Mathematic Slovaca

Irena Rachůnková

Periodic boundary value problems for third order differential equations

Mathematic Slovaca, Vol. 41 (1991), No. 3, 241--248

Persistent URL: http://dml.cz/dmlcz/136529

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

PERIODIC BOUNDARY VALUE PROBLEMS FOR THIRD ORDER DIFFERENTIAL EQUATIONS

IRENA RACHU゚NKOVÁ

Abstract

There are studied the questions of existence of periodic solutions of the equation $u^{\prime \prime \prime}=f\left(t, u, u^{\prime}, u^{\prime \prime}\right)$ by means of topological degree methods.

In this paper there are found some new conditions for the existence of solutions of the problem

$$
\begin{align*}
& u^{\prime \prime \prime}=f\left(t, u, u^{\prime}, u^{\prime \prime}\right) \tag{1.1}\\
& u(a)=u(b), \quad u^{\prime}(a)=u^{\prime}(b), \quad u^{\prime \prime}(a)=u^{\prime \prime}(b) \tag{1.2}
\end{align*}
$$

where $-\infty<a<b<+\infty$.
The problems of such type have been already solved in many works, for example $[1-7]$. Here, the proof of the main result is based on Mawhin's continuation theorem [6] (see Lemma 1).

1. Notations, definitions and auxiliary results

Let X, Y be real vector normed spaces and $\operatorname{dom} L \subset X$ a vector subspace.
Definition 1. A linear mapping

$$
L: \operatorname{dom} L \rightarrow Y
$$

will be called a Fredholm mapping of index zero iff
(i) $\operatorname{dim} \operatorname{Ker} L=\operatorname{codim} \operatorname{Im} L<+\infty$;
(ii) $\operatorname{Im} L$ is closed in Y.

[^0]It follows from the definition above and from basic results of linear functional analysis that there exist continuous projectors

$$
P: X \rightarrow X \quad \text { and } \quad Q: Y \rightarrow Y
$$

such that

$$
\operatorname{Im} P=\operatorname{Ker} L \quad \text { and } \quad \operatorname{Ker} Q=\operatorname{Im} L
$$

so that

$$
X=\operatorname{Ker} L \oplus \operatorname{Ker} P, \quad Y=\operatorname{Im} L \oplus \operatorname{Im} Q
$$

as topological direct sums.
Consequently, the restriction L_{p} of L to $\operatorname{dom} L \cap \operatorname{Ker} P$ is one-to-one and onto $\operatorname{Im} L$, so that its (algebraic) inverse $K_{p}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{Ker} P$ is defined. [6, p. 6]

Definition 2. Let $L: \operatorname{dom} L \rightarrow Y$ be a Fredholm mapping of index zero and let $\Omega \subset X$ be an open bounded set. A (not necessarily linear) mapping $N: X \rightarrow Y$ will be called L-compact on $\bar{\Omega}$ iff the mappings $Q N: \bar{\Omega} \rightarrow Y$ and $K_{p}(I-Q) N: \bar{\Omega} \rightarrow Y$ are compact, i.e. continuous on $\bar{\Omega}$ and such that $Q N(\bar{\Omega})$ and $K_{p}(I-Q) N(\bar{\Omega})$ are relatively compact.

Note. $\bar{\Omega}$ and $\partial \Omega$ is the closure and the boundary of $\Omega \subset X$, respectively.
Definition 3. We shall say that $A: X \rightarrow Y$ is L-completely continuous if it is L-compact on every bounded $\bar{\Omega} \subset X$.

One can show that Definitions 2,3 do not depend upon the choice of the continuous projectors P and Q, which justifies the terminology. [6, p. 12]

Lemma 1. ([6, Theorem IV.5, p. 44]). Let $L: \operatorname{dom} L \rightarrow Y$ be a linear Fredholm mapping of index zero and let $\Omega \subset X$ be an open bounded set. Let $N: \bar{\Omega} \rightarrow Y$ be L-compact on $\bar{\Omega}$ and let $A: X \rightarrow Y$ be L-completely continuous and such that
(i) $\operatorname{Ker}(L-A)=\{0\}$;
(ii) for every $(x, \lambda) \in(\operatorname{dom} L \cap \partial \Omega) \times] 0,1[$

$$
L x-(1-\lambda) A x-\lambda N x \neq 0,
$$

and assume that $0 \in \Omega$.
Then equation

$$
L x=N x
$$

has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
$A C^{i}(a, b) \quad\left[C^{i}(a, b)\right]$ is the set of all real functions having absolutely continuous [continuous] i-th derivatives on $[a, b], i=0,1,2$.
$L^{p}(a, b)$ is the set of all real functions f with $|f|^{p}$ Lebesgue integrable on $] a, b[, p \in[1,+\infty[$.

In what follows let $X=\left\{x \in C^{2}(a, b) ; x\right.$ satisfies (1.2) $\}$ be a Banach space with the norm

$$
\max \left\{\left(\sum_{i=0}^{2}\left(x^{(i)}(t)\right)^{2}\right)^{1 / 2}: a \leq t \leq b\right\} \quad \text { for } x \in X
$$

$Y=L^{1}(a, b)$ be a Banach space with the norm

$$
\int_{a}^{b}|y(t)| \mathrm{d} t, \quad \text { for } \quad y \in Y
$$

$\operatorname{dom} L=X \cap A C^{2}(a, b) ;$

$$
\begin{equation*}
L: \operatorname{dom} L \rightarrow Y, \quad x \mapsto x^{\prime \prime \prime} \tag{1.3}
\end{equation*}
$$

Then
$\operatorname{Ker} L=\{x \in \operatorname{dom} L ; x$ is a constant mapping on $[a, b]\} ;$

$$
\operatorname{Im} L=\left\{y \in Y ; y=x^{\prime \prime \prime}, x \in \operatorname{dom} L\right\}=\left\{y \in Y ; \int_{a}^{b} y(t) \mathrm{d} t=0\right\}
$$

Therefore $\operatorname{Im} L$ is closed in Y and $\operatorname{dim} \operatorname{Ker} L=\operatorname{codim} \operatorname{Im} L=1$. Thus we have proved

Lemma 2. L, defined by (1.3), is a Fredholm mapping of index zero.
Definition 4. A function $u \in \operatorname{dom} L$ which fulfils (1.1) for a.e. $t \in[a, b]$ will be called a solution of problem (1.1), (1.2).

We will say that some property is satisfied on D if it is satisfied for a.e. $t \in[a, b]$ and for every $x, y, z \in \mathbb{R}$.

We will write $f \in \operatorname{Car}_{\text {loc }}(D)$ iff f satisfies the local Carathéodory conditions on D i.e.
(i) for every $x, y, z \in \mathbb{R}$, the mapping $t \mapsto f(t, x, y, z)$ is Lebesgue measurable on $[a, b]$;
(ii) for a.e. $t \in[a, b]$, the mapping $(x, y, z) \mapsto f(t, x, y, z)$ is continuous on \mathbb{R}^{3};
(iii) for each $\varrho>0$ there exists $h_{\varrho} \in L^{1}(a, b)$ such that $\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}<\varrho \Longrightarrow$ $|f(t, x, y, z)| \leq h_{\varrho}(t)$ on D.

Lemma 3. Let $f \in \operatorname{Car}_{\text {loc }}(D)$. Then the mapping

$$
\begin{equation*}
N: X \rightarrow Y, \quad x \mapsto f\left(\cdot, x(\cdot), x^{\prime}(\cdot), x^{\prime \prime}(\cdot)\right) \tag{1.4}
\end{equation*}
$$

is L-completely continuous.
Proof. [6, p. 13-14].
Note. If L and N are defined by (1.3) and (1.4), respectively, then x is a solution of (1.1), (1.2) iff $x \in \operatorname{dom} L$ and $L x=N x$.

2. The main result

For $h \in L^{1}(a, b)$ and $\left.r \in\right] 0,+\infty[$ we shall put

$$
\begin{cases}h_{0}=\exp \left(2 \int_{a}^{b} h(t) \mathrm{d} t\right), & r_{0}=r+3(b-a)^{2} h_{0}, \tag{21}\\ \varepsilon \in] 0,1 / 2 r_{0}(b-a)[, & \\ r_{2}=h_{0} \exp \left(2 \varepsilon r_{0}(b-a)\right), & r_{1}=\varepsilon+r_{2}(b-a)\end{cases}
$$

Theorem. Let there exist $\mu \in\{-1,1\}, r \in] 0,+\infty[$ and a non-negative function $h \in L^{1}(a, b)$ such that $f \in \operatorname{Car}_{\operatorname{loc}}(D)$ satisfies on D the conditions

$$
\begin{equation*}
|x| \geq r, \quad|y| \leq r_{1}, \quad|z| \leq r_{2} \Longrightarrow \mu f(t, x y, z) \operatorname{sign} x \geq 0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
|x| \leq r_{0}, \quad|y| \leq r_{1}, \quad|z| \geq 1 \Longrightarrow f(t, x, y, z) \operatorname{sign} z \leq h(t)|z|, \tag{2.3}
\end{equation*}
$$

where r_{0}, r_{1}, r_{2} fulfil (2.1).
Then the problem (1.1), (1.2) has at least one solution u such that

$$
\begin{equation*}
|u(t)| \leq r_{0}, \quad\left|u^{\prime}(t)\right| \leq r_{1}, \quad\left|u^{\prime \prime}(t)\right| \leq r_{2} \quad \text { for } \quad a \leq t \leq b . \tag{2.4}
\end{equation*}
$$

First we shall prove some lemmas.
Lemma 4. Let $r \in] 0,+\infty\left[\right.$ and let $h \in L^{1}(a, b)$ be a nonnegative function. Let $r_{0}, r_{1}, r_{2}, \varepsilon$ fulfil (2.1).

Then for any function $u \in \operatorname{dom} L$ the inequalities

$$
\begin{equation*}
|u(t)| \leq r_{0}, \quad\left|u^{\prime}(t)\right| \leq r_{1} \quad \text { for every } \quad t \in[a, b] \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime \prime \prime}(t) \operatorname{sign} u^{\prime \prime}(t) \leq h(t)\left|u^{\prime \prime}(t)\right|+\varepsilon|u(t)| \quad \text { for a.e. } t \in[a, b] \text { and }\left|u^{\prime \prime}(t)\right| \geq 1 \tag{2.6}
\end{equation*}
$$

imply

$$
\begin{equation*}
\left|u^{\prime \prime}(t)\right|<r_{2} \quad \text { for every } \quad t \in[a, b] \tag{2.7}
\end{equation*}
$$

Proof. Since (1.2), there exists $\left.t_{0} \in\right] a, b[$ such that

$$
\begin{equation*}
u^{\prime \prime}\left(t_{0}\right)=0 \tag{2.8}
\end{equation*}
$$

1. Let us suppose that there exists $\left.t^{*} \in\right] t_{0}, b[$ such that

$$
\begin{equation*}
\left|u^{\prime \prime}\left(t^{*}\right)\right| \geq \sqrt{r_{2}} . \tag{2.9}
\end{equation*}
$$

Then there exists $\left.t_{*} \in\right] t_{0}, t^{*}[$ such that

$$
\begin{equation*}
\left|u^{\prime \prime}\left(t_{*}\right)\right|=1 \quad \text { and } \quad\left|u^{\prime \prime}(t)\right| \geq 1 \quad \text { for } \quad t \in\left[t_{*}, t^{*}\right] \tag{2.10}
\end{equation*}
$$

a) Let $u^{\prime \prime}(t) \geq 1$ on $\left[t_{*}, t^{*}\right]$. Then, by (2.6),

$$
\int_{t_{*}}^{t^{*}} \frac{u^{\prime \prime \prime}(t) \mathrm{d} t}{u^{\prime \prime}(t)} \leq \int_{t_{*}}^{t^{*}}\left(h(t)+\varepsilon r_{0}\right) \mathrm{d} t<\int_{a}^{b} h(t) \mathrm{d} t+\varepsilon r_{0}(b-a) .
$$

Thus $u^{\prime \prime}\left(t^{*}\right)<\sqrt{r_{2}}$, a contradiction.
b) Let $u^{\prime \prime}(t) \leq-1$ on $\left[t_{*}, t^{*}\right]$. Similarly, by (2.6),

$$
\int_{t_{*}}^{t^{*}} \frac{-u^{\prime \prime \prime}(t) \mathrm{d} t}{-u^{\prime \prime}(t)} \leq \int_{t_{*}}^{t^{*}}\left(h(t)+\varepsilon r_{0}\right) \mathrm{d} t<\int_{a}^{b} h(t) \mathrm{d} t+\varepsilon r_{0}(b-a)
$$

Thus $-u^{\prime \prime}\left(t^{*}\right)<\sqrt{r_{2}}$, a contradiction. Therefore we have

$$
\begin{equation*}
\left|u^{\prime \prime}(a)\right|<\sqrt{r_{2}} \quad \text { for every } t \in\left[t_{0}, b\right] . \tag{2.11}
\end{equation*}
$$

According to (1.2), $\left|u^{\prime \prime}(a)\right|<\sqrt{r_{2}}$.
2. Supposing the existence of $\left.t^{*} \in\right] a, t_{0}$ [satisfying

$$
\begin{equation*}
\left|u^{\prime \prime}\left(t^{*}\right)\right| \geq r_{2} \tag{2.12}
\end{equation*}
$$

we obtain $\left.t_{*} \in\right] a, t^{*}\left[\right.$ such that (2.10) (we write there $\sqrt{r_{2}}$ instead of 1) is fulfilled. In the same way as in the first part, integrating (2.6) from t_{*} to t^{*}, we get

$$
\left|u^{\prime \prime}\left(t^{*}\right)\right|<r_{2}
$$

which contradicts (2.12). Thus

$$
\begin{equation*}
\left|u^{\prime \prime}(t)\right|<r_{2} \quad \text { for every } t \in\left[a, t_{0}\right] \tag{2.13}
\end{equation*}
$$

Inequalities (2.11), (2.13) imply estimate (2.7).

Lemma 5. Let $r \in] 0,+\infty\left[\right.$ and let $h \in L^{1}(a, b)$ be a nonnegative function. Let $r_{0}, r_{1}, r_{2}, \varepsilon$ fulfil (2.1).

Then for any function $u \in \operatorname{dom} L$ the inequalities

$$
\begin{equation*}
\left|u^{\prime \prime}(t)\right| \leq r_{2} \quad \text { for every } \quad t \in[a, b] \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
|u(t)| \geq r \Longrightarrow \mu u^{\prime \prime \prime}(t) \operatorname{sign} u(t)>0 \quad \text { for a.e. } t \in[a, b] \tag{2.15}
\end{equation*}
$$

imply

$$
\begin{equation*}
|u(t)|<r_{0} \quad \text { and } \quad\left|u^{\prime}(t)\right|<r_{1} \quad \text { for every } \quad t \in[a, b] . \tag{2.16}
\end{equation*}
$$

Proof. Since (1.2) and (2.15), there exist $\left.t_{0}, t_{1} \in\right] a, b[$ such that

$$
\begin{equation*}
\left|u\left(t_{0}\right)\right|<r, \quad u^{\prime}\left(t_{1}\right)=0 \tag{2.17}
\end{equation*}
$$

Integrating (2.14), we get by (2.1) and (2.17)

$$
\left|u^{\prime}(t)\right| \leq r_{2}(b-a)<r_{1}, \quad|u(t)|<r+r_{2}(b-a)^{2}<r_{0}
$$

The Lemma is proved.
Lemma 6. Let $f \in \operatorname{Car}_{\text {loc }}(D)$ and $\mu \in\{-1,1\}$. Let $\left.\varepsilon \in\right] 0,+\infty[$ be such that equation

$$
\begin{equation*}
u^{\prime \prime \prime}=\mu \varepsilon u \tag{2.18}
\end{equation*}
$$

has only the trivial solution in $\operatorname{dom} L$. Let there exist an open bounded set $\Omega \subset X$ such that $0 \in \Omega$ and for any $\lambda \in] 0,1\left[\right.$ each solution $u_{\lambda} \in \operatorname{dom} L$ of equation

$$
\begin{equation*}
u^{\prime \prime \prime}=\lambda f\left(t, u, u^{\prime}, u^{\prime \prime}\right)+(1-\lambda) \mu \varepsilon u \tag{2.19}
\end{equation*}
$$

satisfies

$$
u_{\lambda} \notin \partial \Omega
$$

Then problem (1.1), (1.2) has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
Proof. Let us consider the mappings

$$
\begin{aligned}
& L: \operatorname{dom} L \rightarrow Y, \quad x \mapsto x^{\prime \prime \prime} \\
& N: X \rightarrow Y, \quad x \mapsto f\left(\cdot, x(\cdot), x^{\prime}(\cdot), x^{\prime \prime}(\cdot)\right) \\
& A: X \rightarrow Y, \quad x \mapsto \mu \varepsilon x .
\end{aligned}
$$

By Lemma 2, L is a Fredholm mapping of index zero and by Lemma 3, N and A are L-completely continuous, and thus N is L-compact on $\bar{\Omega}$. Since (2.18)
has only the trivial solution in dom L, condition (i) of Lemma 1 is valid. Since (2.19) has no solution on $\partial \Omega$, condition (ii) of Lemma 1 is satisfied. Therefore the assertion of Lemma 6 follows from Lemma 1.

Proof of the Theorem. Let us put

$$
\Omega=\left\{x \in X:|x(t)|<r_{0},\left|x^{\prime}(t)\right|<r_{1},\left|x^{\prime \prime}(t)\right|<r_{2} \text { for each } t \in[a, b]\right\}
$$

Then $x \in \partial \Omega$ iff

$$
\left\{\begin{array}{l}
\left|x^{(i)}(t)\right| \leq r_{i},\left|x^{(k)}(t)\right| \leq r_{k} \quad \text { and } \tag{2.20}\\
\max \left\{\left|x^{(j)}(t)\right|: a \leq t \leq b\right\}=r_{j}, \quad \text { for each } \\
t \in[a, b], i, j, k \in\{0,1,2\}, \quad i \neq j \neq k
\end{array}\right.
$$

We can choose $\varepsilon \in] 0,1 / 2 r_{0}(b-a)[$ so small that problem (2.18), (1.2) has only the trivial solution. Let $\lambda \in] 0,1\left[\right.$ and let u_{λ} be a solution of a problem (2.19), (1.2). Supposing $u_{\lambda} \in \bar{\Omega}$, we shall show $u_{\lambda} \notin \partial \Omega$.

First let

$$
\begin{equation*}
\left|u_{\lambda}(t)\right| \leq r_{0} \quad \text { and } \quad\left|u_{\lambda}^{\prime}(t)\right| \leq r_{1} \quad \text { for each } t \in[a, b] \tag{2.21}
\end{equation*}
$$

Then, by (2.3), $u_{\lambda}^{\prime \prime \prime} \operatorname{sign} u_{\lambda}^{\prime \prime}=\lambda f \operatorname{sign} u_{\lambda}^{\prime \prime}+(1-\lambda) \mu \varepsilon u_{\lambda} \operatorname{sign} u_{\lambda}^{\prime \prime} \leq h(t)\left|u_{\lambda}^{\prime \prime}\right|+\varepsilon\left|u_{\lambda}\right|$ for a.e. $t \in[a, b]$ and $\left|u_{\lambda}^{\prime \prime}(t)\right| \geq 1$. Applying Lemma 4 , we obtain

$$
\begin{equation*}
\left|u_{\lambda}^{\prime \prime}(t)\right|<r_{2} \quad \text { for each } t \in[a, b] \tag{2.22}
\end{equation*}
$$

Further, according to (2.2), $\mu u_{\lambda}^{\prime \prime} \operatorname{sign} u_{\lambda}=\lambda \mu f \operatorname{sign} u_{\lambda}+\mu(1-\lambda) \mu \varepsilon u_{\lambda} \operatorname{sign} u_{\lambda}>0$ for a.e. $t \in[a, b]$ and $\left|u_{\lambda}(t)\right| \geq r$. Using Lemma 5 , we get

$$
\begin{equation*}
\left|u_{\lambda}(t)\right|<r_{0} \quad \text { and } \quad\left|u_{\lambda}^{\prime}(t)\right|<r_{1} \text { for each } t \in[a, b] . \tag{2.23}
\end{equation*}
$$

Thus if $u_{\lambda} \in \bar{\Omega}$, then u_{λ} satisfies (2.21), (2.22), (2.23) and so $u_{\lambda} \in \bar{\Omega} \backslash \partial \Omega$. The Theorem is proved.

Example. The conditions of the Theorem are satisfied for example when $h \in L^{1}(a, b)$ is non-negative, $\left.r \in\right] 0,+\infty\left[, c \in \mathbf{R}, c \neq 0, r_{0}, r_{1}, r_{2} \in \mathbf{R}\right.$ satisfy (2.1) and

$$
\begin{array}{ll}
f(t, x, y, z)=h(t) c|z| x^{k} /\left(1+y^{n}\right), & \text { where } k, n \in \mathbf{N}, \\
& k \text { is odd, } n \text { is even, }|c| \leq r_{0}^{-k}
\end{array}
$$

or

$$
f(t, x, y, z)=h(t) c(x+1) e^{x y}\left(z+r_{2}\right), \quad \text { where }|c| \leq 1 /\left(r_{0}+1\right) e^{r_{0} r_{1}}\left(1+r_{2}\right) .
$$

REFERENCES

[1] BATES, P. W.-WARD, Y. R.: Periodic solutions of higher order systems. Pacif. J. Math., 84 (1979), 275-282.
[2] GAINES, R. E.-MAWHIN, J. L.: Coincidence Degree and Nonlinear Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[3] GEGELIA, G. T.: On boundary problems of the periodic type for ordinary differential equations (Russian). Trudy IPM, Tbilisi, 17 (1986), 60-93.
[4] KIBENKO, A. V.-KIPNIS, A. A.: On periodic solutions of nonlinear differential equations of the 3rd order. (Russian). Priklad. anal., Voronež, (1979), 70-72.
[5] KIGURADZE, I. T.-PŮŽA, B.: On some boundary value problems for ordinary differential systems. (Russian). Diff. Ur., 12 (1976), 2139-2148.
[6] MAWHIN, J. L.: Topological Degree Methods in Nonlinear Boundary Value Problems. AMS, Providence, Rhode Island, 1979.
[7] RACHU゚NKOVÁ, I.: The first kind periodic solutions of differential equations of the second order. Math. Slovaca, 39 (1989), 407-415.

[^0]: A MS Subject Classification (1985): Primary 34B15. Secondary 46E15, 46E30
 Key words: Banach space, Fredholm mapping, Local Carathéodory conditions

