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CONCEPT LATTICES UNIFY THE BIRKHOFF 
REPRESENTATION THEOREMS 

JAROMIR DUDA 

ABSTRACT. A unified approach to the BirkhofT representation theorems is given by 
means of concept lattices. 

I. Preliminaries 

The BirkhofT representation of finite distributive lattices by the posets of their 
nonzero v-irreducible elements is frequently used in lattice theory. Another 
BirkhofT theorem gives as representation of the lattice of all equivalences on an 
/7-element set by the subalgebra lattice of the Boolean algebra 2". The aim of this 
paper is to show that both the mentioned representations can be obtained in the 
same way by means of concept lattices introduced by R. Wille. Moreover a 
representation of the lattice of all quasiorders on a finite nonvoid set is given. 
A number of corollaries follows. 

To make this paper selfcontained we recall some definitions and notations 
used in the sequel. By a quasiorder is meant a reflexive transitive binary relation, 
an equivalence is a symmetric quasiorder, and an order is an antisymmetric 
quasiorder. Let R be a binary relation on a set G. Then ~1R is an abbreviation 
of G x G\R; the symbol R ' denotes the relation {<A\ y}eG x (7; <y, x> e R). 

Recall further from [5] that a context is a triple <(7, M, r> where G, M are 
finite nonvoid sets and r is a correspondence from G to A/, i.e. r <= G x M. 
Denote by B(X) the set of all subsets of a set X. One can easily verify that the 

s 

pair of mappings B(G) «=-" B(M) introduced by the rules 

s(H) = {/we A/; <g, m)er for all geH}, HeB(G), and 
t(N) = [geG; <#, m}er for all me N) ,JVe B(M), 

A M S S u b j e c t C l a s s i f i c a t i o n (1980): Primary 06B15. 
Key w o r d s : Finite distributive lattices. Irreducible elements. Lattice of all equivalences, Qua­
siorders. 
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establishes a Galois connection between the posets <fi(M), .= > and <.6(G), 
.= >. In virtue of this fact a concept of the context <G, M, r) is defined as a pair 
(A, B), A -l G, B c M, with the property A = t(B) and s(A) = B. A and 5 are 
called the extent and the intent of the concept (A, B), respectively. It is well 
known, see [5], that all concepts form the concept lattice 93(G, M, r) in which (A, 
B) A <C, D) = (AnC, s(AnC)), and (A, B) v <C, D)=(t(BnD), 
BnD) hold for any concepts <^, £>, <C, D)e<B(G, M, R). Particularly if S 
is a sublattice of (G, M, r) we can assign the set exts(g) = n{A ^ G; geA and 
{A, s(A))e S} to any element geG. 

2. Representation 

Definition 1. Let Q be a quasiorder on a set G. A subset 0 _= y4 _= G is called 
a quasiorder ideal of <G, (?> whenever geG, aeA, and <g, a>eQ imply geA. 

Lemma 1. Let Q be a quasiorder on a finite set G, s: B(G) -• B(G) a mapping 
determinated by the context <G, G, ~lQ~l). Then s(A) = G\A holds for any 
quasiorder ideal A of\G, Q). 

Proof. The equivalence "geA iff <g, a)eQ for some aeA" is clear. 
Consequently "geG\A iff {a, g)e ~lQ~l for all aeA", as required. 

Our next lemma states that Proposition 1 from [6] remains true for quasior-
ders. 

Lemma 2. Let Q be a quasiorder on a finite set G and let A, B, C, D ^ G. Then 
(i) {A, B) is a concept of the context <G, G, ~1 Q "' > iff A is a quasiorder ideal 

of<G, Q) and B = G\A. 
(ii) {A, B) A <C, D) = (An C, BuZ)) , a/?*/ 

<.4, B) v <C, D) = (AuC, BnD) hold for any concepts (A, B), <C, 
Z)>G-8(G, G, n (?-'). 

P r o o f (i) Let (A, B) be a concept of the context <G, G, ~lQ~l). Then 

^ = t(5) = n^(W) = n ^ ^ G ; <ft b>enG-,} = n ^ e G ; <*. s>*2}-
/>GB / >eB / > e B 

Since any subset {geG; <b, g)$Q) is a quasiorder ideal of <G, Q) the set y4 has 
the same property. Thus s(A) = G\A, by Lemma 1. Combining this equality 
with the hypothesis s(A) = B the required conclusion B = G\A follows. 

Conversely suppose that A is a quasiorder ideal of <G, Q) and B = G\A. 
Then s(A) = B, by Lemma 1. Since Bis an quasiorder ideal of <G, Q~~]) we have 
t(B) = A, by Lemma 1 again. 

(ii) is an immediate corollary of part (i) of this Lejnma. 
Quasiorder ideals of <G, Q) evidently form a closure system on G. This fact 

ensures the existence of the least quasiorder ideal (g] Q of <G, Q) containing an 
element geG. 
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Lemma 3. Let (?,, Q2 be quasiorders on a finite set G. Then QX^.Q2 iff 
93(G, G, n e r 1 ) is a (0, \)-sublattice ofS(G, G, 1Q2

]). 
P r o o f First suppose that Qx =_ Q2 holds. Let <y4, B} be an arbitrary 

concept of the context <G, G, n Q f 1 ) . By Lemma 2 (i), ,4 is a quasiorder ideal 
of <G, <2,> and I? = G\.4. A is also a quasiorder ideal of <G, Q2} since g, ~? Q2. 
Thus </l, £> is a concept of the context <G, G, I Q^"f>, see Lemma 2 (i) again. 
This fact together with Lemma 2 (ii) establishes that -B(G, G, ~lQ^]) is a (0, 
l)-sublattice of 93(G, G, ng,"1). 

Conversely let 93(G, G, i G r 1 ) be a (0, l)-sublattice of 93(G, G, -lQ2
]). 

Assume that <x, y> e Q2. Then xe (y] (?2. In virtue of the hypothesis (y] Q2 ~ 
= (y]Qi holds. Consequently xe(y]Q^ i.e. <x, y>eQ,. Hence 0, 2 (?2and the 
proof of Lemma 3 is complete. 

Theorem 1. The lattice Q(n), n ^ 1, of all quasiorders on an n-element set G 
is dually isomorphic to the lattice of all (0, \)-sublattices of the Boolean algebra 
93 (G,G,H = ) _ ; 2 " . The dual isomorphism is given by 0i->93(G, G, lQ~])for 
any quasiorder Q on G. 

P r o o f It follows directly from Lemma 3 that 93(G, G, 1Q']) is a (0, 
l)-sublattice of 93(G, G, ~| =) for any quasiorder Q on G. The isomorphism 
93(G, G, n =) ^ 2" is evident, see [5]. 

Conversely let S be an arbitrary sublattice of the Boolean algebra 95(G, G, 
"1 =). Introduce the binary relation Q on G via <x, y> e (? whenever x e exts (y). 
Apparently Q is a quasiorder on G. Now it is a routine to verify that 93(G, G, 
- iQ - ' ) = S. 

Lemma 3 completes the proof 
Further we restrict out attention to equivalence relations. In this way the 

Birkhoff representation of the lattice of all equivalences on a finite set is 
obtained. First we reformulate Lemma 2(i) for equivalence relations. 

Lemma 4. Let 0 be an equivalence relation on a finite set G and let A, B _= G. 

Then <_4, B} is a concept of the context <G, G, 1 0} iff A = [J [a] 0 and 
aeA 

B= G\A. 
P r o o f Apply Lemma 2 (i). 
Theorem 2. The lattice E(n), n^ 1, of all equivalences on an n-element set G 

is dually isomorphic to the lattice of all Boolean subalgebras o/©(G, G, "1 =) . 
The dual isomorphism is given by 0i—> 93(G, G, ~1 0) for any equivalence 0 on 
G. 

P r o o f It follows directly from Lemma 4 that -8(G, G, ~l 0) is a Boolean 
subalgebra of -B(G, G, "1 =) for any equivalence 0 on G. 

Conversely let 5 be an arbitrary Boolean subalgebra of 23(G, G, ~l =) . 
Define a binary relation Ron G via <x, y}eR whenever xeexts(y)- Clearly R 
is a quasiorder on G. Suppose that <x, y}eR and <y, x}$R. Then ext5(x) c 
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c(>.\7>v(v) and yeG\exts(x). Since G\exts(x) is an extent of some element of S 
we find that exts (y) ^ G\exts(x). Altogether xeexts(x) c: exts(y) S G\exts(x\ 
a contradiction. This establishes the symmetry of R. Apparently 53(G, G, 
1R) = S. 

The rest of the proof follows from Lemma 3 . 
It remains to restrict Theorem 1 on orders. From [2] we quote 
Definition 2. A v -nearlattice is a lower semilattice in which any two elements 

have a supremum whenever they are bounded above. The concept of a A -near-
lattice is introduced dually. 

Theorem 3. The v -nearlattice 0(//), // ^ 1, of all orders on an n-elements set 
G is dually isomorphic to the A-nearlattice of all sub/attices o/ 33(G, G, 1 = ) 
having the length n. The dual isomorphism is given by Oi—>33(G, G, ~1 0]) for 
any order O on G. 

Proof . By Lemma 3, S3(G, G, n 0]) is a sublattice of -B(G, G, n ). As 
claimed in Lemma 2, 33(G, G, ~1 O - 1 ) is isomorphic to the lattice of all order 
ideals of <G, 0> . Finally it is wel known, see [1], that the lattice of all order 
ideals of <G, 0 > has the length //. 

Conversely, let 5" be a sublattice of 33(G, G, "1 = ) having the length n. Define 
a binary relation R on G via <.v, y}eR whenever xeexts(y). Again by [1], the 
lattice formed by extents of all concepts from S has exactly n nonzero v-ir­
reducible elements. Since {exts(g); geG} is clearly the set of all nonzero v-ir­
reducible elements of this lattice the assumptions <.\\ y)eR and <y, x}eR 
imply exts(x) = exts(y) from which the desired equality .Y = y follows. 

As usual. Lemma 3 completes the proof. 

3. Corollaries 

(1) Let ^ be an order on an //-element set G, n ^ 1, and let ^ = ^ ~ ' . 
Consider an arbitrary element </l, 5 > E 9 3 ( G , G, "1 ^ ) n - B ( G , G, ~| 50 . Lem­
ma 2 (i) applied to </.!, 5 > E S 2 3 ( G , G, n ^ ) yields that A is an order ideal of <G, 
^ > and B = G A, whence B is an order ideal of <G, ^ > . Analogously <.4, 
5> e 33(G, G, ~l ^ ) implies that A is an order ideal of <G, ^ > and B is an order 
ideal of <G, ^ >. Altogether we find that </?, A}, the complement of {A, B} in 
» (G , G, ~] = ) , belongs to 93(G, G, ~1 ^ ) n 3 3 ( G , G, "1 $*), which proves that 
« (G , G, n < ) n 93(G, G, "1 ^ ) is a Boolean subalgebra of -B(G, G, "1 = )• By 
Theorem 2 there is an equivalence 0 o n G such that 33(G, G, ~1 0) = 23(G, G, 
~l ^ ) n 33(G, G, ~l SO or, dually, 0 = ^ v ^ in the lattice Q(/?). This means 
that 0 = 0 ( ^ ) , the least equivalence on G containing ^ , and so 33(G, G, 
~\ 0 ( < ) ) is the greatest Boolean subalgebra in ©(G, G, ~l ^ ) , i.e. -B(G, G, 
~l 0 ( ^ ) ) is the centre of 23(G, G, 1 ^ ) , see [1] for this concept. 
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Conversely, let L be a nontrivial finite distributive lattice and let <7(L), ^ > 
denote the poset of nonzero v -irreducible elements of L with order ^ induced 
from L. As shown, e.g., in the proof of Theorem 3 there is an isomorphism 
a: 53(J(L), J(L), ~i ^)i—> L. Then the centre CenL of L can be obtained by 
formula CenL = a(-8(J(L), J(L), n 6>(^)), where O ( ^ ) denotes the equiv­
alence on J(L) generated by ^ . 

(2) Consider the Boolean algebra 2\ n > 1, and a (0, l)-sublattice S1 of 2". 
If G denotes an n-element set, then there is an isomorphism /?:33(G, G, 
"I = ) i ->2" .The(0 , l)-sublattice/J "(5) of » ( G , G, "1 = ) corresponds to some 
quasiorder Q on G, see our Theorem 1. Then the Boolean subalgebra of-B(G, 
G, ~1 = ) generated by /? l(S) corresponds to the greatest equivalence 0 on G 
with the property 0^Q. Evidently 0= QnQ '. In this way the Boolean 
subalgebra generated by a (0, l)-sublattice is the other side of the well-known 
construction of the greatest equivalence in a given quasiorder. 

(3) For an integer n ^ 1, E(n) is a sublattice of Q(n) and the joins of 0(n) 
(whenever they exist) coincide with the joins in the lattice Q(n). In fact meets in 
Q(n), E(n), and 0(n) are given by set intersections. Joins in Q(/l), £"(//), and 
0(n) correspond to the intersections of (0, l)-sublattices. Boolean subalgebras, 
and sublattices of the length /?, respectively. 

(4) It is easily seen that theorems from Section 2 can be reformulated as 
follows: 

Theorem 1\ Q(n), n ^ 1, is dually isomorphic to the lattice of all topologies on 
an n-element set. 

Theorem 2 \ E(n), n ^ 1, is dually isomorphic to the lattice of all topologies on 
an n-element set having clopen sets only. 

Theorem 3 \ 0(n), n ^ 1, is dually isomorphic to the A-nearlattice of all T0 

topologies on an n-element set. 
Consequently, using results of J. Hartmanis [3; Thm 3 and Corollary 1, p. 

550] we immediately get that Q(n), n ^ 1, is a complemented lattice, moreover 
a quasiorder Qe Q(n) has the unique complement in Q(n) iff Q = co or Q = i. 

(5) There are exactly 2" — 2 minimal (0, 1 )-sublattices of the Boolean algebra 
2", n ^ 1, i.e. there are exactly 2" — 2 maximal quasiorders on the set {1 n}. 
Any quasiorder is an intersection of some maximal quasiorders. 

On the other hand one can easily verify that any maximal sublattice of 2\ 
n> 1, is a (0, l)-sublattice. Hence the set of maximal sublattices in 2" is 
determined by the set of minimal quasiorders on {1 //}, see our Theorem 1. 
These minimal quasiorders, denotes by 0 ( 1 , 2), ..., 0(/?, // — 1), are defined by 
the incidence matrices in Tab. 1. 

It is evident that 0 ( 1 , 2), ..., 0(n, n — 1) are orders. Since any quasiorder on 
an rj-element set is generated by a suitable subset of 0 ( 1 , 2) 0 ( n , n — 1) we 
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Tab. 1 

O(V2) 1 2 . . n 

1 
2 

1 1 . 
0 1 . 

. 0 

. 0 

n 0 0 . . І 

O(n, n -- I) I 2 . .. n 

I 1 0 . . 0 
2 0 1 . . 0 

n 0 1 І 

get that any (0, l)-sublattice of 2" is an intersection of some maximal sublattices 
of 2". 

Example. For n = 3, the Boolean algebra 2s 

has n2 — n = 6 maximal sublattices depicted in Fig. 2. 

Our Example shows that any maximal sublattice of the Boolean algebra 2s 

is isomorphic to the lattice 3x2. In general any maximal sublattice of 2", 
n> 1, is isomorphic to the lattice 3 x 2n~2. This is an immediate consequence 
of the fact that any maximal sublattice of 2" is isomorphic to the lattice of order 
ideals of <{1, ...,n}, 0(/,j)> for some / # j e { l , ..., n}. For illustration the poset 
<{1, ..., A?}, 0(1, 2)> has the following lattice of order ideals 

Now the formula M ^ 3 x 2n ~2 for any maximal sublattice M of 2", n > 1, 
improves the following results of H. Sharp and D. Steven from [4]: 

| 5 x 2n~2\ = \3\.\2n~2\ = 3.2"- 2 = (3/4).2"; (i) \M\ 

(ii) l(M) = l(3x 2" 

\2"~2 

•2\ _ W3\ i WJn-1 ) = 1(3) + l(2"~2) = 2 + (n-2) = n. 
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0(1,2)н 

0(2,1)к 

0(3,1)н 

Fig. 2 

Tab. 2 

poset<{l, ...,/i}, 0(1, 2)> 

lattices of order ideals 

the whole lattice of order ideals 

• 
• • • « • 
3 n 

• 
1 å 

V 

3 2 2 

\ j 

Зx 2" 
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