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MINIMAL GENERICS OF SOME 
REGULAR VARIETIES 

HILDA DRAŠKOVIČOVÁ—JERZY PLONKA 

A B S T R A C T . Given a variety K denote by Kr the variety of all algebras satisfy
ing all regular identities which hold in K . Let mg (K) be the minimal cardinal of 
an algebra generating K . We find under some assumptions t h a t the sum 5(21) of 
the direct system 21 of pairwise disjoint minimal generics Aj of the non-trivial 
independent varieties Kj , ,; = 1,2, . . . ,n , is a minimal generic of the regular 
variety Kr , where K = K\ V K^ V • • • V Kr , and mg(Kr) = J^"---! m0(*-.?') • 

In [10; Theorem 2] the following was proved (for the definitions see below). 

T h e o r e m A. If K\ and K2 are two incomparable independent varieties, A\ 
and A2 are carrierwise disjoint minimal generics of K\ and K2 respectively, 
m(Ki) = |-4i| = mg(Ki) (i = 1,2), there exists a homomorphism h\ of A\ into 
A2 and K = K\ V K2 then 5(21) is a minimal generic of Kr and mg(Kr) = 
m y ( £ l ) + TTlg(K2) . 

The aim of the present paper is to generalize this theorem to the case of 
finitely many independent varieties (Theorem 1 below). The condition (1) in 
Theorem 1 is not suitable for the induction argument (see Remark 2 below) 
hence we give here a straight proof. Moreover we replace the condition on a 
homomorphism h\ in Theorem A with the weaker condition (2). 

In this paper we consider only algebras of a given type r : F —*• N , where F 
is a set of fundamental operation symbols and N is a set of positive integers (i.e. 
there are no nullary symbols in F). Further we assume that T(F) — {0,1} 7-- 0. 

An identity ip = ip is called regular (see [8]) if the sets of variables in (p and 
xp coincide. A variety K is called regular if all identities in Id(K) are regular. K 
is called non-regular if a non-regular identity belongs to Id(rC). Regular varieties 
were studied by many authors (see e.g. [9], [10], [8], [2], [7], [6]). 

For a variety K (of algebras of type r ) we denote by Kr the variety of 
algebras of type r defined by all regular identities from Id(rC). Due to A. 
T a r s k i it is well known that for every variety K there exists an algebra 
A generating K by means of direct products, subalgebras and homomorphic 
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images, i.e. K = HSP(A). Such algebras A are called generics of K (see [3]). 
A generic A of K will be called a minimal generic of K if for every generic B 
of K we have \A\ < | B | (where \A\ denotes card A ) . F inding minimal generics 
of a variety K is impor tan t because the smaller a finite generic is, the easier it 
is to decide if a given identi ty <p = if> belongs to Id(/C) or not . 

For an algebra A we denote by R(A) the set of all regular identities of type 
T from ld(A) . For a variety K let R(K) be the set of all regular identities from 
Id(AC) . 

T h e variety K is strongly non-regular (see [2]) if there exists a b inary t e rm 
(p(x,y) containing the variable y such tha t the identi ty (p(x,y) = x belongs to 
Id(rC). 

For a variety K of algebras of type r let rn' be the cardinality of a free 

algebra with No free generators over K. We define the number m(K) pu t t i ng 

m(K) = 1 if rC is trivial, 

m(K) = m i n { m : 1 < rn < m and ^Aefc( l-4| = m)} -f AC 1S nontr ivial . 

Let m,g(K) denote the cardinality of a mimmal generic of K. Obviously for 
every variety K we have mg(K) > m(K). It is known ( ee [10] or cf. [6]) tha t if 
K is a non-regular variety of type r , then mg(Kr) < mg[K) + 1 . 

Varieties ACi, . . , Kn of the same type are said to be indepe dent (for n = 2 
see [4] ) if there is an n - a r y t e rm p such tha t the identi ty p(x\,... ,xn) = xt 

holds in Ki, i = 1, 2 , . . . , n . K\ V K2 V • • • V Kn will denote the smallest variety 
containing all Kt\ K\ x K2 x • • • x Kn will d note the cla s of all algebras 
A which are isomorphic to the direct product A\ x A2 X • • • An of algebras 
Ai E Kt, 1 = l , 2 , . . . , n . 

T h e pro f of the following L e m m a can be found in [4], [5], [1]. 

L e m m a 1. If K\,. .. ,Kn are independent varieties, then K\ A AC 2 A- • ArCn 

consists of one-elem nt Ig bras only and each Igeb a A G K\ V K2 V • • V Kn 

has, up to isomorphism a unique representati n A — A\ x 42 x • • x An 

Ai G AC,, i = 1 ,2, . . ,n . Hence K\ V AC2V . . .V Kn = K\ x K2 • x Kn . 

T h e next L e m m a can be proved analogou ly to th Theor m 3 in [1]. 

L e m m a 2 . Varietie ACi,AC2,.. ,Kn are independent if and only if for ach 
i G 1,2 . . . n, AC, and K[ = \/(Kj : j 7-- i, j — 1, 2 , . . , n) are mdep ndent 

R e m a r k 1. If /Ci,rC2 a i e non-trivial indep ndent varieti s then they are 
mcomp-irable (by L e m m a 1) and the variety K1V/C2 is s t ron ly non-regular , sin e 
if p(x,y) is the t e rm establishing the independence of K ,/C2 , then ip(x,y) = 
P\P(x,y),x) is the desired te rm for s t rong non-regular i ty (i.e. p(x,y) = x in 
K\VK2). 
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Now we recall the definition of a direct system of algebras (see [3; Chap.3]). 

(i) I is a directed poset (partially ordered set) whose ordering relation is 
denoted by < . 

(ii) For each i G I an algebra A* = (At-; (fl)teT) w given, all algebras 
A{ being of the same type. 

(iii) For each pair i,j of elements of I with i < j a homomorphism 
h\: A{ —> Aj is given. The resulting set of homomorphisms satisfies 
the following conditions : 

(a) i < j < k implies hk- o h\ = h\ and 

(b) h\ is the identity map for each i & I. 

The system (I, (-4 t) te/,(/ij)i<j; ijei) -s called a direct system of algebras A, , 
iei. 

Let 21 = (-T-(-4i)ie/?(M)-<i;-,i€/) be a direct system of similar algebras, 
without miliary fundamental operations, indexed by a poset I with the least 
upper bound property. Let (ft)teT be the set of fundamental operations of the 
algebras in 21. The sum of the direct system 21 (see [8]) is an algebra 5(21) = 
(A; (ft)teT), where A is a disjoint sum of the carriers A t (i G 7) and the 
fundamental operations ft are defined by ft(a1,a2,..., an) = ft (h± ( a i ) , . . . 
. . . , h*-n(an)) , where aj G At> and k is the least upper bound of i i , i 2 , . - . , in • 

Theorem 1. Let /Ci , . . . , /Cn be non-trivial independent varieties, and 
i 4 i , . . . , i 4 n be pairwise disjoint minimal generics of /Ci , . . . , /Cn respectively. 
Let the following conditions hold: 

(1) rn(Kj) = \Aj\ = mg(Kj) for j = l , 2 , . . . , n , 

(2) the algebras A1,A2,..., An form a direct system 21 

in which (7, <) is a semilattice, I = { 1 , 2 , . . . , n) . 

Then 5(21) is a minimal generic of Kr, where K = K1 V K2 V . . . V Kn and 
mg(Kr) = m,-(rCi) + mg(K2) H + mg(Kn). 

P r o o f . 5(21) is a generic of Kr since by [8; Theorem 1] we have Id(5(2l)) = 
. f l ( . A i ) n . / ^ i 4 2 ) n - - . n J ^ 
Obviously |5(2l)| = |.Ai| + |A2 | + --- + |-4n | = m^(K1) + my(rC2) + - - -+m p ( rC n ) . 

Let B be a generic of Kr. According to Lemma 2 and Remark 1, K is a 
strongly non-regular variety (since AC, and K\ are independent and K{ V K\ = 
K ), hence by [9; Theorem 1] B is the sum of a direct system of algebras d G K, 
i G 7. Since B is a generic of Kr, there must be |7| > 2. By Lemma 1 for each 
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i e l d^C] xCf x . . . x C f , C\ G K j , i = l , 2 , . . . , n . Hence 

(3) |C7-i| = |C7/|- |C7?| |Cf l and 

(4) | B | = £ | C . | . 
t61 

We assert t ha t 

(5) to any / G { 1 , 2 , . . . , n } there is i(l) G I such tha t \Cl
i{l)\ > 1 . 

Suppose tha t there is / G {1,2 , . . . , n } such tha t \C\\ ~ 1 for each i e l . 
T h e n for each i e l d e V ( ^ i : > ^ /, j G { 1 , 2 , . . . , n } ) = AC} C /C, hence 
£ G (rCj;)r and rCT = HSP(B) C (K [ ) r C Kr. By L e m m a 2 /C{, AC, are non-
trivial independent varieties, rC = /C}V rC/ is strongly non-regular and rC} 7-- rC 
(see Remark 1). So by [2] (rC[)r y- /Cr - a contradict ion. T h u s (5) holds. 

Now we choose for each / G { l , 2 , . . . , n } an i(l) G I such |C ' / , J > 1 . 

According to (3) |C t(/) | > j C ^ ^ I . Using (4) we get 

\B\ > J2 iC(oi ^ E \c'w\ -- E 1̂1 = i 5 » 
1=1 /=i /=i 

E x a m p l e 1. Let rCp(t) (where p( i) , i = l , 2 , . . . , n , are dist inct pr imes) 

denote the equat ional classes of Abelian groups with exactly one b inary fun-

damentcd opera t ion (and without miliary operat ions) satisfying xp(l> = yp^ . 

It is easy to check tha t Kp{l) , i = 1 ,2 , . . . , n are independent . For each i the 

variety >Cp(,) is equationally complete and cyclic group Ap{%) of order p(i) is a 

minimal generic of fCp{l) (m (rCp(i)) = mg (rCp(;)) = p(i)) . T h e groups Ap{l), 

z = 1, 2 , . . . , n form a sui table direct system (since we can take for the poset I 

an n -e lement chain 1 < 2 < • • • < n and the trivial homomorph i sms h\ (i,je 

{ 1 , 2 , . . . , n } , i < j ) given by the rule h\ = icUp( i ) and h\(x) = IP^ (i < j , 

z £ ^4p(t), 6 € -4p(j)). Hence by Theorem 1 m y (rCp(i)V ICp{2)V . . .V Kp{n)) = 

p ( l ) + p(2) + • • • + p(n) = m 5 (Kp(i)) + mg (rCp(2)) + • • • + mg (Kp{n)) . 

E x a m p l e 2 . T h e following example shows t ha t the condit ion (1) in The

orem 1 is not necessary . Nevertheless the condit ion (2) is essential . Take the 

independent varieties Kp{\), fCp{2), JCp{3) described in Example 1 . By L e m m a 2 

^ P ( 3 ) = ^ p ( i ) ^ ^p(2) a n ( l ^ P ( 3 ) a r e independent . According to Example 1 we 

get t ha t mg (Kp{l) V Kp{2) V rCp(3)) = mg (Kp{l)) + m y (rCp(2)) + mg (Kp{3)) = 

m9 ( ^ ( 3 ) ) + m9 (^P(3)) ( s i n c e m9 (^P(I) V ^P(2)) = ™<7 (£p ( l ) ) + m 5 (^P(2)) )• 

Nevertheless mg (Kp{l)V rCp(2)) > m (rCp(i)V rCp(2)) (since |A p ( 1) x ^ 4 p ( 2 ) | > 
\AP{1)\, 2 = 1,2) . 
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R e m a r k 2. One would think that Theorem 1 can be obtained by induction 
using Lemma 2 and Theorem A. But the trouble is that the condition (1) of 
Theorem 1 is not transferable from the varieties K\ and K2 to the variety 
K\V K2 as the Example 2 shows. 

E x a m p l e 3 . Minimal generics of independent varieties need not form a 
direct system. Consider e.g. two independent varieties K\, K2 of the type 
(2,1,1). Suppose Ki (i = 1, 2) is generated by a two-element algebra A, = 
( { a - A } ; /*, g\ h% ) . Let / 1 ( x , y ) = x , f2(x,y) = y. Assume that 

g1(a1) = a i , hx(a\) = b\ , 

g\b\) = b\, hl(b\) = a\, 

g2(a2) = 62, h2(a2) = a2 , 

g2(b2) = a2, h2(b2) = b2. 

There are no homomorphisms between the algebras Ai, i = 1,2. 

R e m a r k 3. Theorem 1 gives a better estimation for mg (Kr) (in special 
cases) than that given by the relation mg (Kr) < mg (K) + 1 mentioned in the 
introduction. E.g. a minimal generic of the variety K3V rCsV K7 from Example 1 
is the cyclic group of order 105, however, by Theorem 1 m5((rC3V /C5V Ki)r) = 
3 + 5 + 7 = 15. 
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