IfB cz A are two increasing sequences of positive integers and if the 
sequence B satisfies (1), then also the sequence A satisfies (1). 

Proof. Let 

A = {ax < a2 < ...} 
and 

B = {an] <a„2< . . .} . 

Given k, define ns by the inequalities 

ns_x < k S ns. 

Then 

ak 
< 

ax + a2 + ... + ak anx + ani + ... + an^x 

Since B satisfies (1), the right hand side tends to 0 as s -» oo according to (17). 
We may therefore apply (16) to the sequence A and the result follows at once. 

We have seen in the previous result that whenever a subsequence 
{ab < ab < ...} of A satisfies (16) then A does also. The set of all positive integers 
shows that the converse is not true. However, if for {bn} we take any arithmetic 
sequence, then this converse statement is true. For if, say, 

bn = b. n + c, 
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then 
and 4- c < fl/i/> + c i 

ab + c + a2b + c+ ... +anb + e~ (ae+x + ac + 2 + ... + anb + c)/b 

and the conclusion follows at once. 
We could ask for more general conditions on {bn} which imply that the 

preporty (16) is satisfied for {ab}, provided that for {an} it is too. The next 
example shows — contrary to an eventual expectation raised by Theorem 3(d) 
— that the arithmetical sequences of indices cannot be replaced by sequences 
with positive lower asymptotic density in general. We shall construct a sequence 
{an} satisfying (16) having a subsesquence {abn} not satisfying (16) with the 
property that the sequence {bn} of indices has asymptotic density 1. 

* Suppose that we already have constructed the first N terms 

a, < a2 < ... < aN 

of the sequence {a„} and that aN belongs to the subsequence {ab}. 
n 

The next y = NaN terms of the form 

oN + i-aN + i, \£i£y 
will all belong to {abJ. Now comes a gap of length z — 1, where 

z = [(NaNf'% (25) 

with the terms 

aN^y^^[(NaNf2] + U l £ i £ z - l 

not belonging to {a^}. Finally put 

aN + y + 2 = (NaN)2 

As the next term of {an} belonging to {ab) and repeat the previous construction 
with N + y + z instead of N, etc. 

The sequence {an} thus constructed is a strictly increasing sequence of positive 
integers. This sequence satisfies (16) as can be seen from the following facts: 

a) the quotient on the left hand side of (16) is decreasing in the range n = N, 
N+ 1 ... iV + y. 

y 

b) for n = N + y + 1 this quotient is small because £ aN+t is asymptotic-
/ » i 

ally equal to (NaN)2/2 and aN + y+, = [(NaNf'2] + 1. To the values n = IV + y + 
+ 2, iV + y + 3, ..., iV + y + z— 1 we can apply the same argument as in a). 

Z - 1 

c) for n = N + y + z this quotient is also small because ]T an + y + ,is asymp-

totically equal to (NaNf2(NaNf/A and aN + y + z = (NaN)2. 
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On the other hand the subsequence {a6} does not fulfil (16). To see this put 
b„ = N + y + z, then 

a 8 wo,?—i2_eii> 

a, + «„+...+ a, £ a ( + £ f l ^ 
1 = 1 1 = 1 

where eN -* 0 with IV -* oo. Relation (25) implies that the density of the sequence 

{bw} is lim y/iy + z) = 1 as stated. 
/V~-> 00 

Note further that Theorem 3(d) implies that {bw} also satisfies (16). The just 
constructed example shows, by the way, that if two increasing sequences {aw},, 
{bw} of positive integers satisfy (16) then their superposition {ah} does not satisfy 
(16) in general. 

2.3. Arithmetical properties. 

Theorem 8. If the sequences A = {a, < a2 < ...}, B = {b, < b2 < ...} satisfy (1), 
then also C={cw}w

c
==, and D = {dw}*=, are increasing and satisfy (1), where 

cn = an + bn and dn = a,bw + a2bw„, + ... + anbxfor n = 1, 2, .... 
Proof. The proof of the statement concerning the sequence C follows 

from the general inequality 

a + b a b 
c + d ~~ c d 

(a, b, c, d positive) for a = aw, b = bw, c = a, + aw and d = b, + ... + bw. 
The termwise addition of two increasing sequences is increasing and so C is 

trivially increasing. The fact that D is also increasing follows from 

a,bw < a,bw + l, a2bw„, < a2bw, ..., awb, < awb2-

A well-known fact from the theory ofRiesz orNor lund means [9, vol. 
I. Absch. 1, Aufg. 73] says that if 

lim 2= = 0 and lim ^ = 0 
w-°° a, + a2 + ... + aw " -* b, + b2 + ... + bw 

then also 

lim ^ = 0, 
w-°° d, + d 2 + ... +dw 

where dw = a,bw + a2bw_, + ... + awb, and the proof is finished. 
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The question about the termwise multiplication of sequences satisfying (1) is 
more delicate. In this connection the next result follows from theorem 3(a). Note 
only that if a„ = 0(n3/2), then {an}n = x satisfies (1) owing to Theorem 3(b). 

Theorem 9. If an = 0(n3/2) and b„ = o(n3/2), then the sequence {anbn}n =, satis­
fies (1). 

The assumptions of the preceding theorem cannot be extended without 
additional requirements. We shall construct a sequence A = {a, < a2 < ...} with 
an = o(nV2) for which the sequence {a2 < a2 < ...} does not satisfy (1). 

We shall proceed by induction. Let a, = 1, a2 = 2 and suppose that the first 
1V terms ax<a2< ... < aN with an S nV2 for n = 1,2, ..., N have already been 
found. 

Now let k be any (e.g. the least) positive integer satisfying the next two 
inequalities 

(N + kf2 >aN + k~-\ (26) 

•• «*+*>"]' a , . (27) 
a\ + a\ + ... + al_ x + ka2

N + aNk(k - 1) + (k - \)k(2k - l)/6 

(Here [ ] denotes the integral part.) 
The for the next k terms of the constructed sequence take 

aN + / = aN+i for i= 1, 2, ..., k — 1 
and 

a, + k^[(N + ky/2]. 
Then an S nm for n = N + 1, n + 2, ..., N + k. The inequality (26) implies that 
the sequence {an}^= x is increasing and (27) implies that 

a2 

lim sup — ^ 1 
»->°° a2 + a\ + ... + a2 

This implies that {a2 < a\ < ...} does not satisfy (1). 
If we always take the least positive value of k we obtain the following initial 

segment 
ax = 1, a2 = 2, a3 = 5, a4 = 7, a5 = 11, a6 = 12, ..., a9 = 15, a]0 = 31, 

an = 32, ..., a4l = 62, a42 = 272, a43 = 273, ..., a489 = 719, a490 = 10 846, 

am = 10847, .... 

Finally note that if {a2 <a\< ...} satisfies (1), then {ax < a2< ...} always 
satisfies (1), for 

an \2
 < a | 

a! + a2 + ... + aj a2 + a\+ ... + a2 
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Theorem 10. If A = {a, < a2 < ...} satisfies (1), then also 5 = < ]T .%> 
U = I J«= i 

does. 
« 

Proof . Let Nn = £ a .̂ It follows from (18) that if A satisfies (1), then 
k= i 

lim Nn_x/Nn = 1 and Theorem 5 i) immediately implies that S satisfies (1) too. 
—> oo n 

Theorem 11. Let p(x) be a polynomial with integral coefficients and a positive 
leading coefficient. Then a sequence A = {a, < a2 < ...} satisfies (1) if and only if 
the sequence of positive terms of{p(n)an}n=, does. 

Proof . With b, = /* in the so-called Cebysev inequality [11, p. 21 and 
119] we have 

a„nk , an nk 

< n amlk + a22
k+ ... +ann

k ax + a2+ ... + an 1* + 2* + ... + nk 

This implies that if A satisfies (1), then also {nkan}n^, does. On the other hand, 
with {an}n= , the sequences {can}£L, and {an + c}£L, for any integer c satisfy (16), 
too. Since a finite number of terms does not influence the truth of (16) we can 
immediately conclude that if {aJ^Li satisfies (16), then also the sequence of 
positive terms of {p(n) a„}£L { satisfies (16), which is the first part of our theorem. 

Conversely, if a sequence {cn}n=x satisfies (16), then also the sequence of 
rational numbers {cjnk}^ u k a fixed positive integer, satisfies (16), which can 
be seen from the inequality 

£» 
„* 

< 
c^c2^ ^Cn c, («/1Y + c2(n/2)k + ... + cn(n/n)k c, + c2+ ... + c„ 

lk 2k nk 

In particular, if k = deg (p(x)), the fact that {p(n) an}„°m, satisfies (16) implies that 
also the sequence 

r J« = i 

does. 
Finally, if {bn}™^ { and {dn}n==, are two sequences of not necessarily integral 

positive real numbers with 

lim -2 = e> 0, 
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then both {bn}n„ , and {dn}n_ , simultaneously fulfil or do not fulfil condition (16). 
Since 

is positive, the conclusion follows. 

2.4. Linear recurrent sequences. 

Throughout this section we adopt a new convention in the notation. For the 
sake of the notational simplicity we shell label the sequences beginning with the 
index 0 instead of with 1. 

Thus, let A = {aw}^= o be a linear recurrence of positive integers, that is 

an= ~-bxan_x -b2an_2- ... -bsan_s, n^s (28) 

with integral coefficients b]9 b2, ..., bs. If we assume that A is of order s, that is 
s is the least possible value in a relation of the type (28), then 

Q(z) = zs + bxz
s~x + b2z

s~2 + ... + bs 

is the so-called characteristic polynomial of the linear recurrence A. 
The next theorem solves our problem for linear recurrences. 

Theorem 12. Let A = {0 < a0 < ax < a2 < ...} be an increasing linear recur­
rence. Then A satisfies (1) if and only if the characteristic polynomial Q(z) of A 
has the following two properties'. 
(a) all roots of Q(z) are roots of unity, 
(b) Q(\) = 0 and the multiplicity of 1 is at least 2 and it is (strongly) greater than 
the multiplicity of any other root of Q(z). 

Proof . Let z,, ..., zp be all the distinct roots of Q(z) with multiplicity k,, 
..., kp, respectively. Assume that \zx\ ^ ... ^ \zp\ and ky^k/+1 whenever 
\Zj\ ==|Z/+il,j= 1, . . . , P - 1. Let t = max{/; \zj\ = |z,|} and kj = kx. Then 

aw = | z , | \ n l (C,e ! + ... + C,e ' + en\ n > 0, 

where C, # 0, zy = |z,|eiay,j = 1, ..., t and lim en = 0. 
n-+ x 

The sufficiency of (a) and (b) follows immediately from Theorem 3(a). To 
prove the necessity of the conditions suppose that A satisfies (1). 
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Let 0 < 6 < 1 be arbitrary. By Theorem 6 we may choose an integer r(S) 2> 1 
such that 

aJan + x^l-S9((n+l)/n)k^]Sl + S9 and \e„\ g S 

for n -= r(#)9 r(S) + 1, ..., r(#) + t. A routine calculation gives that 

t Cj(l - I r - l e V ' ^ e 8 * - AW), * - 0,1, ..., t - 1, 

where |&(<5)| 2* C<5, k « 0, 1, ..., t-L Letting 5-*0, we conclude that 
1 — |zi|e,S/ = 0,j = 0, 1,..., t. Hence a, = ... -= a, - 0, so that t -= 1 and z, = 1. 
Thus, condition (a) holds. Since t= 1, we have kx > k2 £? ... 2* kp> From 
aw = n !"" (Cx + en) > n we infer that k, 2: 2 and Theorem 12 is proved. 

Corollary. Let A = {0 < a0 < a, < a2 < ..,} be an increasing linear recurrence. 

Then A satisfies (1) if and only if lim an/an + x =- L 

Let A =- {a^}^, be a linear recurrence of positive integers. Then the Laurent 
series 

2({an}?m0)= t anz~\ 
« « o 

called the Jf-transform of A9 defines a rational function, say, of the form 

P(z) 
-*(tø.}JГ-o) 

ß(-0 
Without loss of generality we can assume that the polynomials P(z) and Q(z) 
are coprime. It follows from the known results [9, II, Absch. 8, Aufg. 156] that 
we can also assume that P and Q have integral coefficients and that the polyno­
mial Q is the characteristic polynomial of {«„}*„ 0. 

Some of the results proved for the general sequences A follow immediately 
from Theorem 12 if A is a strongly increasing linear recurrence. Thus, for 
instance, if A = {0 < a0 < ax <a2< ...} satisfies (1), then also B = {b j ^ 0 does, 
where 

a) bn = £ ah b0 « 0 
/-o 

b) bn^n.an 

c) bn = anm with fixed m. 
For the proof it is enough to write the J*-transform of the sequence {b„}?m0 

which is 

ìбi 



siKaT)-™ Í W - J . - . ^ (CШ 1 âz 
m- 1 

-ř({в..ж}ľ-o)»«-'- Z Яг/Í) 
i « 0 

where £), i = 0, 1, ..., m — 1 are all wth roots of unity. In all cases F(z) stands 
for the ^-transform of the given sequence A. 
d) Let A = {a0 < a, < a2 < ...} and C = {c0 < c, < c2 < ...} be two linear recur­
rences of positive integers. Then their convolution 

R } " - o * {c»}"- o = | Z a<c» -1 \ 
(., = 0 J « = 0 

satisfies (1) if and only if both A and C satisfy (1). This extends the correspond­
ing part of Theorem 8 for linear recurrences. To the proof note that 

&({aX- o * {cn)?. o) = 2{{aX- o) * # ( M ° - o)-

e) A similar extension of Theorem 9 is also true for the strongly increasing 
recurrences A and C. The sequence {ancX=o satisfies (1) if and only if both A 
and C satisfy (1). The proof follows immediately from the last Corollary. 

Finally, Theorem 12 can be useful for many well-known linear recurrences. 
For instance: 
f) the Fibonacci sequence {fX=* does not satisfy (1), 

g) the sequence of binomial coefficients U U satifies (1), 

h) the sequence {(a,1+l - bn+])/(a - 6)}*=0 does not satisfy (1) if a > b are 
positive integers, etc. To see this note that the ^-transforms of these three 
sequences are 

z2/(z2 - z - 1), z/(z - 1)*+ \ z2/(z - a) (z - b). 

3. Metrical and topological properties. 

Let °U denote the system of all the increasing infinite sequences of positive 
integers, where we return to the original convention to label the terms of 
sequences from 1 onwards. Let 6UX denote the system of all the sequences from 
°tt which satisfy (1). 

If Ae% and A = {a, < a2 < . . .} , define 

Q(Л) = X 2-* 

162 

k = 1 



it is known [8, p. 17—18] that this so-called dyadic transform is a bijection 
of % onto the interval (0, 1]. Following a standard convention we shall attribute 
the metrical and topological properties of the set 

Q(Sr) = {Q(A);Ae&} 

in the interval (0, 1] to a given subset Sf of %. 
The next theorem shows that from the metrical point of view allmost all 

sequences from °U satisfy (1) although one can readily deduce from Theorem 5 
that the complement comp(f/,) in °U is uncountable. Indead, all the sequences 
of the type 

{2*'}»_,, 0<k{<k2< 

lie in comp(^j). 

Theotein 13. We have that 
(i) the set Q(^ix) has the full Lebesgue measure in (0, 1] 
(ii) the Hausdorff dimension dim^(comp(^j)) = 0. 

Proof . Given a real 1/^0, let r(rf) denote the set of all the sequences 
Ae6U with lower asymptotic density equal to t]. Theorem 3(d) implies that 

r(v) <= % (29) 
for every 0 < t] <£ 1. 

BorePs theorem [8, p. 1901] implies that Q(r(\/2)) has Lebesgue messure 1 in 
(0, 1] and the statement (i) follows from (29) for 77 = 1/2. From (29) we obtain 

U ni)c% 
0 < 7?^ i 

and consequently 
dim £>(comp (#,)) <; dim £>(F(0)). 

However, dim^(F(0)) = 0, [8, p. 195] and the Theorem is proved. 
Theorem 3 gives an impetus to find an estimate for the Hausdorff dimension 

of ^ ( c o m p ^ ) ) with resppct to a finer system of meassure functions than the 
system of the standard messure functions ta, 0 <£ t ^ 1, ae(0, 1]. Namely, the 
system & of the measure functions /u{a) defined through ([10], [12]) 

Mia)(0) = 0, 

^ ( 0 a - f _ ! 2 8 2 Y - ^ 0 < t < l / 2 (30) logt 

for «є(0, 1]. 
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If dim M denotes the Hausdorff dimension of M with respect to the system 

&> then 

dim M ^ dim M 

for every M c (0, 1]. 

Theorem 14. With 3F defined in (30) we have 

d i m ^ c o m p ^ O ) ^ 1/2. 

Proof. Take a > 1/2 and let 0>a denote the set of all the sequences At°U 
for which 

lim i nf .dW> 0 

Theorem 3 assert that ?/a c U\ and therefore 

dim £(compO?/j)) <; dim £>(comp(^a)). 

owing to the definition of &u the complement comp(^a) consists of all such 
sequences A = {c\ < a2< ...} for which 

l i m i n f ^ - = 0 . 

If G2(B, £) denotes the se( of all the / l e t with 

A(«) 
lim inf —-^ = L 

n' n -> /. и ^ 

then it is proved in [12] that for £ > 0 we have 

d\mQ(G2(P ;)) = /?. 
.r 

But this result can be extended to the case of £ = 0 in the form 

dim Q(G2(fr &)£ fl. (31) 

Suppose we have proved it. Since G2(r/ 0) = comp(^„), 

•i/ni ,?(coirp (•#,)) ^ a 

[or every or > 1/2 and t(u ' ^ r / ^ '' -"lows. 

To prove (31) take a r ;! such that / > jS+ o. 
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Let A e G2(fi, 0). Then there exists an infinite sequence {Nk}fm, such that 

j*{Nk)/Nt<\. (32) 

On the other hand, the dyadic transform g(A) can be written in the form 

where 

f?(A) = 1 2 ~"k _ - I *x\ 
И~= 1 «-= 1 

e« lo, 
Іf 

if 

ПЄAf 

nфA. 

I 
ЩNk 

є„< Nk 

Then (32) says that 

for every k = 1, 2, .... 
Given a positive integer m, let Sfm be the set of the all zero-one sequences 

fe}®.., for which 

I e„<mp. 

to this m, let Sm be the union of all such intervals of the mth order 

~2m- 1 

ҺrГťr) L 2" 

which contain at least one point of the form 

, 1 

X en.2-", where {e„}e<?m. 

Therefore A e G2(# 0) implies that 
00 

I 2-°"eSm 

for infinitely many m. In other words 
QO 00 

Q(G2(P, 0» c n Pi S- (33) 
fl«lm—n 

However, 

- r a j s ' * (7) + (?) + ... + fo) 
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and following the ideas of [12] we obtain that the sum on the right-hand side is 

m 
0 + » 0 » . V M 

00 

Now, we have seen is (33) that [J Sm is a 2""^-covering of the set H = Q(G2((3, 
m — k 

0)) for every k. Therefore if k is such that 2 * <£ ?/, then 

oo oo / \ oo 

H™(H)^ X card(SJ.^'(2-m)^K X I™ , U^"™) = K £ 
m = A: m-k \ L m J / m = 

m 

m = fc m w Г 

m > ma we have r «. < m 

There follows from Lemma 1 of [12] that to 8 > 0 there exists m0 such that for 

For k > m0 we thus obtain 

nf(H)£K £ ^ r = K Z m"^*-""-. 
m — k m m ~k 

Since y > /? + 5, we have on the right-hand side a remainder of a convergent 
series. Thus for k -> oo we obtain ix{r)(H) = 0, which means that nir)(H) = 0 and 
the proof of Theorem is complete. 

Note that the same result can be proved for the followsing simpler system of 
measure functions 

g{a)(0) = 0 

g(a)(/) = e x p ( - l o g t ) a 

for 0 < t S 1/2 and ae(0, 1] (c.f. [10, p. 46]). 
We now prove two topological results concerning the system %x. To do this 

we shall use the Baire's metric [6, p. 115]. This is defined on the system °U of all 
the monotone sequences of positive integers as follows. If A = {an}s% and 
B = {bH}e<&9 then d(A9 B) = 0 if A = B and d(A9 B) = 1/fc if A # B9 where 
k = min{n; a„ # 6J. One sees immediately that (̂ f, d) is a complete metric 
space. 

The next theorem describes the position of the set °UX in the space (^, d). 

Theorem 15. The set °UX is of the type Fa6 of the first Baire category in °U. 
Proof . We know that A = {%K°= , belongs to %x if and only if 

lim = 0. 
i + ••• +вk-\ *- д а a, + ... +ą 
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This implies that A e ̂ x if and only if to every positive integer v there exists a 
positive integer p such that for every integer n > p we have 

< ! 
ax + ... + ak_x 

If we therefore denote 

R{v,rì) = {AєW; -?- ^ -
a, + ... + ak_, v 

then 

*, = n u n *(y> «)• < 3 4 ) 
v = l p l n ~ p + 1 

We finish the proof in three steps. 
1. First of all note that R(v, n) is a closed set in %. Since, if A01 = {â }*L j is 

a sequence from R(v, n) converging to A = {ajj^,, then the definition of the 
Baire's metric implies that 

ajp = ak for k = 1, 2, ..., n 

for all sufficiently large j. Thus if all A® belong to R(v, n), then also A must. 
2. The previous part and (34) give in turn that °UX is of type FCT§ in %. 
3. To finish the proof it is sufficient to show that the set 

00 

R*(v,n)= f) R^n) 
n=p+ 1 

is nowhere dense in % for all p. It follows from the first part that R*(v, p) is 
closed and therefore it is enough to show that its complement in % is dense in 

m. 
Let B = {bk} be an arbitrary element of °U and 8 a positive real number. We 

shall construct a monotone integral sequence A = {an} not belonging to R*(vf 

p) but lying in the ^neighbourhood of B. To do this let r > p be an integer with 
1/r < 8. Define A as follows 

ak = bk for k = 1, 2, ..., r 

a r + 1 = (l + l/t;).(a1 + . . . + a r ) 

*r+y = « r + i f o r j = 2, 3, .... 

The sequence A is clearly monotone. The definition of r and of the first r 
members of A ensures that A lies in the ^-neighbourhood of B whereas the 
definition of ar + , implies that A does not belong to R*(v, p) and Theorem is 
proved. 
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Note that ^ , is a dense set in U. In a given ^-neighbourhood of a given 
sequence B = {bk} from % there lies, for instance, the sequence C = {ck} for 
which 

ck = bk9 k = 1, ..., r with 1/r < 5 

c r+ i = c r+j, j= 1, 2, .... 

Plainly 

lim ^ i = o, 
>-« c, + ... +c r + y „ , 

which shows that Cef , , 
We use the Theorem 15 to the set Q(%ix) in the interval (0, 1], where Q is the 

dyadic transform defined above. The mapping Q: #U -* (0,1] is a continuous one. 
This follows immediately from the fact that if a sequence B = {bn} lies in a 
1/m-neighbourhood of a sequence A = {an} then % = bk for k = 1,2, ..., m. On 
the other hand Q is a bijection of ^ onto (0, 1]. Thus there exists its inverse 
mapping Q~X : (0, 1] -* $U. However, Q~X is not continuous in every point of the 
interval (0, 1]. To see this take, for instance, point 1/2. Then 

p",(l/2) = {2, 3,4, ...}, 

but for t > 1/2 we have 

Q~\t) = {nx = \ <n2<n,...}. 

Thus d(Q~x(1/2), Q~~x(t)) = 1 for every t > 1/2. Similarly we can see that Q~X is 
not continuous (from the right) in every dyadicaly rational number of the 
interval (0,1], that is in every rational number with denominator of the form 2", 
n= 1, 2, .... 

Let %0 denote the subset of those sequences A = {ak} from °U for which there 
exists a positive integer m such that am+j = am+y_ i + 1 forj = 1, 2, .... If, on 
the other hand, D denotes the set of all dyadicaly rational numbers in (0,1], then 
Qmaps ̂ i onto D. The restriction Q\(U — U0) of Q onto U — UQ has the following 
properties: 

1) it is a bijection of m - m0 onto Y = (0, 1] - D, 
2) it is continuous, 
3) Q~X\ Y is also continuous. 
This implies that the space % — °U0 with Baire's metric is homeomorphic to the 
space Fwith the Euclidean metric. The proof of the next theorem is short now. 

Theorem 16. The set Q(^ix) is of the type F0§ of the first Baire category in (0, 1]. 
Proof. Put Z = m - %. Then 

0(* i ) = 0 ( * i n Z) u <?(«, n «0). 
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Since Q maps homeomorphically the spacae Z onto F, Theorem 15 implies that 
Q(%X n Z) is of the type F0§ in Fand consequently also in (0,1] (D is a countable 
set). Along similar lines it can be proved that Q(%X n Z) is of the first category 
in F and in (0, 1]. 
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ОБ ОДНОМ КЛАССЕ РАВНОМЕРНО РАСПРЕДЕЛЕННЫХ 
ПОСЛЕДОВАТЕЛЬНОСТЕЙ 

§1егап РогиЬ§ку—ТШог 8а1а1—01о $1гаисп 

Р е з ю м е 
Пусть X бесконечная последовательность действительных чисел х(п) (п = 1, 2, ...) в 

единичном интервале [0, 1], которая разложена на непустые сегменты так, что и-тый сегмент 
Хп состоит из ап элементов. Предположим, что элементы сегмента Хп упорядочены в порядке 
возрастаня членов и что для любого интервала / с . [0, 1] 

%лп 

кде А(1, Хп) — количество членов х(к)еХю для которых х(к)е1, и III длина интервала I. 

В главе 1 доказано, что последовательность X равномерно распределена тогда и только 
тогда, когда 

Ит --?=-- = 0 (1) 
"-*00 а, + а 2 + ... -т-а„ 

В главе 2 проводится детальное изучение последовательностей А = {ах < а2< ...} целых 
чисел ап для которых имеет место (1). 

В главе 3 доказано, что все (в цмысле установленного там соответствия) возрастающие 
последовательности А положительных целых чисел обладают свойством (1). 
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