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RESULTS ON THE RATIOS OF THE TERMS 
OF SECOND ORDER LINEAR RECURRENCES 

P E T E R KISS* 

ABSTRACT. We survey the results concerning the diophantine approximative 
property of second order linear recurrences and discuss the dependence of the 
estimate on the discriminant of a characteristic polynomial. 

Let R = {Rn}^^ be a second order linear recursive sequence of rational 
integers defined by 

Rn = A R n - i + B-Rn-2 (n > 1) , 

where Ro,Ri and A, B are fixed integer^ with AB ^ 0, R% + R\ 7-= 0 and 
D = A2 + 4B ^ 0. Let a and ft be the root ^ of the equation x2 — Ax — B = 0, 
where a ^ ft since D ^ 0. It is known that the terms of R can be expressed 
in the form 

Rn = aan + bftn (1) 

for any n > 0, where 

i?i - /3Ro , L i?i - aR0 

a = — and 0 = — 
a-ft ft-a 

(see e.g. [1], pp. 106-108). 
Throughout this paper we assume \a\ > \ft\, ab ^ 0 and the sequence is non-

degenerate, i.e. a/ft is not a root of unity. We may also suppose that Rn 7-= 0 
for n > 0 since in [2] it was proved that a non-degenerate sequence R has at 
most one zero term and after a change of indices this condition will be fulfilled. 

If D -= A2 +AB > 0, i.e. if a and ft are real numbers, then (ft/a)n - > 0 as 
n —• 00, so by (1) we have 

n-00 Rn n-00 l + (b/a)(ft/a)n y J 

This raises the following interesting problem: what is the quality of approxima
tion of a by rationals of the form Rn+\/Rn ? In [3], using the continued fraction 
expansion of a, we proved that this approximation is "good" only if \B\ = 1. 
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Theorem 1. If D > 0, Ro = 0, Ri = 1 and a is irrational, then the 
inequality 

-Rn-f l I 

R„ 

1 

cRl 

holds with a positive real number c for infinitely many integer n if and only if 
\B\ = 1 and c < y/D. Furthermore, if p/q is a rational number such that 

p 
a 

Я 

< 
v/Dg2 

then p/q has the form p/q = Rn+\/Rn . 

In some other special cases similar results follow from [4] and [7]. 

In a joint paper with Z. S i n k a [5] the complete answer to the problem was 
obtained by determining the measure of approximation for general second order 
recurrences. 

Theorem 2. Let R be a non-degenerate linear recurrence with D > 0. 
Define the numbers ko and CQ by 

k0 = 2- Ь g | £ | and 
log|a| 

and let k and c be positive real numbers. Then 

CQ = |a*o-ii| 

a — 
Rn +i < 

1 
cRn 

holds for infinitely many integers n if and only if 

(i) k < ko and c is arbitrary, or 
(ii) k = ko and c < CQ , or 

(iii) k = ko , c = CQ and B > 0, or 
(iv) k = ko, c = Co , B < 0 and b/a > 0. 

Since 1 < \B\ = \a/3\ < \a\2, ko > 0 always holds. Furthermore, Theorem 1 
is a special case of Theorem 2 since a = — b = l/(a — /?) = l /> /D if Ro = 0, 
R1 = 1, and k0 = 2 if \B\ = 1. 

The case D < 0 is far more complicated. In this case a and 0 are non-
real complex numbers with \a\ = \fi\ and (2) does not hold even if we consider 
the absolute values of the numbers. Since a (= 0) and a (= b) are complex 
conjugates of (3 and b respectively, we can write 

ß = re 7ГØІ 

a = гe 
-ҡ i ß/a = e Tлt i 
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and 

V „ л27гuл a = e , b = rxe
2wii

y a = r i e - 2 r r 7 i , 

where r, r*i, 0, 7 and u are positive real numbers with 0 < 0,7,0; < 1. Using 
these notations, we get from (1): 

-Rn+i 
=\a\-

Rn 

=\a\-

=\a\-

l + (Ь/a)(ß/a) n + l 

\+(Ь/a)(ß/aY 
1 +. e2тr(n+l)(9i+2.тu/i 

^ 1 Є2TГПØІ+2ÎTUЛ 

(3) 

Under our conditions (3/a is not a root of unity and so 0 is an irrational number. 
This implies that the sequence {n9 + u>) , n = 1,2,... , is uniformly distributed 
modulo 1 and then n9 + u can come arbitrarily "close" to the real number \ — | 
for infinitely many n. Hence 

27ri(n0+u;) 
e2тri( l/2-0/2) = z 

and 
e2тri((n+l)0+u;) ^ e2тri(l/2+д/2) 

for these n 's ( z and z are conjugate complex numbers). From this and from 
(3) it follows that 

"•O-HH^K'-O^) 
and 

\a\-

Rn 

Rn+i 

Rn 

<є (4) 

hold for infinitely many n with any e > 0. 

(4) raises the question: what can we say about e? In a joint paper with R. 
T i c h y [6], using a result for the discrepancy of the sequence (n6 + UJ) , the 
following result was proved: 

Theorem 3. For any non-degenerate second order linear recurrence R, for 
which D < 0, there is a constant c > 0 such that 

H -
Rn +1 

Rn 

< (5) 

for infinitely many n . 

This approximation of | a | by \Rn+i/Rn\ is very "bad", since n « log | i? n | 
by (1). However, surprisingly, this approximation, apart from the constant c, is 
the best possible one. 

Also in [6], using results about the estimation of linear forms of logarithms 
of algebraic numbers, we have shown: 
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Theorem 4. For any non-degenerate second order linear recurrence R, for 
which D < 0, there is a constant c' such that 

a -
Rn +1 

Rn 
> 

1 
(6) 

for all sufficiently large n . 

The only remaining open problem consists of determining the best values of 
the constants c and c' in Theorems 3 and 4. In [5] we obtained the following 
improvement of Theorem 3 for a special case: 

Theorem 5. Let R be a non-degenerate second order linear recurrence with 
D < 0 and initial values RQ = 0, R\ = 1. Then there is a constant c\ (> 0) 
such thai 

Rn +1 

Rn 
< 

C\ 

for infinitely many n. 

I conjecture that there exists an absolute constant C not depending on the 
parameters of the sequence R such that (5) holds with any c < C for infinitely 
many n and (6) holds with any c' > C for all sufficiently large n. 
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