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ON A CLASS OF UNIFORMLY DISTRIBUTED
SEQUENCES

STEFAN PORUBSKY*—TIBOR SALAT**—OTO STRAUCH*
In [4] Knapowski investigated the question of the uniform distribution
of sequences of rational numbers of the form
1 2 a—11 2 1 a,— 1
w(A)={—,—,..., ! Ty Ty eaey iy ey — ,...},

a, q a a G a, a,

where

A = {al < a2 < a3 < ...}
is a given sequence of positive integers. He proved that this sequence is uniform-
ly distributed in [0, 1] if

lim B —0, (1)
o g +a,+ ... +a,

Knapowski’s paper also contains a condition on g,’s guaranteeing that w(A4) is
not uniformly distributed in [0, 1].

In this paper we shall investigate sequences
X = {x(1), x(2), x(3), ..., x(n), ...}

of real numbers from the unit interval [0, 1] composed of blocks X, n = 1, 2,
..., where the nth block X, contains a, terms of X. In other words, if 4 = {a,};"_,
is a given sequence of positive integers, not necessarily increasing and

N,=a,+a,+...4+a, for n=1,2,... with N;=0,
then
X ={x@)2, x()el0, 1] } 2
X, ={xv,_,<izn,

We show that (1) is a sufficient and necessary condition for a block sequence
(2) to be uniformly distributed in [0, 1] provided X is uniformly distributed in
blocks and the terms of blocks are ordered according to their magnitude, i.e. if
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n-— o0 a
n

1] 3)

for every interval I < [0, 1] where as usual A(/, X,) denotes the number of terms
of X, which belong to I and |I| is the length of I, and

X,={x(N,_,+ D)= x(N,_, +2) = ... = x(N)} “

This implies, among others, that (1) is a sufficient and necessary condition also
for Knapowski’s sequence w(A4).

In the first part of the paper we prove a general result concerning block
sequences (2) satisfying (3). In the second part we shall investigate in detail the
sequences 4 = {a,};-, of positive integers which satisfy condition (1). In part
three we show some metrical and topological properties of the system of all such
sequences. :

1. Basic properties of block sequences.

We shall use the following notation and definitions from [5]:
A(I, N, X) for the number of terms x(n)e X, 1 £ n < N for which x(n)e,
R, (x) for the remainder function
R,(x) = A([0, x), N, X) — Nx

if 0 < x < 1, while Ry(1) =0,
D% for the discrepancy,

D for the L? discrepancy,

1 2 1/2
(] (o
0 N
Given a sequence M,, M,, ... of positive integers we say that a sequence X

is {M,}_, almost uniformly distributed in [0, 1] if
i A M X0 _

n-—=xr

7]
for every interval I < [0, 1].

Our first result reflects some relations between the uniform distribution of the
sequence (2) and the order properties of its blocks X,, k=1, 2, 3, ....
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Proposition 1. Let a block sequence X of real numbers from interval [0, 1] be
composed of blocks X,,n = 1, 2,... as in (2) satisfy (3) for every interval I < [0, 1].
Then we have

(1) The sequence X is {N,};_, almost uniformly distributed in (0, 1].

(ii) If (1) holds then X is uniformly distributed in [0, 1] independently of the
ordering in which the terms of the blocks X, k = 1, 2, ... are given.

(iii) If

lim sup Gnt 1 >0, (5)
n- o a+a,+ ... +a,
then it is possible to rearrange the terms of the blocks X, for every k =1, 2, ...
in such a way that the corresponding sequence X is not u.d.

(iv) If the sequence X is not u.d., then the terms of the blocks X,, k =1, 2, ...
can be so rearranged that the corresponding sequence X is u.d.. Moreover, if the
terms of the blocks X, k =1, 2, ... are originally ordered according to their
magnitude, then there exists such a rearrangement which depends only on the
number of terms in X, and not on the terms of X;, k=1, 2, .... ,

(V) If the sequence X corresponding to a given ordering of terms of the blocks
X, k=1,2,...isnot u.d., then there exists a sequence {m,};_ , of positive integers
with the property that the sequence X' corresponding to the sequence of blocks
constructed by listing successively my copies of X for eachk =1, 2, ... is u.d..

Proof. The proposition can be deduced directly from the definition.
However, we shall use the L? discrepancy to prove it.

Every positive integer N can be written in the form
N=N,+k, where 0Zk<a,,,. (6)
Let further

R,(x,X))=A(0, x), a, X) —ax for 0Zx<1
and

R,(1,X)=0 for x=1.
Then

RN(x) = Z Rui(x’ X) + Rk(x9 "Yn+ I)
i=1

and consequently

N2 f Ri(x)dx = (N, + k)2 j (i R, (x, X»)z dx +
. 0 0

i=1

1
+ (N, + k) f RIx. X, )dx +
0
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+ 2(N, + k)2 f

0

Rix, X,11) (z R,(x, X.-)) . ™

i=1

Condition (3) is equivalent to one of the following three relations

o IR, (x, X,)| \
lim D¥ = lim sup ————=0

n- 5 n-ow gyl a,
nl:n} (DP) = "linl a;’ Jl R,,zn(}, X,)dx =0 > 8)
‘ I 0
',lerl a,” J; IR, (x, X,)|dx = 0. )
Moreover, (3) implies that
lim a, = 0. 9)

n—x

The relations (8) and (9) imply using the so-called Cauchy—Stolz theorem [4,
p. 78, Ex. 5] that the first and the third term on the right-hand side of (7)
converge to zero if N — oo and k, n are arbitrary integers satisfying (6), i.e.

N2 JI Ri(x)dx = N2 Jl Ri(x, X,, ) dx + o(1). (10)

0

Part (i) now follows easily for k = 0.
Now write

1
(N, + k)
Note that

: a; Koo |
JR:-(x,Xn. o=t KL pae x dx. (1)
0 (N, + k) a?,, kKD

ek sl and kfa, . S 1.

Then (1) implies that the right hand side of (11) converges to zero for n — oo
and k in the range 0 < k < «, ., which proves (ii).

(iii) We prove moie than stated in the theorem. Namely, given a subinterval -
I = [0, 1] with 0 < |1} < 1, there exists such a rearrangement of terms in X, for
every n = 1, 2, ... that A(I, M, X)/N does not converge to |I| for N — co.

Fix I < [0, 1] with 0 < |I] < 1. Let

Mn+|=an+l—_A(l, /\,n+l) for n=0’ ]’

denote the number of terms of the block X, ,, which do not belong to /. Then
relabel the terms of the block X, ., in such a way that its first M, , , terms
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x(N,+ 1), x(N,+2), .., x(N, + M, . ))

will lie outside 7.

The integration over [0, 1] in (10) can be replaced by one over any interval
I < [0, 1]. Further, the following estimation from below is true over any interval
not containing the terms of the sequence

2 2 2 1
LZJ Rl%'l,,H(x’ Xn+1)dx§‘%‘2l'lll3=( Ay 41 > _(Mn+l> ___llll
N* ), 12N N,+M,,, a,,,) 12

Since the right-hand side does not converge to zero, A(N, I, X)/N does not
converge to the length of 7 for N = N, + M, ., with n - o0, as claimed.

Note that if we want only to show that X is not u.d. in the case when the terms
of blocks X,, n =1, 2, ... are originally ordered according to their magnitude,
then it suffices to take 7 = [1/2,1] and the above reasoning works without the
necessity to relabel the terms of X, for every n =1, 2, ....

(iv) Without loss of generality we can suppose that the terms of blocks X,
n=1,2, ... of the sequence X are ordered according to their (non-decreasing)
magnitude. Put

= q
and

s, =la,/NN,_,1+1 for n=2.

Now split each of the blocks X,, n = 1, 2, ... in the following subblocks ordered
according to their (non-decreasing) magnitude

X, = (x(N,_,+j):j=i(mods), 1 £j<a} for i=1, ..,s

n*

It is not difficult to see that the blocks X, ; of the sequence

n.t

X/ = {Xl.l‘! ceey Xl..q’ Xl.l’ teey Xz.sz, ...}

satisfy tHe relations (3), (1) and by (ii), X" is u.d..
(v) To prove this statement it is sufficient to show that the condition (1) is
fulfilled in the form

) a
lim nil = 0.

n=may + mya, + ... + mya,
24

One of the possibilities is
mn =n. an + 19

and the Proposition is proved.
Parts of Proposition 1 are certainly used at least implicitly in literature, e.g.
a result of the type (v) is used in [2]. However, in spite of this fact we have not

147



found these results explicitly stated elsewhere and we hope that these simple but
useful properties can be of some independent interest. For instance, (iv) shows
that the von Neumann theorem can be proved without transfinite rearrange-
ment provided that (3) is satisfied.

For our purposes the main consequence of Proposition 1 is the following
result:

Theorem 1. Let X be a block sequence of real numbers from the interval [0, 1]
composed of blocks X,, n = 1, 2, ... which satisfy condition (3). Let the terms of
each block X,, n =1, 2, ... be ordered according to their non-decredsing mag-

nitude. Then X is uniformly distributed if and only if the sequence {a,};_, of the
length of blocks X, fulfils the condition (1).

Let now 4 = {qa,};_, be an arbitrary sequence (not necessarily increasing) of

positive integers for which lim a, = co. Let

n— r

1 2 a,— 1
ro{l2 e
a" (!" (l"

forevery n =1, 2, .... Then
A, a,, X,) = 1|/(1/a,) + O(1) = (a, — D|{| + O(1)

and Theorem | implies that the Knapowski type sequence X = a(A) is uniform-
ly distributed if and only if

an+l

lim —1 0,

=gy =)+ @@= 4 (g, — 1)
which is obviously equivalent to (1).

We conclude this section with the determination of the L? discrepancy of a
slightly modified Knapowski sequence X = w’(4) composed of blocks

X"={l,3, -"-}
an an a"
forn=1,2, ...

In the next theorem (a, b) denotes the g.c.d of @ and b, and {x} the fractional
part of x.

n

Theorem 2. Let A = {a,}_ | be a sequence of positive integers. Let N, = Y g
i=1
and N = N, + k with0 £ k < a, , ,. Then for the L* discrepancy of the sequence
w’'(A) we have
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wpey=lpy Ll 5 @q ( >2<lk2+lk+l)+
4 121/ 1 aq; a, 4 3 2 6

( (-3 ——k+ )+1k2+1kn+1k21+
ami/\73 6/ 3" T2

i=1aq

klay 4 n klay 4 | n
+2J {xa,,+,}(z {xa,.}>dx—2a,,+1f x(Z {xa,-})dx—
0 i=1

0 i=1

— 2k L ] <,i {xa,.}) dx. (12)

/an+| i=1

To compute the integrals one can use the following formulae

kib 1/1 ak 1 1
b} xaydx =+ (L. 9k _ 1. LI I
L{x}{xa}x b( L )( 6)+

3 b 2 ba
a—1k-1 . :
+z Z 2s+21{s+1a})’ 0<k<b (13)
s=0 i=0 2a b

t 3 )
J x{xa}dx=-1-12+ Voo 1 {af 1 ray 1 ttap
0 4 12 a 2 (12 2 a 2 a

1 {ta* 1 {ta}
o 14
4 & 12 a4t ' (1%

2
- +l{t_a}_+liﬂ (15)
2 2 a 2 a
Proof. We have
A(0, x], a;, X)) = [xaiL

A([O’ x]y k’ Xn+ I) = min{k’ [xan+ I]}
Then using [5, p. 163] we obtain

Jq <§":4 Ra,-(xs X,))Z dx = % n2 + L i (aia a!')z
0

12ij=1  aaq

i=0

and from [5, p. 145]

1 k '- 2 k i k . i
IRk(x’ X, 1) dx = Z( >+Z -2
0 = an+| i=la,,+] i=1

a, 1

wl’—-
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Further

f' R(x X, ( £ Ry(x. X)) dx =
0

i=1

= fl (min{k, [xa,, ]} — kx). (~ i {.xa,}) dx =

i=1

1 1 n 1 kiay, 4 n
=an+——k2—-—a,,+,f x<z {xa,-}>dx+
0

12 T a i=1

+ 4[:(/“"“ {xa, .} (.‘i {xa,}) dx — k L | (i {xa,.}) dx.

/an+l i=1

Relation (12) now follows using (7).
To prove relation (13) note that

(i + /b - 1 a a}
xb} . {xa}dx = - 'y —+i—pdy.
Ji/b {xb} . {xa} bL){yb o
If s/a <y < (s+ 1)/a then

a .a a s s+ ia
-+i-=y-——-+
{yb b} yb b { b }

and thus
(s + 1)/a X
a a
—+i-pdy=
J.:/a y {y b b} Y
1 s+ ia s 1
= s+13~s3+<{ }——)-—-((s+1)2—s2).
3ba’® (« ) ) b b} 2a®
The summation of the last integral over i =0, 1, ..., k—1,5s=0,1, ..., a—1

gives (13). The integrals (14) and (15) can be evaluated directly.

2. Basic properties of sequences 4 = {qa,}_, satisfying condition (1)

and lim a, = oo.

n— 0

In this section we shall investigate on the one hand the relationship between
property (1) of a sequence 4 = {a,};>_, of positive integers and the behaviour of
a,, N,, a,/a, ., and the asymptotic density of 4 on the other hand.
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Note that condition (1) is plainly equivalent to each of the following three
ones

lim O =0, (16)
"o g +a,+ ... +a,
lim n =0, (17)

"o g +a+ ...+ a,

Ii at+a+..+a,_,
m =
"o g +a,+ ...+ a,

1. (18)

where k is an arbitrary but fixed positive integer.

Having in mind the application of the proved results to the Knapowski type
sequences we shall assume in the next results that investigated sequences will be
monotone. The reader can easily decide where such assumptions are not necess-
ary from the point of view of the fulfilment of relation (1).

2.1. Estimates.

Theorem 3. Let A ={a,};_, be an increasing sequence of positive integers.
Then A satisfies condition (1) if one of the following four conditions is fulfilled:
(@) There exists a = 1 such that

lim inf % >0 and a, = om"*").
n— oo n”

(b) There holds a, = o(n?).

(c) There exists f> 1/2 such that

lim inf i:) > 0,

n— o0 n

where A(n) = ) 1.
a;sn
(d) The sequence A has positive lower asymptotic density.
Proof. It is not difficult to see that it is enough to prove that (a) implies
(1). But this can be easily done. The condition on the limes inferior implies

a a a
n <c “ <c =

a+a,+ ... +a, 19424+ ... +n" net!

and the condition on a, implies (16) and thus finishes the proof.
If A = P, the set of primes, then Theorem 3(b) shows that P satisfies (1). A
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refined version of this result was shown by Knapowski [3]. The sequence P
shows at the same time that (d) does not give a necessary condition for (1) and
that not even the positivity of the upper asymptotic density is necessary for this
conclusion.

Although conditions (a) and (b) of Theorem 3 are not eqgivalent (take a, = p?,
p, the nth prime), condition (b) is best possible in the sense that the o-symbol
cannot be replaced by the O-symbol without further additional assumptions.
Namely, there exists sequence 4 = {a, < a, < ...} with a, = O(n?) for which (1)
does not hold. To construct such a sequence we first construct a sequence of
indices n, < n, < ... inductively in the following way:

b) if n, is already known, let », ., be a positive integer n satisfying the
follo wing three inequalities

n? —n(@dn? —2n, — 1) — 4n¢ + 4n} + n} — n, > 0, (19)
2n* —n—=2n+n+1>0, n>n, (20)
then the sequence A in question is defined as follows: a, =1, a, =2, ..., and
a,=2n+n—n—1 for m+1<n<n,,.
The inequality (20) guarantees that A is increasing and (19) implies that
4a +1 > 2"13“

Mg 41

> 2.
a+a+..+a,  1+2+3+...+a, —1+a

v

Mg g1

Thus the condition (17) is not satisfied.
Choosing the smallest possible n,, kK =1, 2, ..., the initial segment of the
sequence A is

a, = 1, a, = 2, a, = 8, a, = 9, ey 1y = 19, a5 = 392, g = 393,
ceey (19\2 = 1289, 61913 = 1 663 488, g4 = l 663 489, ey (140]38,3 = 5676 388,
Guorsere = 32221389 597938, a,g305 = 32221389 597939, ...

The next result contains an information about the speed of divergence of N,
if (1) is satisfied.

Theorem 4. If a sequence A = {a,}_, of positive integers satisfies (1), then

lim -I-log(a, +a,+...+a,)=0. 21

n-—own

Proof. Niederreiter [7] proved that if {x,};°_, is a monotone uniformly
distributed sequence mod 1, then
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lim |x,|/logn = co. (22)

Let
x,=k +—l—,
a

where
k-1

n= 3% a+i 05i<aq.
j=1

If (1) is satisfied and if lim a, = oo, then {x,};_, is uniformly distributed mod

n— o

1 and (22) implies that
klim k/log N, =

and the result follows.
Another proof of the previous result, which does not depend on the assump-

tion that lim a, = oo, follows using upper and lower Riemann’s sums of the
function 1/x over the interval [1, N,]. These sums over the subdivision on the
intervals[1, N}, [N,, N,], ..., [N, _,, N,] and the integral (after division by n) give
the following inequalities

z 2: __.<

ni=1 N, ni=1 N;_,

(23)

The relation (21) follows now immediately from (23) and (1).
Note that from (23) one obtains Abel’s theorem [1] stating that the divergence

of the series ). a, is equivalent to the divergence of each of the series

n=1

a1

g | N,
which shows that the convergence in (1) cannot be too quick.

The next two simple results can be useful. Their proofs follow from the
Toeplitz theorem for x, = a,_,/a,. Then a, + ... + a,_, = a,x, + ... + a,x,.

118

G
N,

Theorem 5. Let A = {a, < a, < ...} be a sequence of positive integers.
i) If A satisfies

lim &2=1-1 (24)

n— o a
n
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then (1) is true for A.
i) If A satisfies (1) then
lim sup G-t

n— 0 a
n

Theorem 5 ii) indicates that the condition (24) cannot be necessary for a
sequence A satisfying (1). In fact, given any @, 0 < @ < 1 there exists a sequence
A ={a, < a, < ...} of positive integers with

lim inf &=1 < o

n— oo an
and satisfying (1). To see this let ¢ be a positive integer with ¢ = 1/a. Then the
sequence A, which we obtain from the sequence of positive integers after
deleting all the segments of the form

CHHN okl Ly k2 o2 o2
has the required properties.

The analysis of the points of accumulation of the sequence {a, _,/a,};_, for
the just constructed sequence A = {a, < a, < ...} suggests the conjecture that for
“almost all” n, a, _,/a, converges to 1 provided that (1) is true. This is really so,
as the next result shows.

Theorem 6. Given a real number 6 and a sequence A ={a, < a, < ...} of
positive integers, let

A(6)={n; 4 ga}-

an+1

If the sequence A satisfies (1) then for every 0 < § < 1 the upper asymptotic
density d(A(5)) = 0.

Proof. Let A(6) = {n, <n, < ...}. Since 4 is monotone, a,/a, =1/ for
every i =2, 3, .... Thus

" a"z i—1
a, =——...—%-a, 2 (1/6)~".
an. n
i—1 1
Then
1 i—1
—logN, 2 —loga, =2 log(1/96)
n; n 4
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If A satisfies (1), then (21) implies that lim i/n, = 0, which is equi\}alent to
d(4(5)) = 0.
Note that the condition of Theorem 6 is not sufficient. We shall see that there

exist sequences 4 = {a,},"_, which satisfy (1) but for which the sequence
B = {a2}*_, does not satisfy (1). On the other hand

{4(8); 0< o< 1} ={B(5); 0< d< 1}
here.

2.2. Subsequences.

The next result may be instrumental in many proofs of results of the inves-
tigated type.

Theorem 7. If B — A are two increasing sequences of positive integers and if the
sequence B satisfies (1), then also the sequence A satisfies (1).

Proof. Let

A={a <a,<..}
and

B={a, <a, <..}
Given k, define n, by the inequalities
n,_,<k=n,

Then

i G,
<
a+a+...+aq a, +a,+.. +a,

Since B satisfies (1), the right hand side tends to 0 as s » oo according to (17).
We may therefore apply (16) to the sequence 4 and the result follows at once.

We have seen in the previous result that whenever a subsequence
{ay, < a,, < ...} of A satisfies (16) then A does also. The set of all positive integers

shows that the converse is not true. However, if for {b,} we take any arithmetic
sequence, then this converse statement is true. For if, say,

b,=b.n+c,

155



then
np + ¢ < Apb + ¢
Ayt ay, .+ .ot ap,. @it a ot .o+ a,, )b

and the conclusion follows at once.

We could ask for more general conditions on {b,} which imply that the
preporty (16) is satisfied for {a, }, provided that for {a,} it is too. The next
example shows — contrary to an eventual expectation raised by Theorem 3(d)
— that the arithmetical sequences of indices cannot be replaced by sequences
with positive lower asymptotic density in general. We shall construct a sequence
{a,} satisfying (16) having a subsesquence {a, } not satisfying (16) with the
property that the sequence {b,} of indices has asymptotic density 1.

*Suppose that we already have constructed the first N terms

a,<a,<..<ay

of the sequence {a,} and that a, belongs to the subsequence {a, }.
The next y = Nay terms of the form

ay,;=ay+i, 1Z5i<y
will all belong to {a, }. Now comes a gap of length z — 1, where

z = [(Nay)**]. (25)
with the terms

ANy y+i = [(NaN)3/2] +i 15igz—-1

not belonging to {a, }. Finally put

AN +y+: = (Nay)?

As the next term of {a,} belonging to {a, } and repeat the previous construction
with N + y + z instead of N, etc.

The sequence {a,} thus constructed is a strictly increasing sequence of positive
integers. This sequence satisfies (16) as can be seen from the following facts:

a) the quotient on the left hand side of (16) is decreasing in the range n = N,
N+1...N+y.

Jy
b) for n = N + y + 1 this quotient is small because ) ay,is asymptotic-
i=1

ally equal to (Nay)’/2 and ay, , ., = [(Nay)**] + 1. To the valuesn = N + y +
+2, N+y+3,..., N+ y+z—1 we can apply the same argument as in a).

z—1
c) forn = N + y + z this quotient is also small because ) a,_,,,is asymp-

i=1

totically equal to (Nay)**(Nay)* and ay 4, +. = (Nay)*
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On the other hand the subsequence {a, } does not fulfil (16). To see this put
b,= N+ y+ z, then
?; N
+ 2
ap + ap, + +a, Z a + Z ay.,
i=1 i=1

where gy — 0 with N — co. Relation (25) implies that the density of the sequence

{b,} is Jim y/(y + z) = 1 as stated.

a, ey,

Note further that Theorem 3(d) implies that {b,} also satisfies (16). The just
constructed example shows, by the way, that if two increasing sequences {a,},,
{b,} of positive integers satisfy (16) then their superposition {a, } does not satisfy
(16) in general.

2.3. Arithmetical properties.

Theorem 8. If the sequences A = {a, < a, < ...}, B={b; < b, < ...} satisfy (1),
then also C = {c,}y_, and D ={d,}7_, are increasing and satisfy (1), where
c,=a,+b,andd,=ab,+ab,_,+ ... +ab forn=1,2, ...

Proof. The proof of the statement concerning the sequence C follows
from the general inequality

+5b
c+d

N

S—-+

o1

QIS

(a, b, c, d positive) fora=a,, b=b,, c=a,+a,andd=b,+ ... + b,.
The termwise addition of two increasing sequences is increasing and so C is
trivially increasing. The fact that D is also increasing follows from

ab,<ab,,\, ab,_, <ayb,, ..., ab, <a,b,.

A well-known fact from the theory of Riesz or Norlund means [9, vol.
I. Absch. 1, Aufg. 73] says that if
lim n =0 and lim b,
nso g 4 ay,+ ... + a, ne% b +by,+ ...+ b,

=0

then also

. d,
lim =0,
nsxd +d+ .. +d,

where d, = a,b, + a,b,_, + ... + a,b, and the proof is finished.
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The question about the termwise multiplication of sequences satisfying (1) is
more delicate. In this connection the next result follows from theorem 3(a). Note
only that if @, = O(n*?), then {a,}*_, satisfies (1) owing to Theorem 3(b).

Theorem 9. If a, = O(n*?) and b, = o(n*?), then the sequence {a,b,}"_ | satis-
fies (1).

The assumptions of the preceding theorem cannot be extended without
additional requirements. We shall construct a sequence 4 = {a, < @, < ...} with
a, = o(n*?) for which the sequence {a? < a? < ...} does not satisfy (1).

We shall proceed by induction. Let a, = 1, a, = 2 and suppose that the first
Nterms a, < a, < ... < aywitha, <n**forn=1,2, ..., N have already been
found.

Now let k be any (e.g. the least) positive integer satisfying the next two
inequalities

(N+k)?>ay+k—1 (26)
[N + kP2
al+at+ ...+ ak_, + ka} + ayk(k — 1) + (k — 1) k(2k — 1)/6

(Here [ ] denotes the integral part.)
The for the next k terms of the constructed sequence take

>1. 27)

ay,;=ay+i for i=1,2, .., k-1
and
ay i = [(N + b)),
Thena, < n**forn= N+ 1,n+ 2, ..., N+ k. The inequality (26) implies that
the sequence {a,} _, is increasing and (27) implies that
2

a, 1

lim sup 5 5 ;
s ar +a; + ... + a,

1\

This implies that {a} < a; < ...} does not satisfy (1).
If we always take the least positive value of & we obtain the following initial
segment

a=la=2,a=5a="7a=11,a,=12, ..., ay = 15, a,, = 31,
a, = 32, ey a,“ = 62, Ay = 272, Ay = 273, ceey a439 = 719, Qa9 = 10846,
Qg9 = 10847, PRI

Finally note that if {a] < af < ...} satisfies (1), then {a, < a, < ...} always
satisfies (1), for

2 2
a+a+..+a)  al+ai+..+a’
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Theorem 10. If A = {a, < a, < ...} satisfies (1), then also S = { Y ak}

does

Proof. Let N, = Z a,. It follows from (18) that if A satisfies (1), then

lim N,_,/N, = 1and Theorem 5 i) immediately implies that § satisfies (1) too.

Theorem 11. Let p(x) be a polynomial with integral coefficients and a positive
leading coefficient. Then a sequence A = {a, < a, < ...} satisfies (1) if and only if
the sequence of posztzve terms of {p(n) a,}_, does.

Proof. With b, = i* in the so-called Cebysev inequality [11, p. 21 and
119] we have

k k
a,n " a, n

al* + a,2" + ... + an* a+a+..+a, 1"4+254 ... +n*
This implies that if 4 satisfies (1), then also {n*a,}*_, does. On the other hand,
with {a,};°_, the sequences {ca,};"_ , and {a, + c}*_, for any integer c satisfy (16),
too. Since a finite number of terms does not influence the truth of (16) we can
immediately conclude that if {a,}*_, satisfies (16), then also the sequence of
positive terms of {p(n) a,};"_ , satisfies (16), which is the first part of our theorem.
Conversely, if a sequence {c,.}rx_, satisfies (16), then also the sequence of

rational numbers {c,/n*}*_ ,, k a fixed positive integer, satisfies (16), which can
be seen from the inequality '

IIA

En

n* _ Cn < ¢, '
Lo, L& (/D + ey(n)2) + ... + c,(nfn) o+ e+ .+,
1k 2k n*

In particular, if £ = deg (p(x)), the fact that {p(n) a,};"_ , satisfies (16) implies that

also the sequence
(e
n k n=1
does.

Finally, if {b,};>_, and {d,};’_, are two sequences of not necessarily integral
positive real numbers with

lim éﬂ= c>0,
n— dn
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then both {6,}*_,and {d,};"_ , Simultaneously fulfil or do not fulfil condition (16).

Since
lim (p_(i_Q a,,) / a,
n— o0 l’lk

is positive, the conclusion follows.

2.4. Linear recurrent sequences.

Throughout this section we adopt a new convention in the notation. For the
sake of the notational simplicity we shell label the sequences beginning with the
index 0 instead of with 1.

Thus, let 4 = {a,},"_, be a linear recurrence of positive integers, that is
an= _blan_]—bzan_z_..._bxa"_x, ngs (28)

with integral coefficients b,, b,, ..., b,. If we assume that A is of order s, that is
s is the least possible value in a relation of the type (28), then

0@)=z"+bz" "+ b,2° " 4+ ... + b,

is the so-called characteristic polynomial of the linear recurrence A4.
The next theorem solves our problem for linear recurrences.

Theorem 12. Let A ={0 < ay, < a, < a, < ...} be an increasing linear recur-
rence. Then A satisfies (1) if and only if the characteristic polynomial Q(z) of A
has the following two properties:

(a) all roots of Q(z) are roots of unity,
(b) Q(1) = 0 and the multiplicity of 1 is at least 2 and it is (strongly) greater than
the multiplicity of any other root of Q(z).
Proof. Let z,, ..., z, be all the distinct roots of Q(z) with multiplicity k,,
.., k,, respectively. Assume that |z,| = ... 2|z,| and k;2 k;,, whenever

lzil =1z, .0, j=1, ..., p— 1. Let t = max{j; |z = |z |} and k; = k,. Then
a,=|z,/".n"" " N(C, e + ...+ Ce" +¢), n>0,

where C;#0, z; = |z]€%, j= 1, ..., t and lim &, = 0.

n-— X

The sufficiency of (a) and (b) follows immediately from Theorem 3(a). To
prove the necessity of the conditions suppose that A satisfies (1).
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Let 0 < 6 < 1 be arbitrary. By Theorem 6 we may choose an integer r(6) = 1
such that

/a2 1= 8, (n+)/m" 'S 1+6 and |56
for n = r(8), r(6) + 1, ..., r(6) + t. A routine calculation gives that

' . . .
Y Gl —|z)|€)e¥ e = B(8), k=0,1,..,1—1,
j=1 ‘

where |B(0)| £C6, k=0, 1, ..., t — 1. Letting 60, we conclude that
1—)z,]€%9=0,j=0,1,...,tHenced, = ... =q,=0,so that t = land z, = 1.
Thus, condition (a) holds. Since ¢t =1, we have k, >k, = ... 2 k,. From
a,= n""'(C, + &) > n we infer that k, = 2 and Theorem 12 is proved.

Corollary. Let A = {0 < g, < a, < a, < ...} be an increasing linear recurrence.
Then A satisfies (1) if and only if lim a,/a,,, = 1.
n-»

Let A = {a,}_, be a linear recurrence of positive integers. Then the Laurent
series

Z({at-o) = Y a,z7",
n=20
called the 2 -transform of A, defines a rational function, say, of the form

2 (a0 = 2.
0(2)
Without loss of generality we can assume that the polynomials P(z) and Q(z)
are coprime. It follows from the known results [9, II, Absch. 8, Aufg. 156] that
we can also assume that P and Q have integral coefficients and that the polyno-
mial Q is the characteristic polynomial of {a,}*_,.

Some of the results proved for the general sequences 4 follow immediately
from Theorem 12 if 4 is a strongly increasing linear recurrence. Thus, for
instance, if 4 = {0 < g, < a, < a, < ...} satisfies (1), then also B = {b,};_ , does,
where

n—1
a) bn= Z ai,b0=0
i=0

b) b,=n.a,
¢) b, = a, , with fixed m.

For the proof it is enough to write the Z-transform of the sequence {b,},°_
which is
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7({Tal )=2D, s(uayrg= =4O,

i=0 z—1 dz

m—1

Z((a, i) =m™ - T FG/)

n=

where {, i =0, 1, ..., m — 1 are all mth roots of unity. In all cases F(z) stands
for the Z’- transform of the given sequence 4.
d) LetA={gy<a, <a,<..}andC={c,<¢ <c,<..}betwo lmear recur-

rences of positive integers. Then their convolution

{a,}w-o* {Cn}:f;q = {Zo a,c, —:}

satisfies (1) if and only if both 4 and C satisfy (1). This extends the correspond-
ing part of Theorem 8 for linear recurrences. To the proof note that

Z({ajr-ox{ci0) = Z({a}= o) * Z({cah- o)

o0

n=20

€) A similar extension of Theorem 9 is also true for the strongly increasing

recurrences A and C. The sequence {a,c,}-_, satisfies (1) if and only if both A4

and C satisfy (1). The proof follows immediately from the last Corollary.
Finally, Theorem 12 can be useful for many well-known linear recurrences.

For instance:

f) the Fibonacci sequence {f,}_, does not satisfy (1),

7]

g) the sequence of binomial coefficients {(Z)} satifies (1),

n=k
h) the sequence {(@"*' — b"*")/(a — b)}’_, does not satisfy (1) if a > b are
positive integers, etc. To see this note that the Z-transforms of these three
sequences are

2zZP =z =1, z/(z = 1), 22/(z — a) (z — b).

3. Metrical and topological properties.

Let % denote the system of all the increasing infinite sequences of positive
integers, where we return to the original convention to label the terms of
sequences from 1 onwards. Let %, denote the system of all the sequences from
% which satisfy (1).

If Ae% and A = {a, < a, < ...}, define

o(A4) = Z 27%,

k=1
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it is known [8, p. 17—18] that this so-called dyadic transform is a bijection
of % onto the interval (0, 1]. Following a standard convention we shall attribute
the metrical and topological properties of the set

(&) ={0(A);, Ae &}

in the interval (0, 1] to a given subset & of .

The next theorem shows that from the metrical point of view allmost all
sequences from % satisfy (1) although one can readily deduce from Theorem 5
that the complement comp(%,) in % is uncountable. Indead, all the sequences
of the type

@2ne . 0<k <k, <...
lie in comp (%,).

Theotem 13. We have that
(1) the set o(%,) has the full Lebesgue measure in (0, 1]
(it) the Hausdorff dimension dim g(comp (%,)) = 0.

Proof. Given a real n = 0, let I'(n7) denote the set of all the sequences
A e with lower asymptotic density equal to 7. Theorem 3(d) implies that

I'(m <%, (29)
forevery 0 < n £ 1.

Borel’s theorem [8, p. 1901] implies that o(17(1/2)) has Lebesgue messure 1 in
(0, 1] and the statement (i) follows from (29) for n = 1/2. From (29) we obtain

U rmca,
0<nsi
and consequently
dim o(comp (%,)) < dim o(17(0)).

However, dim o(I"(0)) = 0, [8, p. 195] and the Theorem is proved.

Theorem 3 gives an impetus to find an estimate for the Hausdorff dimension
of o(comp (%,)) with respect to a finer system of meassure functions than the
system of the standard messure functions ¢, 0 < r £ 1, a€(0, 1]. Namely, the
system & of the measure functions u® defined through ([10], [12])

©20) =0,

- logl)”

19 (1) = (-'—‘)—gﬁ)( L o<t 1 (30)
logt

for ae (0, 1].
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If dim M denotes the Hausdorff dimension of M with respect to the system
F
&, then
dim M = dim M
F

for every M < (0, 1].

Theorem 14. With F defined in (30) we have
dim o(comp (%,)) £ 1/2.
F

Proof. Take « > 1/2 and let 2, denote the set of all the sequences Ae#
for which

lim infM > 0.

X ® x?
Theorem 3 asser:» that 2, = U, and therefore

dim g(comp (#,)) < dim g(comp (Z,)).
F F

owing to the definition of %, the complemzat comp (£,) consists of all such
sequences 4 = {¢, < a, < ...} for which

lim inf 3¢ .

n-— % nﬂ

0.

If G,(B, &) denotes the sct of all the 4e% -with

then it is proved in [12] thut for £ > 0 we have

dAiym o(Gy(f ) =P
But this result can be extended to the cas: of €= 0 in the form

dim o(Gy(B. &) = B. @31
Suppose we have proved it. Since G,/ 0) = comp (2,),

Himo(corr p(#))) S a

for every @ > 1/2 and the " ~orsre v taws,
To prove (31) take a » 2! 2 suach that vy > 8+ o.
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Let A€ G,(p, 0). Then there exists an infinite sequence {N,}i_, such that
o (N)/NE< 1. (32)

On the other hand, the dyadic transform g(A4) can be written in the form

xL

o)=Y 27% =) 27",
n=1

n=1

where

1, if neAd
gﬂ= .
0, if n¢A.

Then (32) says that
Z En < Nk
ns N,

foreveryk=1,2, ....
Given a positive integer m, let &, be the set of the all zero-one sequences
{&.}_ for which

Y & <m’

nEm

to this m, let S,, be the union of all such intervals of the mth order

(OIS
2" 2m " 2"

which contain at least one point of the form

i g,.27", where {e,}e€&L,.
Therefore A4 € G,(B, 0) implies that
i 27"es,
n=1
for infinitely many m. In other words

0GB )< () () S, (33)

n=1m=n

card(5) 51+ (7)# (7) 4+ ()

However,
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and following the ideas of [12] we obtain that the sum on the right-hand side is

(1 + "(‘))'<[$]>'

Now, we have seen is (33) that { ) S,,isa 2 *-covering of the set H = o(G,(p,
m=k

0)) for every k. Therefore if k is such that 27* < 7, then

14
m=

m
w ; : (i)
WD S 3 crd(8) 400 £ K Y (i) ave =K L A

There follows from Lemma 1 of [12] that to § > 0 there exists m, such that for

mB+ 9

m > m, we have m <m
0 [m”]

For k > m, we thus obtain

mbB+é

WH)SK Y T =K Ym0
m=k m" m=k
Since y > B + 6, we have on the right-hand side a remainder of a convergent
series. Thus for k — oo we obtain u’(H) = 0, which means that u”(H) = 0 and
the proof of Theorem is complete.

Note that the same result can be proved for the followsing simpler system of
measure functions

§90) = 0
g'(t) = exp(— logt)*
for 0 < ¢t < 1/2 and a€ (0, 1] (c.f. [10, p. 46)).

We now prove two topological results concerning the system %,. To do this
we shall use the Baire’s metric [6, p. 115]. This is defined on the system % of all
the monotone sequences of positive integers as follows. If 4 = {a,}e% and
B={b}e%u, then d(A, B)=0 if A =B and d(4, B) = 1/k if A # B, where

k = min{n; a, # b,}. One sees immediately that (%, d) is a complete metric
space.

The next theorem describes the position of the set %, in the space (%, d).

Theorem 15. The set %, is of the type F,s of the first Baire category in U.
Proof. We know that 4 = {a,};"_, belongs to %, if and only if

lim —% .

ko g + ...+ a
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This implies that 4 e %, if and only if to every positive integer v there exists a
positive integer p such that for every integer n > p we have

i
a+ ... +a_,

IIA

1
v
If we therefore denote

R(u,n)={A€02l;—a-'f—-—-———-— 1},
a+...+a_, v

lIA

then
# =N U () R@n). (34)
v=Ilp=1ln=p+1

We finish the proof in three steps.

1. First of all note that R(v, n) is a closed set in %. Since, if 49 = {a?}_, is
a sequence from R(v, n) converging to 4 = {a,}7_,, then the definition of the
Baire’s metric implies that

al = a, for k=12, ..,n

for all sufficiently large j. Thus if all 4% belong to R(v, n), then also 4 must.

2. The previous part and (34) give in turn that %, is of type F,; in .
3. To finish the proof it is sufficient to show that the set

R*@w,m)y= () R(v,n)
n=p+1

is nowhere dense in % for all p. It follows from the first part that R*(v, p) is
closed and therefore it is enough to show that its complement in % is dense in
/8

Let B = {b,} be an arbitrary element of % and J a positive real number. We
shall construct a monotone integral sequence 4 = {a,} not belonging to R*(v,
p) but lying in the 5-neighbourhood of B. To do this let r > p be an integer W1th
1/r < é. Define A4 as follows

ak—'—-bk fOI‘ k=1, 2, ceey I
a 20 +1/v).(a,+ ... + a,)
a,,;=a,,, for j=2,3, ...

The sequence A4 is clearly monotone. The definition of r and of the first r
members of A ensures that 4 lies in the &neighbourhood of B whereas the
definition of a, . , implies that 4 does not belong to R*(v, p) and Theorem is
proved.
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Note that %, is a dense set in U. In a given d-neighbourhood of a given
sequence B = {b,} from % there lies, for instance, the sequence C = {¢,} for
which

g=b,k=1,...,r with 1/r<é
¢y =¢+J j=12, ..

Plainly
lim Cre) =0,
Jj—®© C + ...+ C,+j_]
which shows that Ce%,.

We use the Theorem 15 to the set o(%,) in the interval (0, 1], where g is the
dyadic transform defined above. The mapping o: % — (0, 1] is a continuous one.
This follows immediately from the fact that if a sequence B = {b,} lies in a
1/m-neighbourhood of a sequence 4 = {a,} thena, = b, fork = 1,2, ..., m. On
the other hand g is a bijection of % onto (0, 1]. Thus there exists its inverse
mapping ¢~ ': (0, 1] - %. However, ¢~ is not continuous in every point of the
interval (0, 1]. To see this take, for instance, point 1/2. Then

0 '(1/2)=1{2,3,4, ...},

but for ¢t > 1/2 we have
o'W ={n=1<n<n;..}

Thus d(o~'(1/2), 0~ '(¢)) = 1 for every ¢ > 1/2. Similarly we can see that o~ ' is
not continuous (from the right) in every dyadicaly rational number of the
interval (0, 1], that is in every rational number with denominator of the form 27,
n=1,2,...

Let %, denote the subset of those sequences A = {a,} from % for which there
exists a positive integer m such thata,,,;=a,,,_+1forj=1,2, ... If, on
the other hand, D denotes the set of all dyadicaly rational numbers in (0, 1], then
e maps % onto D. The restriction g|(U — U,) of gonto U — U, has the following
properties:

1) it is a bijection of # — %, onto Y = (0, 1] — D,

2) it is continuous,

3) ¢7'|Y is also continuous.

This implies that the space # — %, with Baire’s metric is homeomorphic to the
space Y with the Euclidean metric. The proof of the next theorem is short now.

Theorem 16. The set o(%,) is of the type F g of the first Baire category in (0, 1].
Proof. Put Z =% — %,. Then

oU)=0U NZ)v o Uy
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Since ¢ maps homeomorphically the spacae Z onto Y, Theorem 15 implies that
o(%, n Z) is of the type F,; in Y and consequently also in (0, 1] (D is a countable

set). Along similar lines it can be proved that o(#, N Z) is of the first category
in Y and in (0, 1].
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Ob OJJHOM KJIACCE PABHOMEPHO PACIPEJEJIEHHBIX
NOCJIE[JOBATEJILHOCTEN

Stefan Porubsky—Tibor Salat—Oto Strauch

Pesrome
Ilycte X GeckoHeyHas MOCENOBATENbHOCTh NEMCTBUTENBHBIX uucea x(n) (n=1, 2, ...) B
eQMHUYHOM uHTepBae [0, 1], koTopas pa3oXKeHa Ha HEMYCThIE CETMEHTHI TaK, YTO A-Thblif CETMEHT
X, cocTouT U3 a, 37eMeHTOB. [IpennonoxuM, 4To 3JIEeMEHTHI CErMeHTa X, yIOPSIOYEHbI B IOPsAAKE
BO3pacTaHs 4JICHOB M YTO IJs Jtoboro untepsana I < [0, 1]

lim A¢. X.)

n— oo a
n

=1,

ke A(I, X,) — xonmnyectBo wieHoB x(k)€ X, s kotopsix x(k)€ I, u |I| nnuna narepsana I.

B rnase 1 noka3aHo, YTO MOCIENOBATENLHOCTh X PAaBHOMEPHO PacNpe/esieHa TOrAa H TOJIbKO
TOrza, Koraa
. aq
im ———=0 (¢))]
"mea+ay+ ...+ a,
B rnaBe 2 NpoBOAMTCS AETaILHOE H3YYEHME MOCHenoBaTebHOCTEl A = {a; < @, < ...} LeNbIX
4HCeJl @, AJI KOTOphIX uMeeT Mecto (1).
B rnase 3 noka3zaHo, 4TO Bce (B UMBICIIE YCTAHOBJICEHHOTO TaM COOTBETCTBHS) BO3pPacTaloLIUe
NOCJIENOBATENBHOCTH A IOJIOKHTENIbHBIX LEJIBIX YHces obnagaioT coiicTBoM (1).
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