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PERIODIC BOUNDARY VALUE PROBLEMS 
FOR THIRD ORDER 

DIFFERENTIAL EQUATIONS 

IRENA RACHUNKOVA 

ABSTRACT. There are studied the questions of existence of periodic solutions 
of the equation u"1 = f(t, ti, u', u") by means of topological degree methods . 

In this paper there are found some new conditions for the existence of solu­
tions of the problem 

u'" = f(t,u,u\u"), (1.1) 

u(a) = u(b) , u\a) = u'(b) , u"(a) = u"(b) , (1.2) 

where - c o < a < b < -f-oo. 

The problems of such type have been already solved in many works, for exam­
ple [1-7]. Here, the proof of the main result is based on Mawhinys continuation 
theorem [6] (see Lemma 1). 

1. Notat ions , definitions and auxiliary results 

Let X, Y be real vector normed spaces and dom L C X a vector subspace. 

Definition 1. A linear mapping 

L: dom L —> Y 

will be called a Fredholm mapping of index zero iff 

(i) d imKerL = codimlmL < + 0 0 ; 
(ii) ImL is closed in Y. 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 34B15. Secondary 46E15, 46E30 
K e y w o r d s : Banach space, Fredholm mapping, Local Caratheodory conditions 
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It follows from the definition above and from basic results of linear functional 
analysis that there exist continuous projectors 

such that 

so that 

P:X->X and Q : ľ - 4 ľ 

Im P = Ker L and Keг Q = Im L 

X = K e r L © K e r P , Y = lmL®lmQ 

as topological direct sums. 

Consequently, the restriction Lp of L to dom L H Ker P is one-to-one and 
onto I m L , so that its (algebraic) inverse Kp : ImL —• dom Ln Ker P is defined. 
[6, p. 6] 

Definition 2. Le2 L: domL —• Y be a Fredholm mapping of index zero 
and let SI C X be an open bounded set. A (not necessarily linear) mapping 
N: X —• Y will be called L -compact on SI iff the mappings QN: SI —• Y and 
KP(I — Q)N: SI —• Y are compact, i.e. continuous on SI and such that QN(Sl) 
and Kp(I — Q)N(Sl) are relatively compact. 

N o t e . SI and dSl is the closure and the boundary of d e l , respectively. 

Definition 3. We shall say that A: X —• Y is L-completely continuous if 
it is L -compact on every bounded Q C X . 

One can show that Definitions 2,3 do not depend upon the choice of the 
continuous projectors P and Q, which justifies the terminology. [6, p. 12] 

Lemma 1. ([6, Theorem IV.5, p. 44]). Let L: d o m L —• Y be a linear 
Fredholm mapping of index zero and let Q C X be an open bounded set. Let 
N: SI —• Y be L-compact on Q and let A: X —» Y be L -completely continuous 
and such that 

(i) K e r ( L - A ) = {0}; 
(ii) for every (x, A) G (domF fl dQ) x ]0,1[ 

Lx-(l -\)Ax-\Nx ^ 0 , 

and assume that 0 £ SI. 

Then equation 
Lx = Nx 

has at least one solution in domF H SI. 

AC%(a,b) [C'(a,6)] is the set of all real functions having absolutely contin­
uous [continuous] i-th derivatives on [a, 6] , i = 0 ,1 ,2 . 
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Lp(a, b) is the set of all real functions / with \f\p Lebesgue integrable on 
]a,b[, pe [ l ,+oo[ . 

In what follows let X = {x £ C2(a,b); x satisfies (1.2)} be a Banach space 
with the norm 

m a x i ( ^ ( x ( , ) ( 0 ) 2 ) :a<t<b\ for x G X ; 

Y = Ll(a,b) be a Banach space with the norm 

/ \y(t)\dt, for yeY; 
J a 

domL = XnAC2(a,b); 

L: dom L-+Y, x i-> x'". (1.3) 

Then 

KerL = {x G domL; a: is a constant mapping on [a, b]} ; 

ImL = {y G Y; y = x'", x G domL} = {</ G Y\ I y(t)dt = o} . 

Therefore Im L is closed in Y and dim Ker L = codim Im L = 1. Thus we have 
proved 

Lemma 2. L, defined by (1.3), is a Fredholm mapping of index zero. 

Definition 4. A function u G domL which fulfils (1.1) for a.e. t G [a, 6] 
will be called a solution of problem (1.1), (1.2). 

We will say that some property is satisfied on D if it is satisfied for a.e. 
t G [a,b] and for every x,y,z G R . 

We will write / G Carioc(-0) iff / satisfies the local Caratheodory conditions 
on D i.e. 
(i) for every x,y,z G R , the mapping t i—> f(t,x,y,z) is Lebesgue measurable 

on [a, b]; 
(ii) for a.e. t G [a, b], the mapping (x,y,z) »—> f(t,x,y,z) is continuous on R 3 ; 

(iii) for each £ > 0 there exists /ie G La(a, 6) such that (x2 + y 2 + z2)1!2 < g => 
\f(t,x,y,z)\<he(t) on D. 
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Lemma 3. Let f £ Carioc(-D) • Then the mapping 

N-.X-+Y, x»f{;x(.),x'(.),x"(.)) (1.4) 

is L -completely continuous. 

P r o o f . [6, p. 13-14]. 

Note . If L and N are defined by (1.3) and (1.4), respectively, then x is 
a solution of (1.1), (1-2) iff x £ domL and Lx = Nx. 

2. The main result 

For h £ Ll(a, b) and r £ ]0,+oo[ we shall put 

' bo = exp (2 Ja
6 h(t)dt) , r0 = r + 3(6 - a) 2b 0 , 

< £ G ] 0 , l / 2 r 0 ( 6 - a ) [ , (2 ^ 

< r2 = ho exp (2er0(b — a)), r\ = e + r2(6 — a ) . 

Theorem. Let there exwt Lj £ { — 1,1}, r £ ]0,+oo[ and a non-negative 
function h £ Ll(a,b) such that f £ C&i\0c(D) satisfies on D the conditions 

\x\ > r, | y | < T i , |z| < r2 =-=> li/(r,a: y ,z)signx > 0 (2.2) 

M < r 0 , M < r ! , | ~ | > 1 = > / ( « , . - , y , -)sign - < / . (* ) | - | , (2.3) 

where r o , r i , r 2 fulfil (2.1). 

Then the problem (1.1), (1-2) has at least one solution u such that 

K r ) | < r 0 , \u'(t)\<ru \u"(t)\ < r2 for a<t<b. (2.4) 

First we shall prove some lemmas. 

Lemma 4. Let r £ ]0,+oo[ and let h £ L1(a,b) be a nonnegative function. 
Let r 0 , r i , r 2 , e fulfil (2.1). 

Then for any function u £ dom L the inequalities 

\u(t)\ < r0, \u'(t)\ < n for every t £ [a, 6] (2.5) 
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and 

u'"(f)signu"(t) < h(t)\u"(t)\+e\u(t)\ for a.e. t G [a, b] and \u"(t)\ > 1 (2.6) 

imply 

|u"(t) | < r2 /or every t G [a, 6 ] . (2.7) 

P r o o f . Since (1.2), there exists to € ]a, b [ such that 

u"(*0) = 0. (2.8) 

1. Let us suppose that there exists t* €]to,b[ such that 

\u"(t*)\>Vrl. (2.9) 

Then there exists t» G ]to>t*[ such that 

|u"( t . ) | = l and \u"(t)\>\ for te[U,f]- (2-10) 

a) Let u"(t) > 1 on [**,<*]. Then, by (2.6), 

J* ^ ^ < J ' {h(t) + ero)dt<J^ h(t)dt + er0(b-a). 

Thus u"(t*) < y/r~~, a contradiction. 

b) Let u"(t) < - 1 on [**,**]. Similarly, by (2.6), 

/ " - J ^ ^ / ^(t) + ero)6t<J h(t)dt + erQ(b-a). 

Thus —u"(t*) < v ^ " , a contradiction. Therefore we have 

|u"(a)| < y/ri for every t G [to, °] - (2.11) 

According to (1.2), |u"(a)| < ^/r^. 

2. Supposing the existence of t* G ]a,to[ satisfying 

l « " ( - * ) l > r a , (2.12) 

we obtain t* G ]a,t*[ such that (2.10) (we write there y/r~~ instead of 1) is 
fulfilled. In the same way as in the first part, integrating (2.6) from t* to t* , 
we get 

\u"(t*)\<r2, 

which contradicts (2.12). Thus 

\u"(t)\ < r2 for every t G [a, t0]. (2.13) 

Inequalities (2.11), (2.13) imply estimate (2.7). 
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L e m m a 5. Let r G ]0,-f-oo[ and let h e Ll(a,b) be a nonnegative function. 
Let r0,r1,r2,e fulfil (2.1). 

Then for any function u e dom L the inequalities 

| u " (* ) l< r 2 for every te[a,b] (2.14) 

and 
\u(t)\ > r ==> fiu'"(t) sign u(t) > 0 for a.e. te[a,b] (2.15) 

imply 
\u(t)\ < r0 and \u'(t)\ < n for every t e [a,b]. (2.16) 

P r o o f . Since (1.2) and (2.15), there exist tfo,£i e ]a,b[ such that 

\u(t0)\<r, u'(U) = 0. (2.17) 

Integrating (2.14), we get by (2.1) and (2.17) 

W(t)\ < r2(b - a) < n , \u(t)\ < r + r2(b - a)2 < r0 . 

The Lemma is proved. 

L e m m a 6. Let f e Carioc(-D) and \i e { — 1,1}. Let e e ]0,-foo[ be such 
that equation 

u'" = fieu (2.18) 

has only the trivial solution in domL. Let there exist an open bounded set il C X 
such that 0 e 0> and for any A 6 ]0,1[ each solution u\ e domL of equation 

u1" = \f(t,u,u',u") + (1 - X)fieu (2.19) 

satisfies 
u\ £ dQ,. 

Then problem (1.1), (1.2) has at least one solution in d o m L f l f t . 

P r o o f . Let us consider the mappings 

L: dom L —* Y, x >-> x"1 

N:X^Y, x~f(;x(.),X'(.),x"(-)) 
A: X —• Y, I H fxex . 

By Lemma 2, L is a Fredholm mapping of index zero and by Lemma 3, N and 
A are L-completely continuous, and thus N is L-compact on ft. Since (2.18) 

246 



has only the trivial solution in domL, condition (i) of Lemma 1 is valid. Since 
(2.19) has no solution on 3ft, condition (ii) of Lemma 1 is satisfied. Therefore 
the assertion of Lemma 6 follows from Lemma 1. 

P r o o f o f t h e T h e o r e m . Let us put 

Q = {xeX: \x(t)\ < r0, |x'(*)| < n , |x"(*)| < r2 for each t G [a,b]} . 

Then x e 3ft iff 

|* ( 0 (0I < H, \x<k\t)\ < rk and 
max{\xU)(t)\ :a<t<b} = rj, for each (2.20) 

te[a,b], i,j,*;G {0 ,1 ,2} , i^j^k. 

We can choose e e ]0, \/2ro(b — a)[ so small that problem (2.18), (1.2) has only 
the trivial solution. Let A G ]0,1[ and let u^ b e a solution of a problem (2.19), 
(1.2). Supposing u\ e ft, we shall show u\ £ 3ft. 

First let 

\u\(t)\ < r0 and \u'x(t)\ < n for each t e [a, b]. (2.21) 

Then, by (2.3), u'£ signup = A/signu'{ + (1 - X)fieux signup < h(t)\u'{\ + e\u\\ 
for a.e. t e [a, 6] and |t£^(£)| > 1. Applying Lemma 4, we obtain 

IWA(*)I < r2 for each t G [a, b]. (2.22) 

Further, according to (2.2), fiu'xsignu\ = Xfxf sign u\+n(\ — X)fieu \ sign u\ > 0 
for a.e. t G [a, 6] and |UA(')I > r» Using Lemma 5, we get 

W\(t)\ < r0 and \u'x(t)\ < n for each t G [a, b]. (2.23) 

Thus if u\ e ft, then u\ satisfies (2.21), (2.22), (2.23) and so u\ G ft\3ft. The 
Theorem is proved. 

E x a m p l e . The conditions of the Theorem are satisfied for example when 
h e Ll(a,b) is non-negative, r G ]0,+oo[, c G R , c ^ 0, r 0 , r i ,r 2 G R satisfy 
(2.1) and 

f(t,x,y,z) = h(t)c\z\xk/(\+yn), where fc,nGN, 

k is odd, n is even, \c\ < r$ , 

or 

f(t,x,y,z) = h(t)c(x + l)ex*{z + r2), where \c\ < l / (r 0 + l )e r ° r i ( l + r 2 ) . 
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