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VARIETIES OF DIRECTED MULTILATTICES
JUDITA LIHOVA

ABSTRACT. In the paper there is continued the study of the varieties of directed
multilattices. It is proved. e.g.. that the varieties of modular directed multilattices

form a proper class.
-

In [3] infinitely many varieties of distributive directed multilattices covering
the variety & of all distributive lattices in the lattice of varieties of directed
multilattices have been described. In this paper there are investigated the varieties
! .. pgenerated by the modular multilattices M, ;shown in Figure 1 for different
couples of cardinal numbers a, 5, where a = card A, f§ = card B. It is proved
that for different couples a, B of positive integers, which are greater than or
equal to two, the varieties ¥ , ; are different and each of them covers & (Theo-
rems 1.3 and 1.4). Further, the varieties ¥ ; for infinite cardinal numbers f are
studied. It is shown that for different infinite cardinal numbers [ the varieties
1 5 pare different, which implies that the varieties of modular directed multilat-
tices form a proper class (Corollary 2.7, Theorem 2.8). In contrast with the case
of a finite B, there exists no variety ¥~ covering & satisfying ¥ < ¥ 4, for any
infinite cardinal number §(Theorem 2.11). Moreover, for every infinite cardinal
number f there exists an infinite increasing sequence of cardinal numbers
B=P <P <pPr<..suchthat¥’ ;259552755 >... 2% (Theorem 2.10).
In the last part of the paper there is described a variety containing only infinite
multilattices, with the exception of those that are lattices, and covering &.

We shall use the denotation introduced in [3]. By a multilattice always a
directed multilattice is meant.

1. Varieties ¥, 5

Let a, B be arbitrary cardinal numbers different from 0. Denote by M, ; the
multilattice shown in Figure 1,i.e. M, ;= {0, 1} U A U B, the order is defined by
0<a<b< 1 forevery ae A, be B, and a = card 4, = card B.

AMS Subject Classification (1980): Primary 06B20.
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233




Evidently, assuming that e, f > 2, the multilattice M, ;is not a lattice, it is
simple (i.e. card Con M, ; = 2) and all its proper subalgebras are lattices (even
chains). If @ = f =2, then M, ;is distributive; if @ > 2 or > 2, then M, 5 is
modular, but not distributive.

0
Fig. |

Denote by ¥/, ; the variety generated by M, ;. We shall investigate ¥, ; for
some couples of the cardinal numbers a, S.

First we will show that if @, > 2, then ¥, 4 contains no variety of lattices
but the variety 2 of all distributive lattices and the variety of all one-element
lattices.

Let M, denote the five-element modular non-distributive lattice.

1.1. Lemma. If a, B> 2, then M3¢ 7, 5.

Proof. Suppose that M;e ¥, ;= HSP{M, s} (cf. 6.1 in [3]) for some a,
B = 2. Since throughout the proof a, B will be fixed, let us denote M, ;= M.
From M;e HSP{M} it follows that there exists a homomorphism ¢ of a sub-
algebra S of a direct product IT(M,| ie I), where M, = M forevery ie I, onto M.
Let x, y, z be elements of S such that ¢(x), ¢(»), ¢(z) are mutually incompar-
able. Letu, ve{x, y, z}, u # v. We are going to describe a construction for finding
u,, v,€ S such that o(u,) = o), ¢(v,) = @(v) and u,(i), v,(i) are comparable
elements of M,. Fix arbitrary different elements b, b’ € B. Let us take arbitrary
weu v v and define r, seI1(M,|ie ) as follows:

r(iy=0>b, s(i) = b’ if u(d), v(i)e A, u(i) # v(i);
r(i) = s(i) = w(i) in the opposite case.

Evidently r, seu v v. Further, choose r'e(r A s),, s'’e(r n s),, ter’ ns’,
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u'eu A t,v'ev A t(see Figure 2). It is easy to see that u’, v’ € S, p(u’) = ¢(u),
@(v') = @(v) and that A

r w S
rq X3
u v
u’ v’
Fig. 2
u@=v@)=0 if u(@), v(i)e A4, u(i) # v(i);

u’ (i) = u(i), v’ (@) = v(i) in the opposite case.
Choosing two arbitrary different elements of 4 and using the dual procedure to
the elements u’, v’, we can find u,, v, € S such that o(u,) = ('), p(v)) = @v’)
and
u, (i) = v,(i) = 1 if u’(i), v’ (e B, u’'(i) # v’ (i);
w, () = u’ (i), v, () = v () in the opposite case.
For these elements u,, v,€ S we have ¢(u,) = ¢(u), ¢(v,) = ¢(v) and

w () =v,()) =0 if u@@), v(i)e A, u(@) # v(i);
w(@)=v,() =1 ifu@), v(i)eB, u(i) # v(i);
u, (i) = u(i), v,(i) = v(i) otherwise.

Hence, if u(i), v(i) are comparable for some i€ I, then u, (i) = u(i), v, (i) = v(i).
If u(i), v(i) are incomparable, then either u, (i) = v,(i) = 0 or u, (i) = v,({) = 1.
For every ie I the elements u, (i), v,(i) are already comparable.

Now let us use the above construction to find u,, v, to u, v first for the couple
x, y. We obtain x|, y,. Then use the construction for the couple x;, z; denote by
%, , the obtained elements. Finally, applying the construction for the couple
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¥,21» we obtain F, Z. It is easy to see that X, y, Ze S, ¢(X) = o(x), () = ¢()),
©(2) = ¢(z) and for every ie [ the elements X (i), y(i), Z(i) form a chain, which
will be denoted by R;. The subalgebra T of the multilattice S generated by {x,
¥, 2} is a subalgebra of the product IT(R;|ieI), which is a distributive lattice,
hence T'is also a distributive lattice. Then ¢(7") = M, is a distributive lattice too,
a contradiction.

1.2. Theorem. The only varieties of lattices that are contained in ¥, g for some
a, B=2 are the variety 2 of all distributive lattices and the variety of all
one-element lattices.

Proof. If ¥, ; for some a, B> 2 contains a variety of lattices different
from & and from the least variety, then it contains also either the variety
HSP{M,} or the variety HSP{N;} (N is the five-element non-modular lattice)
(cf., e.g.. [2]). By the previous Lemma the first possibility cannot occur. As the
variety ¥, ; contains only modular multilattices (see 5.4 of [3]), the second
possibility is also excluded.

1.3 Theorem. Let a, §be arbitrary finite cardinal numbers greated than 1. Then
the variety 1, ; covers the variety % in the lattice of all varieties of multilattices.

Proof. Evidently ¢ < ¥7, ;. Let us suppose that ¥ is a variety of mul-
tilattices satisfying Z < ¥, < ¥7, 5. We will show that ¥, ; < ¥7. By Theorem
1.2 7, contains a multilattice C that is not a lattice. By a method analogous to
that in the proof of 6.14 in [3] we can verify that M, ,e HSP{C}. Thus
TupS 1)

1.4. Theorem. For different couples (a, ) of finite cardinal numbers greater
than 1 the varieties ¥~ 4 are different.

The assertion is an immediate consequence of 6.12, [3].

2. The relations between ¥/, ; for various j

In this section we shall consider varieties ¥7, ; for various infinite cardinal
numbers f. The symbol IT ; (M,|ie I') will denote the filter product of (M,|ieI)
by a filter .# on I (see [3]). Let A4 = {a, a’} (see the definition of M, ;).

2.1. Lemma. Let Ce v, yand let C be generated by a four-element subset {r,
s, t, u}, wherer,set A u, t,uecr v s. Then there exists a non-empty set I and a
Silter F on I different from the system of all subsets of I such that C is isomorphic
toIz(M,iel) and M, = M, ; for every i€ l.

Proof. If Ce ¥’ 5= HSP{M, ,}, then there exists a homomorphism ¢ of
a subalgebra A4 of a direct product I1 (M,lie I,) with M; = M, , for every i€,
onto C. In view of 6.5 of [3] there exist elements r’, s, ¢t’, u’€ A such that r’,
s‘et' nust',u'er’ vs'and o(r')=r, 0(s') =5, 0(t’) = t, (u’) = u. We can
suppose that A4 is generated by {r’, s’, t’, u’}. Now just as in the proof of 6.6 in
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[3] we can show that A is isomorphic to IT(M,lie I) with I = {ie l,: r’(i), s’ (i),
t’ (i), u’ (i) are mutually different}. Using 4.5 of [3] we obtain that C is isomorphic
to I (M,lie I)/® for a congruence relation @ on IT(M,|iel). By 6.10 of [3],
O = O(F) for a filter # on I. Thus C is isomorphic to IT;(M,|ieT).

2.2. Lemma. Under the same assumptions and denotations as in the preceding
Lemma C has only trivial congruence relations if and only if the filter F is an
ultrafilter.

Proof. First consider an arbitrary filter .#, =2 #. Then O(%)) 2 O(F)
and the congruence relation O(F,)/O(% ) on I1 (M,|ie )/ O(F ) defined by

[/1O(F) O(F)/O(F)[g] OF ) <= [O(F)g

(see 4.6 of [3]) is the least if and only if O@(#,) = O(F ), which is equivalent to
#, 2 F, and the greatest in the case that @(#)) is the greatest, i.e. when .7,
contains all subsets of the set /.

Now do not let # be an ultrafilter. Then there exists an ultrafilter # > 7.
The congruence relation O(%)/O(F ) on Il ;(M,|ie I) is neither the least, nor
the greatest, hence also C has a non-trivial congruence relation.

Let there exist a non-trivial congruence relation on C. Then there exists a
non-trivial congruence relationon Il ; (M |ie I) = I1 (M,|ie I)/O(F ), too. Take
@ to be such a one. The multilattice IT; (M,|ie I')/® is a homomorphic image of
IT(M,liel), so there exists a filter #, on [ such that Il;(M,iel) ® =
=I1(M,|iel)/O(F,) (cf. 6.10 of [3]). Evidently, O(F)) 2 O(F) and O(#))
O(F) = @. Since @ is a non-trivial congruence relation, by the above there is
F, # # and # is different from the system of all subsets of /. Hence .# is not
an ultrafilter. ’

Now let us investigate an ultraproduct I1,(M;|ie ), where M, = M, ; for
every iel.

2.3. Theorem. Let I be any nonempty set, % an ultrafilter on I and let
M, = M, gforevery i€ l. Then the ultraproduct I1,(M,|i€ I') is isomorphic to M, .
Sfor some y = p.

Proof. For any ce M, ; the symbol ¢ will denote such an element of
IT(M,|iel) that c¢(i) = ¢ for every ie I. Throughout this proof we shall use the
denotation [f], [g], ... for the elements of the factor multilattice IT, (M |ie ]) =
=I1(M,lieI)/O(), instead of [f]1O), [g]O), ....

Let us fix the elements b, b of B, b # b’. and introduce the denotation
U®={a, a’, b, b}, U"=0U{xVvy:x, yeU% U”=0Uix Ay xrel").
Evidently, U™ = M, ;5 and hence T1(Miel) = TI(L"ie ) uTT(L"iel) U
UM (URiel), where U® and U!" and U" meaiis U and U'" and U*,
respectively, for every iel.

If felM(Uiel), then f(i) is one of u, a’. b, b’ for every iel. Thus [ =
=1(f.aul(f.b)yul(f.a)ul(f b’)and using # as an ultrafilter we get that
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just one of the sets I(f, a), I(f, b), I(f, @), I(f, b’) belongs to %, since any two
of these sets are disjoint. If e.g. I(f; a)e #, then fO(%) a. We have proved that
{{f): feNN(UPlie D)} = {[al, [b], [a’], [b]}. Evidently, the classes [a], [b], [a],
[b’] are different and there holds [b], [b'|e[a] v [a'], [a]. [a’]€[b] A [b].

Now let fe IT(U{"|ie I). Then for every ie I we have f(i)e x; v y,for some x;,
y,€ U9, Let us define g, heIL(U®lie I) by g(i) = x;, h(i) = y, for every iel.
Then feg v h, so [f]elg] v [4]. By the above [f]e{[al, [a’], [1]} or [f] =[]
for a mapping f,: I - B.

Finally, if feIT1(U™|iel), then feg A h for some g, he [1(U!"|ieI). If g, h are
mappings from / to B, then

f(i)=g()=h(i)eB whenever g (i) = h(i),
f()efa, a’} in the opposite case.

Hence 1= I(f, a)uI(f, @a)ul’, where I' = {iel: f(i)e B}. Now if [g] # [h],
then I(g, h) = I’ € % and hence either I(f, @) e % or I(f, a’)e % . In the first case
[f] = [a], in the second [f] = [a’]. Evidently [a] A [@’] = [0].

We have proved that I1,(M,|ie ) is isomorphic to M, , for some cardinal
number y. As different constant mappings from / to B determine different
classes, there is y = .

2.4. Corollary. If Ce ¥", yand C is a multilattice generated by a four-element
subset {r, s, t, u} such thatr,set A u,t,uer v s and C has only trivial congruence
relations, then C is isomorphic to M,_, for some y > p.

The assertion is an immediate consequence of 2.1, 2.2 and 2.3.

2.5. Corollary. If M, ;€ 1", g for some cardinal number 6 > 2, then 6 > f.

Proof. If M, ;€Y7 4, then using the fact that M, ;is generated by a four-
element set {r. s. ¢, u} such that r, set A u, t, uer v s and that M, ; has only
trivial congruence relations, by 2.4 we obtain that M, ;is isomorphic to M, , for
some y = fB. But then the equality 6 = y holds true. Thus § > S.

2.6. Theorem. If 7" is a variety such that 1% ;> V" > &, then there exists a
cardinal number y > B such that v, ;> 1" 279, > Z.

Proof. If v, ;> Y >, then by 1.2 there exists a multilattice C,e ¥~
that is not a lattice. Then C, contains a four-element subset {r, s, ¢, u} such that
r.set Au.t.uer v s. Let C be the subalgebra of C, generated by {r, s, #, u}.
Then Ce Y™ and also Ce ¥, 4. By 2.1 C is isomorphic to I1;(M|ie!) for a
non-empty set / and a filter # on I different from the system of all subsets of
I. where M, = M, ,for every iel. Let #Z be any ultrafilter on / containing & .
Using 4.6 of [3] we obtain IT,,(M,|ie I)e H{C}. By 2.3 there is M, ,e H{C} for
some y> f. Then ¥ < v, ,€ HSP{C} = ¥~ = ¥, 5. The relation ¥, , = ¥, 4
eliminates the equality y = .
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2.7. Corollary. For different infinite cardinal numbers B the varieties v, z are
different.

Proof. If B+# 7, then either f<y or B> y. By 2.5 in the first case -
M, ¢ v, ,and in the second case M, ,¢ 7, ;.

As an immediate consequence we obtain:

2.8. Theorem. The varieties of modular multilattices form a proper class.

Now we will prove that for any infinite cardinal number f there exists an
infinite decreasing sequence of varieties ¥, =4,;,2 %, 2%, > ... 2 2.

If I'is any nonempty set and % is an ultrafilter on I, then I1,(M,|iel) =
=IT(M,liel)/O(%), where M, = M, ; for every i€, belongs to ¥ 5. By 2.3
IT,(MjlieT) is isomorphic to M, , for some y > B. What values of y can be
obtained for a given f, choosing index sets of various cardinalities and choosing
various ultrafilters on the same index set? It is easy to see that

y=card{{f] O@): fis a mapping I - B} = card I1,(B,lieI),

where B; = B for every i€ l.

We will use the following assertion, which is a consequence of 6.1.14 and
6.3.21 of [1].

2.9. Theorem. Let I be -any infinite set of the cardinality A, B a set of the
cardinality B and let B; = B for every i€ l. Then there exists an ultrafilter U on I
such that card I1,,(B)lieI) = p*.

Using 2.9 we obtain:

2.10. Theorem. For every infinite cardinal number 3 there exists an increasing
infinite sequence of cardinal numbers [, < B, < B, < ... such that B, = p and
Vip="425272p52%2p2...2 2.

Proof. Define f, = B and supposing that there is defined p; for a non-
negative integer j, define §,, | = [3_,”’. Now let j be any fixed nonnegative integer.
Take any set I of the cardinality B. In view of 2.9 there exists an ultrafilter #
on I such that the ultraproduct I, (M;|ie ), where M, = M, , for every iel, is

isomorphic to Mz.p,/’, = Mz_ﬂ/_“, Since l'I,,(M,-lieI)e“/”z_ﬂ,, we have M, €

e“/fz.,,/. We have proved that 1/2~/’;+| c ij. As B ., =ﬂ_,p’> PABS B, by 2.5
M:.[g,¢7/2.ﬂj+,- Hence LEVINC Vg

2.11. Theorem. Let B be any infinite cardinal number. Then there exists no
variety ¥~ of multilattices covering 2 in the lattice of all varieties of multilattices
and satisfying V5 ;2 V.

Proof. Suppose that for an infinite cardinal number f there exists a va-
‘riety ¥ covering & and satisfying Y3527 . By26thereis ¥ = ¥  for some
cardinal number y > B, but in view of 2.10 the variety ¥7, , does not cover Z.
We have a contradiction.
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3. Another variety covering &

In the last part of the paper we will show that it can happen that a variety
Y~ covering & contains only infinite multilattices, with the exception of those
that are lattices. The method applied in this section is analogous to that used in
[3]. Section 6.

Fig. 3

Throughout this section we denote by M the multilattice shown in Figure 3
and by 7~ we denote the variety generated by M. Evidently ¥~ > &.

3.1. Lemma. The only varieties of lattices that are contained in 1 are the
variety 7 and the varietv of all one-element lattices.

Proof. If v contained a variety of lattices different from the above men-
tioned. it would be M.e v or N.e ¥ . Butsince ¥  contains only distributive
multilattices. both these possibilities are excluded.

Having any subset U of a multilattice M’ let us define the sets U’ for
nonnegative integers k as follows: U'" = U if U is defined for some non-
negative integer /. set UV~ "= uU{x v 1: x. veU") for [ even and U'*" =
=ulv A v el for [ odd.

3.2. Lemma. Let I be any non-empty set. Further, let A be a subalgebra of
IT(Miel). where M, = M for every i€ l. generated by a four-element subset
esotouy suchtharr.setr A ucteuer v s Put Uy = {r(i). s(i). 1(i). u(i)} for every

i€ 1. Then A is isomorphic 1o the subalgebra B = | ) II(U*lie I,) of TT(M i€ I,),

h20
where I, = {iel: card U, = 4;.
Proof. Consider the mapping assigning to every fe A4 its restriction to /,,
denoted by f1/,. Let U = {r.s.1.u;. Since A = () U™, the relation f 4 implies

k20
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fe U% for some nonnegative integer k. Then f(i)e U for every i€ [ and we have
fel(UPliel)and f|1,e 1(UP i€ I,). Hence the mapping /i f1/, is a mapping
from A4 to B and evidently it is order-preserving in both directions. It remains to
show that this mapping is onto. It is easy to see, by induction on k, that every
element of IT(U®|ie I,) has a pre-image in A4 (see the proof of 6.6 in [3]).

In 3.3—3.5 we shall assume that / is a non-empty set, M, = M for every
iel,r, s, t, u are mutually different elements from IT1(M,|ie ) such that r,
SeEt Au, t, uer v s. Further, we shall suppose that for every iel the set
U; = {r(i), s(i), t(i), u(i)} has the cardinality 4. The aim is to prove that every

congruence relation on B = | ) IT(U’|ie I') corresponds to a filter on /.
A=0

3.3. Lemma. Let f, ge B, f = g and let O(f, g) be the corresponding principal
congruence relation on B. Then the relation pO(f, g) q (p, ¢ € B) holds if and only
i 1(f,8) <= 1(p, q).

Proof. Let pO(/, g) ¢ hold for some p, g € B. By 3.4 of [3] there is p(i) O(f(i),
g(i)) q(i) for every iel. Since M has only trivial congruence relations, we have
1(f, g) = 1(p; 9).

Conversely let I(f, g) = I(p, gq). If iel(f, g), then iel(p, q) and hence
evidently p(i) ©(f(i), g(i))q(i). If i¢ I(f, g), then O(f(i), g(i)) is the greatest
congruence relation on M and hence again p (i) O(f (i), g(i)) y(i). Now we shall
prove that p@O(f, g) q. Since f, g, p, ¢ € B, there exists a nonnegative integer k such
that f, g, p, e IT(U®|iel). For every iel take an arbitrary maximal chain
fo>[f1>...>f, such that fiep(i) v q(i), f, ep(i) A q(i). If p(i), q(i) are
comparable, then n, is not greater than the length of U*, which is & + 1. If p(i),
¢ (i) are incomparable, then n, = 2. Hence there exists a positive integer n and for
every ielachaine;> ¢ = ... = ¢/ such that eje p(i) v q(i), e;e p(i) A ¢(i) and
forevery je{0, ..., n — 1} either ¢/ = ¢/, , or the quotient ¢//¢/ , is prime (i.e. ¢/ -
covers ¢/, ). At that {e,, ..., e,} © U**?, too. Let us define ¢,, e, ..., ¢,€ B in
such a way that ¢ (i) = ¢/ for every iel, je {0, ... nj. Then¢, > ¢, > ... > ¢,,
wEP V ¢, ¢,Ep A ¢. It remains to show that for every je{0, ..., n — 1} the
quotient ¢, /e, , | is weakly projective into f/g. In M every two prime quotients are
projective and for any / > 0 there exists a positive integer /, such that any two
prime quotients in U!” are projective in no more than /, steps. Now, if i¢ I(f, g),
i.e. f(i) > g (i), thensince (e, ..., e} € U* * P and f(i), g(i)e UM < U**?, every
prime quotient ¢,/¢/, | is projective with any prime subquestient of the quotient

f(i)/g(i) in no more than A&, , , = h steps. Hence for every i¢ I(f, g) every prime
quotient ¢//e¢], | is weakly projective into f(7)/g(i) in no more than /i steps. The
one-element quotient ¢//¢,, | is obviously also weakly projective into f(i)/g (i) in
no more than h steps. If ieI(f, g). then iel(p, ¢), which implies ¢j = ¢| =
= ... = ¢,. Hence again ¢//¢/ | is weakly projective into f(/)/g(i) in no more
than /i steps, forevery je {0, ..., n — 1}. Now it is easy to see that for every je {0,
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....n — 1} the quotient ¢, /e, , | is weakly projective into f/g (see the proof of 6.7
in [3]). By 3.4 in [3] it means that pO(f, g)q.

3.4. Lemma. Let ©@eCon B. Then © = O(F ) for some filter & on I.

Proof. There holds O = sup{O(f;. g,): A€ A}, where {(f;, g,): Ae A} =
={(f.2)eB x B:f> g./Og). Let # be the filter on I generated by the set {/(f;,
g,): Ae A}, To prove that @ = @(F ), it is sufficient to show that for f, ge B,
f = g the relation f@¢ holds if and only if /(f, g)e #. Hence let f, ge B, [ > g.
If f@g, then (f.g)=(f;.g;) forsome Ae Aand then I(f.g)=1(f,.g,)€F. Now
let I(f.g)e#. Then I(f.g) 2 1(f, . &) " --- N I(f;. &) for a positive integer
r. Define f,, f,. .... . as follows:

fh=¢8
‘ 1) it i¢g 1(f; 81
.fl(i) = Lo . .
Jo() if iel(f;. &)
. S0 ifi¢g1(fy, &) 1S 82)-
L) =
J10) if iel(f,. &) 0 1(fy, 8.)s
/.« | {f’(i) ifig1(f0 82) 0 013 8.
I(. = .
Loy ifiel(f &) 0 I, 8,)-

Evidently f,. ..., f,€ B, because f;(i/) is either g(i) or f(i) and since f,
gelT(UPiel) for some nonnegative integer k, also f,eIT(U®*'|ieI) for the
same k. Further, by 3.3 we have g = £,0(f;, g,) /O([3,, &) fr---fi -1 O3,
g:,)f. =/ Thus gO(f;.g,) v ... v O(f,, g;) fand we have proved g6f.

3.5. Lemma. Let 4% be any ultrafilter on I. Then the factor multilattice B/
O ) is isomorphic to M.

Proof. Given any ie/ and je{0, 1, 2, ...} let us define elements r/, s/, 1/,
u/e M, in the way depicted in Figure 4. Further, define r;, s, t;,, u,e I1 (M |ie )
forje{0.1.2, ...} by r,(i) = rj. s/ = s/, t,(i) = 1/, u,(i) = u/ forevery ie I. Obvious-
lyro=r,s=s,1,=1 uy=uandr, s, t;, u;€ B for every je{0, 1, 2, ...}.

Let for fe B the symbol [ f] denote the class [ /] ©(#). The classes [r;], [s,], [#,].
[4] for je{0, 1, 2, ...} form a partially ordered set isomorphic to M (since # is
an ultrafilter, there holds 0 ¢ #, which implies that these classes are mutually
different). Now we are going to show that for any fe B, [ f] is one of the above
mentioned classes. If fe IT(U”|ieI), then f(i) € {r (i), s(i), t(i), u(i)} = {ry. so. 14
uy} for every iel. Hence I = I(f, r)UI(f, s)VI(f, 1)U (I(f, u) and using the
properties of an ultrafilter we obtain that just one of the sets I(f, r), I(f, $).
I(f, 1), I(f, u) belongs to #. If, e.g., I(f, r)e 4, then [f] = [r] = [r,]- We have
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proved that if fe [T (U |ie ), then [f]e{[re]. [so] [to), [4o]}. Suppose that for
some non-negative integer [, [fle{[r;]: je{0, ..., [} U{[s;]: jelO, ..., I}}U
ullyl:jel0, .. 1ol jel0, ..., I}} whenever fe IT(U{"|ie I'). We are going
to prove that then for every feIT(U!*"|iel), [f1e{lr;]: je{0, ..., [+ 1}}u
Ulls):jel0, .. 1+ 1 o] jel0, ... 1+ 13} Udly]:jef0, ..., [ + 1}}. Without

Fig. 4

loss of generality we can suppose that / is even. If fe [T(U!'*"|ieI), then for
every iel there exist x;, y,e U" such that f(/)ex; v y,. Let us define g,
hell(U"liel) by g(i) = x,, h(i) = y, for every ie I. Then feg v h, which gives
[f1elg] v [h]. Using the induction hypothesis we obtain [g], [Ale{[r;]: j€ {0,
e Lo dls ] jed0, L T Ol jed0, L T O] je 0, L., 1 I [g], [A] are
comparable, then [ f1e{[g], [A]} < {[r;]: j{0, ..., [} U {[s;]: je{O, ..., I}y U {lt]):
Je{0, ..., I ullu]: jel0, ..., I}y = {r]: jel0, ..., I+ 1}Ju{ls]: jelO, ...,
[+ 1 ull]: jefo, ..., 1+ 1} Ully]: jel{0, ..., [ + 1}}. If [g], [A] are incompa-
rable, then either{[g], [1]} = {[t,]. [;]} or {[g]. [A]} = {[r,]. [5;]} for some je{O, ...,
[}. Lete.g., the first possibility occur. Then [ f]€[1,] v [1,] and hence there exists
f'et, v u, with [f] = [f]. It follows that for every iel, f"()et/ v u =
=, nu g Again I = I(f" 1, ) I(f' 4, )€U, soeither I(f',t,, )€ or
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I(f, wu,,)e#. In the first case [f]=[f1=][t, ], in the second
/1= 1/"1= ;). IF {lg). U} = {Ir,]. [} then [f1e{lr,_ ). [, ]} whenever
J>0and [f]e{lt], [u]} for j=0. In all cases [fle{[r;]: je{0, ..., [+ 1}}U
Ollsi]: jet0, . T+ 1o {[y]: jed0, ... I+ 1} u{ly]: je{0, ..., [ + 1}}.

3.6. Theorem. The variety ¥~ generated by the multilattice M in Figure 3
covers the variety @ in the lattice of varieties of multilattices and does not contain
any finite multilattice that is not a lattice.

Proof. Let 7| be a variety of multilattices such that ¥~ 2 ¥ > 2. By 3.1
| contains a multilattice C’ that is not a lattice. Then C’ contains mutually
different elements r’, s’, t’, u’ such that t’, u’er’ v s’,r’,s’et’ A u’. Let C be
the subalgebra of C’ generated by the set {r’, s’, t’, u’}. There holds Ce¥" =
< ¥ = HSP{M}, hence there exists a homomorphism ¢ of a subalgebra 4 of
IT(M,liel), where M, = M for every iel, onto C. By 6.5 of [3] there exist r, s,
tLue Awithr,set A u,t,uer v s,o(r)=r’,o)=s",00)=1t",pu) =u’. We
can suppose that A is generated by {r, s, ¢, u}. Using 3.2 and 3.4 we obtain that

C is isomorphic to B/@(F ), where B = ) IT(U"iel)), U, = {r(i), s(i), 1(i),
k=20

u()}, 1, = {iel:card U, = 4} and # is a filter on I,. Since card C > 1, there exists
an ultrafilter # on I, with # < 4. Then O(¥) 2 O(% ) and by 4.6 of [3] we
have B/O(#)e H{C}. Using 3.5 we obtain Me H{C} < ¥",s0 ¥ <77 . We
have proved that ¥ = 7.

If the variety ¥ “contained a finite multilattice which is not a lattice, then by
the previous consideration, M would be the homomorphic image of a finite
multilattice, which is a contradiction.
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