Mathematic Slovaca

Hilda Draškovičová; Jerzy Płonka
 Minimal generics of some regular varieties

Mathematica Slovaca, Vol. 41 (1991), No. 3, 225--230

Persistent URL: http://dml.cz/dmlcz/136528

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

MINIMAL GENERICS OF SOME REGULAR VARIETIES

HILDA DRAŠKOVIČOVÁ-JERZY PLONKA

Abstract

Given a variety \mathcal{K} denote by \mathcal{K}_{r} the variety of all algebras satisfying all regular identities which hold in \mathcal{K}. Let $m_{g}(\mathcal{K})$ be the minimal cardinal of an algebra generating \mathcal{K}. We find under some assumptions that the sum $S(\mathfrak{A})$ of the direct system \mathfrak{A} of pairwise disjoint minimal generics \boldsymbol{A}_{j} of the non-trivial independent varieties $K_{j}, j=1,2, \ldots, n$, is a minimal generic of the regular variety \mathcal{K}_{r}, where $\mathcal{K}=\mathcal{K}_{1} \vee \mathcal{K}_{2} \vee \cdots \vee \mathcal{K}_{r}$, and $m_{g}\left(\mathcal{K}_{r}\right)=\sum_{j=1}^{n} m_{g}\left(\mathcal{K}_{j}\right)$.

In [10; Theorem 2] the following was proved (for the definitions see below).
Theorem A. If \mathcal{K}_{1} and \mathcal{K}_{2} are two incomparable independent varieties, A_{1} and A_{2} are carrierwise disjoint minimal generics of \mathcal{K}_{1} and \mathcal{K}_{2} respectively, $m\left(\mathcal{K}_{i}\right)=\left|A_{i}\right|=m_{g}\left(\mathcal{K}_{i}\right)(i=1,2)$, there exists a homomorphism h_{1}^{2} of A_{1} into A_{2} and $\mathcal{K}=\mathcal{K}_{1} \vee \mathcal{K}_{2}$ then $S(\mathfrak{A})$ is a minimal generic of \mathcal{K}_{r} and $m_{g}\left(\mathcal{K}_{r}\right)=$ $m_{g}\left(\mathcal{K}_{1}\right)+m_{g}\left(\mathcal{K}_{2}\right)$.

The aim of the present paper is to generalize this theorem to the case of finitely many independent varieties (Theorem 1 below). The condition (1) in Theorem 1 is not suitable for the induction argument (see Remark 2 below) hence we give here a straight proof. Moreover we replace the condition on a homomorphism h_{1}^{2} in Theorem A with the weaker condition (2).

In this paper we consider only algebras of a given type $\tau: F \rightarrow \mathbf{N}$, where F is a set of fundamental operation symbols and \mathbf{N} is a set of positive integers (i.e. there are no nullary symbols in F). Further we assume that $\tau(F)-\{0,1\} \neq \emptyset$.

An identity $\varphi=\psi$ is called regular (see [8]) if the sets of variables in φ and ψ coincide. A variety \mathcal{K} is called regular if all identities in $\operatorname{Id}(\mathcal{K})$ are regular. \mathcal{K} is called non-regular if a non-regular identity belongs to $\operatorname{Id}(\mathcal{K})$. Regular varieties were studied by many authors (see e.g. [9], [10], [8], [2], [7], [6]).

For a variety \mathcal{K} (of algebras of type τ) we denote by \mathcal{K}_{r} the variety of algebras of type τ defined by all regular identities from $\operatorname{Id}(\mathcal{K})$. Due to A. Tarski it is well known that for every variety \mathcal{K} there exists an algebra A generating \mathcal{K} by means of direct products, subalgebras and homomorphic

AMS Subject Classification (1985): Primary 08B99
Key words: Regular varieties, Minimal generics
images, i.e. $\mathcal{K}=H S P(A)$. Such algebras A are called generics of \mathcal{K} (see [3]). A generic A of \mathcal{K} will be called a minimal generic of \mathcal{K} if for every generic B of \mathcal{K} we have $|A| \leq|B|$ (where $|A|$ denotes card A). Finding minimal generics of a variety \mathcal{K} is important because the smaller a finite generic is, the easier it is to decide if a given identity $\varphi=\psi$ belongs to $\operatorname{Id}(\mathcal{K})$ or not.

For an algebra A we denote by $R(A)$ the set of all regular identities of type τ from $\operatorname{Id}(A)$. For a variety \mathcal{K} let $R(\mathcal{K})$ be the set of all regular identities from $\operatorname{Id}(\mathcal{K})$.

The variety \mathcal{K} is strongly non-regular (see [2]) if there exists a binary term $\varphi(x, y)$ containing the variable y such that the identity $\varphi(x, y)=x$ belongs to $\operatorname{Id}(\mathcal{K})$.

For a variety \mathcal{K} of algebras of type τ let m^{\prime} be the cardinality of a free algebra with \aleph_{0} free generators over \mathcal{K}. We define the number $m(\mathcal{K})$ putting

$$
\begin{aligned}
& m(\mathcal{K})=1 \quad \text { if } \mathcal{K} \text { is trivial, } \\
& m(\mathcal{K})=\min \left\{m: 1<m \leq m^{\prime} \quad \text { and } \quad \exists \exists_{A \in \mathcal{K}}(|A|=m)\right\} \quad \text { if } \mathcal{K} \text { is nontrivial. }
\end{aligned}
$$

Let $m_{g}(\mathcal{K})$ denote the cardinality of a minımal generic of \mathcal{K}. Obviously for every variety \mathcal{K} we have $m_{g}(\mathcal{K}) \geq m(\mathcal{K})$. It is known (ee [10] or cf. [6]) that if \mathcal{K} is a non-regular variety of type τ, then $m_{g}\left(\mathcal{K}_{r}\right) \leq m_{g}(\mathcal{K})+1$.

Varieties $\mathcal{K}_{1}, \ldots, \mathcal{K}_{n}$ of the same type are said to be indepe dent (for $n=2$ see [4]) if there is an n-ary term p such that the identity $p\left(x_{1}, \ldots, x_{n}\right)=x_{\imath}$ holds in $\mathcal{K}_{i}, i=1,2, \ldots, n . \mathcal{K}_{1} \vee \mathcal{K}_{2} \vee \cdots \vee \mathcal{K}_{n}$ will denote the smallest variety containing all $K_{i} ; \mathcal{K}_{1} \times \mathcal{K}_{2} \times \cdots \times \mathcal{K}_{n}$ will d note the cla s of all algebras A which are isomorphic to the direct product $A_{1} \times A_{2} \times \cdots \quad A_{n}$ of algebras $A_{i} \in \mathcal{K}_{i}, 1=1,2, \ldots, n$.

The pro f of the following Lemma can be found in [4], [5], [1].
Lemma 1. If $\mathcal{K}_{1}, \ldots, \mathcal{K}_{n}$ are independent varieties, then $\mathcal{K}_{1} \wedge \mathcal{K}_{2} \wedge \cdots \wedge \mathcal{K}_{n}$ consists of one-elem nt lg bras only and each lgeb a $A \in \mathcal{K}_{1} \vee \mathcal{K}_{2} \vee \cdots \vee \mathcal{K}_{n}$ has, up to isomorphism a unique representati $n A \simeq A_{1} \times A_{2} \times \cdots \times A_{n}$ $A_{i} \in \mathcal{K}_{i}, i=1,2, \ldots, n$. Hence $\mathcal{K}_{1} \vee \mathcal{K}_{2} \vee \ldots \vee \mathcal{K}_{n}=\mathcal{K}_{1} \times \mathcal{K}_{2} \cdot \times \mathcal{K}_{n}$.

The next Lemma can be proved analogou ly to th Theor m 3 in [1].
Lemma 2. Varietie $\mathcal{K}_{1}, \mathcal{K}_{2}, \ldots, \mathcal{K}_{n}$ are independent if and only if for ach $i \in 1,2 \ldots n, \mathcal{K}_{2}$ and $\mathcal{K}_{\imath}^{\prime}=\bigvee\left(\mathcal{K}_{j}: j \neq i, \jmath-1,2, ., n\right)$ are indep ndent

Remark1. If $\mathcal{K}_{1}, \mathcal{K}_{2}$ are non-trivial indep ndent varietı s then they are incomparable (by Lemma 1) and the variety $\mathcal{K}_{1} \vee \mathcal{K}_{2}$ is stron ly non-regular, $\sin \mathrm{e}$ if $p(x, y)$ is the term establishing the independence of $\mathcal{K}, \mathcal{K}_{2}$, then $\varphi(x, y)=$ $p(p(x, y), x)$ is the desired term for strong non-regularity (i.e. $\varphi(x, y)=x$ in $\left.\mathcal{K}_{1} \vee \mathcal{K}_{2}\right)$.

Now we recall the definition of a direct system of algebras (see •[3; Chap.3]).
(i) I is a directed poset (partially ordered set) whose ordering relation is denoted by \leq.
(ii) For each $i \in I$ an algebra $A_{i}=\left(A_{i} ;\left(f_{t}^{(i)}\right)_{t \in T}\right)$ is given, all algebras A_{i} being of the same type.
(iii) For each pair i, j of elements of I with $i \leq j$ a homomorphism $h_{i}^{j}: A_{i} \rightarrow A_{j}$ is given. The resulting set of homomorphisms satisfies the following conditions :
(a) $i \leq j \leq k$ implies $h_{j}^{k} \circ h_{i}^{j}=h_{i}^{k}$ and
(b) h_{i}^{i} is the identity map for each $i \in I$.

The system $\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}^{j}\right)_{i \leq j ; i, j \in I}\right)$ is called a direct system of algebras A_{i}, $i \in I$.

Let $\mathfrak{A}=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}^{j}\right)_{i \leq j ; i, j \in I}\right)$ be a direct system of similar algebras, without nullary fundamental operations, indexed by a poset I with the least upper bound property. Let $\left(f_{t}\right)_{t \in T}$ be the set of fundamental operations of the algebras in \mathfrak{A}. The sum of the direct system \mathfrak{A} (see [8]) is an algebra $S(\mathfrak{A})=$ $\left(\mathbf{A} ;\left(f_{t}\right)_{t \in T}\right)$, where \mathbf{A} is a disjoint sum of the carriers $\mathbf{A}_{\boldsymbol{i}}(i \in I)$ and the fundamental operations f_{t} are defined by $f_{t}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f_{t}\left(h_{i_{1}}^{k}\left(a_{1}\right), \ldots\right.$ $\left.\ldots, h_{i_{n}}^{k}\left(a_{n}\right)\right)$, where $a_{j} \in \mathbf{A}_{i_{j}}$ and k is the least upper bound of $i_{1}, i_{2}, \ldots, i_{n}$.

Theorem 1. Let $\mathcal{K}_{1}, \ldots, \mathcal{K}_{n}$ be non-trivial independent varieties, and A_{1}, \ldots, A_{n} be pairwise disjoint minimal generics of $\mathcal{K}_{1}, \ldots, \mathcal{K}_{n}$ respectively. Let the following conditions hold:

$$
\begin{align*}
& m\left(\mathcal{K}_{j}\right)=\left|A_{j}\right|=m_{g}\left(\mathcal{K}_{j}\right) \text { for } j=1,2, \ldots, n, \tag{1}\\
& \text { the algebras } A_{1}, A_{2}, \ldots, A_{n} \text { form a direct system } \mathfrak{A} \tag{2}\\
& \text { in which } \quad(I, \leq) \text { is a semilattice, } \quad I=\{1,2, \ldots, n\} .
\end{align*}
$$

Then $S(\mathfrak{A})$ is a minimal generic of \mathcal{K}_{r}, where $\mathcal{K}=\mathcal{K}_{1} \vee \mathcal{K}_{2} \vee \ldots \vee \mathcal{K}_{n}$ and $m_{g}\left(\mathcal{K}_{r}\right)=m_{g}\left(\mathcal{K}_{1}\right)+m_{g}\left(\mathcal{K}_{2}\right)+\cdots+m_{g}\left(\mathcal{K}_{n}\right)$.

Proof. $S(\mathfrak{A})$ is a generic of \mathcal{K}_{r} since by [8; Theorem 1] we have $\operatorname{Id}(S(\mathfrak{A}))=$ $R\left(A_{1}\right) \cap R\left(A_{2}\right) \cap \cdots \cap R\left(A_{n}\right)=R\left(K_{1}\right) \cap R\left(K_{2}\right) \cap \cdots \cap R\left(K_{n}\right)=R(\mathcal{K})=\operatorname{Id}\left(\mathcal{K}_{r}\right)$. Obviously $|S(\mathfrak{A})|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right|=m_{g}\left(\mathcal{K}_{1}\right)+m_{g}\left(\mathcal{K}_{2}\right)+\cdots+m_{g}\left(\mathcal{K}_{n}\right)$.

Let B be a generic of \mathcal{K}_{r}. According to Lemma 2 and Remark $1, \mathcal{K}$ is a strongly non-regular variety (since \mathcal{K}_{i} and \mathcal{K}_{i}^{\prime} are independent and $\mathcal{K}_{i} \vee \mathcal{K}_{i}^{\prime}=$ $\mathcal{K})$, hence by $[9 ;$ Theorem 1$] B$ is the sum of a direct system of algebras $C_{i} \in \mathcal{K}$, $i \in I$. Since B is a generic of \mathcal{K}_{r}, there must be $|I| \geq 2$. By Lemma 1 for each
$i \in I \quad C_{i} \cong C_{i}^{1} \times C_{i}^{2} \times \cdots \times C_{i}^{n}, C_{i}^{j} \in \mathcal{K}_{j}, j=1,2, \ldots, n$. Hence

$$
\begin{align*}
\left|C_{i}\right| & =\left|C_{i}^{1}\right| \cdot\left|C_{i}^{2}\right| \cdot \cdots \cdot\left|C_{i}^{n}\right| \quad \text { and } \tag{3}\\
|B| & =\sum_{i \in I}\left|C_{i}\right| \tag{4}
\end{align*}
$$

We assert that
(5) to any $l \in\{1,2, \ldots, n\}$ there is $i(l) \in I$ such that $\left|C_{i(l)}^{l}\right|>1$.

Suppose that there is $l \in\{1,2, \ldots, n\}$ such that $\left|C_{i}^{l}\right|=1$ for each $i \in I$. Then for each $i \in I \quad C_{i} \in \bigvee\left(\mathcal{K}_{j}: j \neq l, j \in\{1,2, \ldots, n\}\right)=\mathcal{K}_{l}^{\prime} \subseteq \mathcal{K}$, hence $B \in\left(\mathcal{K}_{l}^{\prime}\right)_{r}$ and $\mathcal{K}_{r}=H S P(B) \subseteq\left(\mathcal{K}_{l}^{\prime}\right)_{r} \subseteq \mathcal{K}_{r}$. By Lemma $2 \mathcal{K}_{l}^{\prime}, \mathcal{K}_{l}$ are nontrivial independent varieties, $\mathcal{K}=\mathcal{K}_{l}^{\prime} \vee \mathcal{K}_{l}$ is strongly non-regular and $\mathcal{K}_{l}^{\prime} \neq \mathcal{K}$ (see Remark 1). So by [2] $\left(\mathcal{K}_{l}^{\prime}\right)_{r} \neq \mathcal{K}_{r}-$ a contradiction. Thus (5) holds.

Now we choose for each $l \in\{1,2, \ldots, n\}$ an $i(l) \in I$ such $\left|C_{i(l)}^{l}\right|>1$. According to (3) $\left|C_{i(l)}\right| \geq\left|C_{i(l)}^{l}\right|$. Using (4) we get

$$
|B| \geq \sum_{l=1}^{n}\left|C_{\imath(l)}\right| \geq \sum_{l=1}^{n}\left|C_{i(l)}^{l}\right| \geq \sum_{l=1}^{n}\left|A_{l}\right|=|S(\mathfrak{A})|
$$

Example1. Let $\mathcal{K}_{p(i)}$ (where $p(i), i=1,2, \ldots, n$, are distinct primes) denote the equational classes of Abelian groups with exactly one binary fundamental operation (and without nullary operations) satisfying $x^{p(i)}=y^{p(i)}$. It is easy to check that $\mathcal{K}_{p(i)}, i=1,2, \ldots, n$ are independent. For each i the variety $\mathcal{K}_{p(i)}$ is equationally complete and cyclic group $A_{p(i)}$ of order $p(i)$ is a minimal generic of $\mathcal{K}_{p(\imath)}\left(m\left(\mathcal{K}_{p(i)}\right)=m_{g}\left(\mathcal{K}_{p(i)}\right)=p(i)\right)$. The groups $A_{p(\imath)}$, $i=1,2, \ldots, n$ form a suitable direct system (since we can take for the poset I an n-element chain $1 \leq 2 \leq \cdots \leq n$ and the trivial homomorphisms $h_{\imath}^{J}(i, j \in$ $\{1,2, \ldots, n\}, i \leq j)$ given by the rule $h_{i}^{i}=\operatorname{id}_{A_{p(i)}}$ and $h_{i}^{j}(x)=b^{p(\jmath)}(i<j$, $\left.x \in A_{p(1)}, b \in A_{p(\mathrm{~J})}\right)$. Hence by Theorem $1 m_{g}\left(\mathcal{K}_{p(1)} \vee \mathcal{K}_{p(2)} \vee \ldots \vee \mathcal{K}_{p(n)}\right)=$ $p(1)+p(2)+\cdots+p(n)=m_{g}\left(\mathcal{K}_{p(1)}\right)+m_{g}\left(\mathcal{K}_{p(2)}\right)+\cdots+m_{g}\left(\mathcal{K}_{p(n)}\right)$.

Example 2. The following example shows that the condition (1) in Theorem 1 is not necessary. Nevertheless the condition (2) is essential. Take the independent varieties $\mathcal{K}_{p(1)}, \mathcal{K}_{p(2)}, \mathcal{K}_{p(3)}$ described in Example 1. By Lemma 2 $\mathcal{K}_{p(3)}^{\prime}=\mathcal{K}_{p(1)} \vee \mathcal{K}_{p(2)}$ and $\mathcal{K}_{p(3)}$ are independent. According to Example 1 we get that $m_{g}\left(\mathcal{K}_{p(1)} \vee \mathcal{K}_{p(2)} \vee \mathcal{K}_{p(3)}\right)=m_{g}\left(\mathcal{K}_{p(1)}\right)+m_{g}\left(\mathcal{K}_{p(2)}\right)+m_{g}\left(\mathcal{K}_{p(3)}\right)=$ $m_{g}\left(\mathcal{K}_{p(3)}^{\prime}\right)+m_{g}\left(\mathcal{K}_{p(3)}\right)\left(\right.$ since $\left.m_{g}\left(\mathcal{K}_{p(1)} \vee \mathcal{K}_{p(2)}\right)=m_{g}\left(\mathcal{K}_{p(1)}\right)+m_{g}\left(\mathcal{K}_{p(2)}\right)\right)$. Nevertheless $m_{g}\left(\mathcal{K}_{p(1)} \vee \mathcal{K}_{p(2)}\right)>m\left(\mathcal{K}_{p(1)} \vee \mathcal{K}_{p(2)}\right)$ (since $\left|A_{p(1)} \times A_{p(2)}\right|>$ $\left.\left|A_{p(\imath)}\right|, i=1,2\right)$.

Remark2. One would think that Theorem 1 can be obtained by induction using Lemma 2 and Theorem A. But the trouble is that the condition (1) of Theorem 1 is not transferable from the varieties \mathcal{K}_{1} and \mathcal{K}_{2} to the variety $\mathcal{K}_{1} \vee \mathcal{K}_{2}$ as the Example 2 shows.

Example 3. Minimal generics of independent varieties need not form a direct system. Consider e.g. two independent varieties $\mathcal{K}_{1}, \mathcal{K}_{2}$ of the type $(2,1,1)$. Suppose $\mathcal{K}_{i}(i=1,2)$ is generated by a two-element algebra $A_{i}=$ $\left(\left\{a_{i}, b_{i}\right\} ; f^{i}, g^{i}, h^{i}\right)$. Let $f^{1}(x, y)=x, f^{2}(x, y)=y$. Assume that

$$
\begin{array}{ll}
g^{1}\left(a_{1}\right)=a_{1}, & h^{1}\left(a_{1}\right)=b_{1} \\
g^{1}\left(b_{1}\right)=b_{1}, & h^{1}\left(b_{1}\right)=a_{1} \\
g^{2}\left(a_{2}\right)=b_{2}, & h^{2}\left(a_{2}\right)=a_{2}, \\
g^{2}\left(b_{2}\right)=a_{2}, & h^{2}\left(b_{2}\right)=b_{2} .
\end{array}
$$

There are no homomorphisms between the algebras $A_{i}, i=1,2$.
Remark3. Theorem 1 gives a better estimation for $m_{g}\left(\mathcal{K}_{r}\right)$ (in special cases) than that given by the relation $m_{g}\left(\mathcal{K}_{r}\right) \leq m_{g}(\mathcal{K})+1$ mentioned in the introduction. E.g. a minimal generic of the variety $\mathcal{K}_{3} \vee \mathcal{K}_{5} \vee \mathcal{K}_{7}$ from Example 1 is the cyclic group of order 105, however, by Theorem $1 m_{g}\left(\left(\mathcal{K}_{3} \vee \mathcal{K}_{5} \vee \mathcal{K}_{7}\right)_{r}\right)=$ $3+5+7=15$.

REFERENCES

[1] DRAŠKOVIČOVÁ, H.: Independence of equational classes. Mat. Časopis 23 (1973), 125-135.
[2] DUDEK, J.-GRACZYŃSKA, E. : The lattice of varieties of algebras. Bull. Acad. Polon. Sci., Ser. Sci. Math., Astronom., Phys., 29 (1981), 337-340.
[3] GRÄTZER, G.: Universal Algebra. 2nd ed., Springer, 1979.
[4] GRÄTZER, G.-LAKSER, H.-PLONKA, J. : Joins and direct products of equational classes. Canad. Math. Bull. 12 (1969), 741-744.
[5] HU, T. K.-KELENSON, P.: Independence and direct factorization of universal algebras. Math. Nachr. 51 (1971), 83-99.
[6] JOHN, R.: On classes of algebras definable by regular identities. Colloq. Math. 36 (1976), 17-21.
[7] JÓNSSON, B.-NELSON, E. : Relatively free products in regular varieties. Algebra Univ. 4 (1974), 14-19.
[8] PLONKA, J.: On a method of construction of abstract algebras. Fund. Math. 61 (1967), 183-189.
[9] PLONKA, J.: On equational classes of abstract algebras defined by regular equations. Fund. Math. 64 (1969), 241-247.
[10] PLONKA, J.: Minimal generics of regular varieties. In Proc. of the 5 Universal Algebra Symposium, Turawa (Poland), 3-7 May 1988. World Scientific, Singapore, 1989, pp. 227-234.

Katedra algebry a teórie čísel MFF UK
Mlynská dolina
84215 Bratislava
Czecho-Slovakia

Mathematical Institute
Polish Academy of Sciences
ul. Kopernika 18
51-617 Wroclaw
Poland

