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ANTINEIGHBOURHOOD GRAPHS

JERZY TOPPD*) —— LUTZ VOLKMANN**)

ABSTRACT. A graph H is called a neighbourhood graph if there exists a graph
G in which the subgraph induced by the neighbours of each vertex is isomorphic to
H . A graph H is said to be a j-antineighbourhood graph if there exists a graph
G in which, for each vertex v of G, the subgraph induced by the vertices at
distance at least j+ 1 from v is isomorphic to H . The classes of neighbourhood
and j-antineighbourhood graphs are denoted by N and Aj | respectively. It is
shown that every graph belongs to A; with j > 2, and that a graph belongs
to Ap if and only if it is a vertex-deleted subgraph of a vertex-symmetric graph.
Some examples and properties of graphs which belong to Ay are given. It is
shown that a graph belongs to A; if and only if its complement belongs to A .
Next, the block graphs which belong to A, are determined. Finally, some results
on cycles whose squares belong to A and to A; are also included.

1. All graphs considered in this paper are finite, undirected, and with no
loops or multiple edges. For a graph G, let V(G) and E(G) denote the ver-
tex set and the edge set of G, respectively. For a vertex v of G, let N¢(v)
be the set of vertices (neighbours) adjacent to v in G and, more gencrally,

Ng(S) = U Ng(v) for asubset S of V(G). If X is a subset of V(G), then
vES

G — X denotes the subgraph of G induced by V(G) — X . We write G — «
instead of G — {z} for z € V(G). For a vertex v of G, the neighbourhood
graph N(v,G) of the vertex v is the subgraph of G induced by the set N (v).
Denote by A the set of all graphs H with the property that there exists a
graph G in which the neighbourhood graph of every vertex is isomorphic to
H . The problem which graphs belong to A/ was raised by Zykov in [37]. Many
papers on this subject have been published. Some of these papers investigated
which graphs H are in A and some characterized, for a given graph H € N,
all graphs G such that N(v,G) is isomorphic to H for any vertex v of G.
For example, [4] lists all trees with fewer than 10 vertices which belong to N .
Similarly, [18] presents all graphs on 6 or fewer vertices which are in A'. Many
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examples and characterizations of graphs from A in more restricted classes of
graphs were obtained in [4, 5, 7-9, 11-14, 17, 18, 21, 34, 36]. The ideas and meth-
ods of group theory applied to Zykov's problem (and to related problems) gave
many interesting and important results in [4, 5, 12, 13, 15-18, 22, 23, 30, 31].
Some generalizations and modifications of Zykov’s problem were considered in
[2, 3, 24-28, 32, 35].

We consider the next modification in which we wish to change somewhat the
point of view. Let j be a non-negative integer. For a vertex v of a graph G,
the j-antineighbourhood graph A;(v,G) of the vertex v is the subgraph of
G induced by the set {u € V(G): dg(u,v) > j + 1}, where dg(z,y) denotes
the distance between vertices ¢ and y in G . Certainly, for a vertex v of G,
Ao(v,G) is the vertex-deleted subgraph G — v of G. Similarly, A,(v,G) is
obtained from G by removing the vertex v and all its neighbours. Let A;
denote the set of all graphs H with the property that there exists a graph G
in which the j-antineighbourhood graph Aj(v,G) of every vertex v of G is
isomorphic to H . It is natural to ask about graphs which belong to the set A;
(7 =0,1,... ). In Section 2, we characterize the graphs of A, in terms of vertex-
symmetric graphs. We also present some examples and structural properties of
graphs from Ay. The connection between the graphs from the set A4; and
those which belong to N is given in Section 3. Then we consider the problem
of characterizing block graphs which belong to A;. We have some results for
cycles whose squares belong to A, and A, respectively. Finally, in Section 4, it
is indicated that every graph H belongs to the class A; for each integer j > 2.

In general, we follow the terminology and notation of Harary [19], and
introduce new notation as it is required. Let dy(v), 6(H) and A(H) denote
the degree of a vertex v in a graph H, the minimum degree and maximum
degree of H | respectively. A graph H is regular if 6(H) = A(H). A graph H
is biregular if §( H) < A(H) and each vertex of H is of degree either §(H) or
A(H). For a graph H ,let (H)s denote the graph obtained from H by adding
a new vertex and joining it to all vertices of degree 6(H) in H . For example, we
have (K,)s = Kpn41. The symbols FUG, F+ G, F[G] and F x G represent
the union, join, lexicographic product and cartesian product of graphs F' and
G, respectively. By nG we denote the disjoint union of n copies of a graph
G . A path, cycle, and complete graph with n vertices is denoted by P,, C,,
and I\, , respectively. K,, . n, denotes a complete p-partite graph with the
vertex classes having ny, ng,...,n, vertices, respectively. A wheel W,, on n+1
vertices is a graph isomorphic to C,, + K. The complement graph of a graph
G is denoted by G. By = we denote an isomorphism of graphs.

A vertex v of a graph G is called a cut vertex of G if G — v has more
components than G. A connected graph with no cut vertex is called a block.
A block of a graph G is a subgraph of G which is itself a block and which is
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maximal with respect to that property. A block H of G is called an end block
of G if H has at most one cut vertex of G. A connected graph G is a block
graph if every block of G is a complete graph. Note that if v is a non-cut vertex
in a block graph G, then the vertices of N¢(v) U {v} induce a block in G.

2. Before proceeding to a characterization of graphs which belong to Ay, we
recall some useful definitions and facts. In a graph H | two vertices ¢ and u are
said to be similar if there exists an automorphism « of H such that a(v) = wu.
A graph H is said to be vertex-symmetric if every two vertices of H are similar.
Two edges vu and tw of a graph H are similar if there exists an automorphism
«a of H such that {a(v),a(u)} = {t,w}. A graph is edge-symmetric if cach
pair of its edges is similar. A graph is symmetric if it is both vertex-symmetrice
and edge-symmetric. There is an important class of graphs known as circulants.
Following Boesch and Tindell [6], for an integer n > 3 and a subset S
of {1,2,...,[(n+1)/2]}, the circulant graph C,(S) is a graph on n vertices
Vo, V1,...,0n—1, Where each vertex v; is adjacent to the vertices v,4, for s € S
(the subscripts are taken modulo n). Certainly, C,(0) = I, , c.({1})) =C,,
and C,({1,2}) is isomorphic to the square C? of C, . It is casy to observe
that circulant graphs are vertex-symmetric. The converse is not true since, for
example, Cy x Iy is a vertex-symmetric graph which is not circulant. However,
Turner [29] has proved that every vertex-symmetric graph of prime order is
a circulant graph. For further results about vertex-symmetric, edge-symmetrie,
and symmetric graphs, the reader is referred to the book by Y ap [33] and the
paper [10]. Other papers on this subject can be found in the references of Y ap
[33, pp. 145- 155].

We now state and prove a characterization of graphs which belong to Ay in
terms of vertex-symmetric graphs. The proof is based in part on facts announced

in [20].

THEOREM 1. A graph H belongs to Ay if and only of H = nl\y for some
positive integer n or 1ts supergraph (H)s 15 a vertez-symmetric graph.

Proof. Certainly, nly € Ay since (n+ 1)K} —v = nl; for cach vertex
v of (n+ 1)K . Suppose now that (H)s is a vertex-symietric graph and let w
be a vertex such that (H)s —w = H. Since (H)s is vertex-symmetric, for cach
vertex v of (H)s there exists an automorphism « of (H)s that maps w to v.
Then « restricted to (H)s —w is an isomorphism between (H)s —w = H and
(H)s —v. Hence H € A,.

To prove the converse we assume that H € Ay and H # nlyy . Let G-be a
supergraph of H with V(G) = V(H)U {w} and such that G —v = H for cach
v € V(G). We prove that G = (H)s and G is vertex-symmetric.

First we show that G is regular. Let v and u be two vertices of G Since
the graphs G — v and G — u are isomorphic, they have the same number of
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edges. Hence, |E(G)| — dg(v) = |E(G —v)| = |E(G — u)| = |E(G)| — dc(u)
and, therefore, dg(v) = dg(u). That establishes the regularity of G. Surely,
(G —w)=46(G)—1 and {v € V(G —w): dg-u(v) = 6(G —w)} = Ng(w). It
now follows easily that G is isomorphic to (G — w)s and, therefore, to H .

In order to prove that G is vertex-symmetric, it suffices to show that for
every vertex v of G there exists an automorphism a of G for which a(w) =v.
Let a*: V(H) — V(G — v) be an isomorphism betwesen H and G — v. Since
o* maps the set {z € V(H): dy(z) = 6(H)} = Ng(w) onto the set {y €
V(G —v): dg-v(y) = 6(G — v)} = Ng(v), the function a: V(G) — V(G),
where a(z) = a*(z) if z € V(H) and a(w) = v, is the desired automorphism.
a

The following two results follow easily from Theorem 1, and they are of help
in deciding whether or not a given graph belongs to the family A .

COROLLARY 1. A graph H belongs to Ag if and only if it 18 a vertez-deleted
subgraph of a vertez-symmetric graph. O

COROLLARY 2. If a graph H belongs to Ay, then ezactly one of the following
statements 13 true:

(1) H 1s regular and H = nky or H = K,, for some positive integer n;
(1) H 1s biregular, in which case (a) A(H)=6H)+1 and (b) H has
ezactly 6(H) + 1 vertices of degree 6(H).

0O

Note that the converse of Corollary 2 is not true. This can be seen with the
aid of the graph H illustrated in Fig. 1. This graph satisfies the condition (ii)
of Corollary 2, but it does not belong to Ay since its supergraph (H)s is not

vertex-symmetric as it has some vertices that are contained in two triangles and
others which are not.

Figure 1.

156



ANTINEIGHBOURHOOD GRAPHS

COROLLARY 3. A cycle C, belongs to A if and only if n = 3.
Proof. The result follows easily from Corollary 2. O
COROLLARY 4. A wheel W,, belongs to Ay if and only if n =3 or n =4.

Proof. The assertion is apparent for Wj since W3 = K. Since (Wy)s =
C4+ 2K, is a vertex-symmetric graph, Wy € Ay by Theorem 1. Finally, Corol-
lary 2 implies that W,, ¢ Ao for n > 5 since in this case W, is biregular and
AW,) = 6(Wn) +2. D

COROLLARY 5. A block graph H belongs to Ay if and only if H 1is a complete
graph or a path.

Proof. According to Corollary 2, every complete graph belongs to Ag . In
particular, the path P, = K; € Ap. If n > 2, then C,41 — v = P, for each
v € V(Cpr41) and thus P, € A,.

Conversely, assume that a block graph H belongs to Ap and H is not a
complete graph. Let Vs be the set of vertices of degree §( H) in H . By Corollary
2, |Vs| = 8(H) +1 = A(H). Since H is not a complete graph, H has at least
two end blocks and each of them has exactly §(H) vertices of degree §(H). It
follows that 6(H)+ 1= |Vs| > 26(H). Then §(H)=1=A(H)—1,s0 H isa
path. O

THEOREM 2. A graph H belongs to Ay if and only if its complement H
belongs to Ay .

Proof. This follows from the fact that G —v = G — v for every graph G
and each vertex v of G. o

Let A§ be the subfamily of Ay consisting of all connected graphs which
belong to A . Since a graph or its complement graph is connected, in our effort
to find all graphs of Ay, Theorem 2 allows us to concentrate on the graphs of
the family A§. However, for disconnected graphs we have a useful result.

THEOREM 3. A disconnected graph H with p > 2 components belongs to
Ay if and only if either H = pK, or H =2 FU(p — 1)(F)s for some graph F
from A§.

Proof. Since the “if” part is apparent, we prove the “only if” part. Sup-
pose that a graph H with p > 2 components belongs to Ay and H % pK;.
Since (H)s is vertex-symmetric (by Theorem 1), it does not have a cut vertex, so
(H)s has also p components. Certainly, these components must be mutually iso-
morphic and vertex-symmetric. Thus, there exists a connected vertex-symmetric
graph G (# K, ) such that (H)s = pG. Consequently, H = (H)s—v = pG—u &
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(G —u)U(p—1)(G —u)s for every vertex v of (H)s and every vertex u of pG.
Since G is vertex-symmetric, G — u € Ay by Corollary 1. But G has no cut
vertex, so G —u is connected and it belongs to A§. Thus H = FU(p — 1)(F)s
for F=G—-u€Aj. O

A similar result holds for graphs whose complements are disconnected.

COROLLARY 6. If H 13 a graph whose complement has p > 2 components,
then H belongs to Aq if and only if either H =K, or H=F + K,_, [(F)g}
for some graph F € A .

Proof. Smece the complement graph H of H has p > 2 components,
Theorems 2 and 3 imply that H belongs to Ay if and only if cither H 2 pK; or
H =~ FU(p—1)(F)s for some F € Aj. But this is equivalent to saying that either
H=pK, 2K, or HXFU(p—1)(F)s XF+(p—1)(F)s *F+ K, [(F)s ]

for some F € Aj. O
COROLLARY 7. A complete p-partite graph K, . ., with p > 2 and n; <
ny < oo < ny, belongs to Ay if and only of either ny = -+ =n, =1 or
ny 4+ 1=mny, =---=mn, for any positive wteger n; .

Proof. The result is immediate if ny =ny =~ =n, =1. lf ny +1=
ny = =mn, with p>2 and ny > 1, then I, 5, = Ky, + K-y [(Kn, )5]
belongs to Ay by Corollaries 2 and 6. Suppose now that K, .., € A for
some integers ny <nyg <o+ <ny,, where p > 2 and n, > 1. Since Iy, =

K, U---UL,, belongs to Ay (by Theorem 2), it follows from Theorem 3 that
we must have Iy, L = Ky U(p— 1) (R, )s & Ky, U(p — 1)K, +1 . Hence
n+l=ny,=---=mn,. O

To conclude this section, we describe the line and total graphs which belong

to Ay .

THEOREM 4. If G is a graph, then its line graph L(G) belongs to Ay of and
only if there caists an edge-symmetric graph H such that L(G) = L(H —e) for
some edge ¢ of H.

Proof. Assume that the line graph L(G) belongs to Ag. According to
Theorem 1 and Corollary 2, (L(G))6 is vertex-symmetric, or L(G) = K, or
L(G) = K, for some positive integer n. Certainly, if L(G) = K, (L(G) = K,,,
resp.), then the graph H = (n + 1)Ky (H = Ky ,41, resp.) has the desired
propertics. Thus assume that (L(G))

First we claim that (L(G))[s is a line graph, that is, (L(G))6 is 1somor-
phic to the line graph L(F) of some graph F. Assume the contrary. Then

s 1sa vertex-symmetric graph.
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by Beineke's theorem [1] (see [19, p. 74]), at least one of the nine forbidden
graphs Gp,...,Gy shown in Fig. 8.3 of [19] is an induced subgraph of (L(G))ﬁ .
Moreover, since each vertex-deleted subgraph (L(G))6 —a of (L(G))E 1s a line
graph (as (L(G)), — = = L(G)), (L(G))ﬁ is 1somorphic to one of the graphs
G1,...,Gy. This contradicts the fact that (L(G))a 1s vertex-syminetric; there-
fore we must reject the assumption that (L(G))I5 is not a line graph. Conse-
quently, there exists a graph F' such that (L(G))‘5 =~ L(F). Certainly, L(F) is
vertex-symmetric and L(G) = L(F —¢) for each edge ¢ of F. Now, if we replace
each component which is isomorphic to I3 in F (if any) by a component iso-
morphic to A3, the line graph of the resulting graph H is isomorphic to L(F')
and H does not contain both K3 and K3 as components. Then Theorem 6
of [10], which states that a graph which does not contain both K3 and K3 as
components is edge-symmetric if and only if its line graph is vertex-symmetric,
implies that H is edge-symmetric. Moreover, L(G) = L(H — ¢) for each edge
e of H.

Conversely, assume that H is an edge-symmetric graph such that L(G) =
L(H — e) for some edge ¢ of H. It follows from the edge symmetry of H
that H —e¢ = H — f for each edge f of H (see Theorem 5 in [10]). Thus
L(G) = L(H — f) = L(H) — f for each vertex f € V(L(H)) = E(H), so
L(G) € A. O

THEOREM 5. If G is a graph, then its total graph T(G) belongs to Ay if and
only if G = Ky or G =K, for some positive integer n .

Proof. Certainly, T(I\y) = K3 and T(K,) = K, (n > 1) belong to
A . Conversely, assume that G is a graph such that T(G) € A. Combining
this with Corollary 2 we conclude that T(G) is a regular graph; for if T(G)
were not regular, then G would not be regular and, therefore, we would have
A(G) > §(G) +1 and so A(T(G)) = 2A(G) > 26(G) + 2 = §(T(G)) + 2,
which is impossible. Corollary 2 now yields that T(G) = K,, or T(G) = K, for
some positive integer n. This clearly forces that G = K, or G = K,, for some
positive integer n. O

3. We collect here some results on the classes A; and N. We begin by
observing the relationship between these two classes.

THEOREM 6. A graph H belongs to N if and only if its complement H
belongs to A; .

Proof. It is easy to observe that N(v,G) = A;(v,G) for every graph G
and each vertex v of G. This implies the result. O
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The above theorem implies that all the elements of A; are determined by
the elements of the class A/, and vice versa. In particular, the following result
follows immediately from Theorem 6 and corresponding results of [8, 14, 21, 34].

LEMMA 1.

(1) [21] For every positive integer n, K, and K, belong to A, ;

(2) [34] A cycle C, belongs to A, if and only if n =3,4,5, or 6;

(3) [8] The complement C,, of a cycle C,, belongs to A, for every n > 3;

(4) [8] The complement P, of a path P, belongs to Ay if and only if
n#3;

(5) [14] The union K,, U---UK,, of complete graphs K, ,...,Kn, be-
longs to Ay if and only of ny =--- =ny;

(6) [21] A graph H with n isolated vertices belongs to A; if and only
if either H =K, or H= K, U F[m] where F 1s some graph
without 1s0lated vertices which belongs to A; ;

(7) [21] If graphs H; and H, belong to Ay, then their join H, + H,
belongs to Ay ;

(8) [21] If H 1is a graph in which no vertez 13 adjacent to all other vertices
of H, then H belongs to A, if and only if H + K, belongs to A,

for a positive integer n.
O

The parts (1) and (7) of Lemma 1 imply that every complete p-partite graph
‘‘‘‘‘ n, = 7\_',—:+T\7,,.;+ e +—I;'-,: belongs to A; . It follows from the parts (1),
(2), and (8) that a wheel W, = C,,+ 1 belongs to A; if and only if n = 3,4,5,
or 6. Many other examples, properties, and structural characterizations of graphs
which belong (or do not belong) to A; can be obtained from the results of [4,
5, 7-9, 11, 13-15, 17, 18, 21, 23, 36].

In [34], Zelinka proved that every path belongs to A;. Our intent now
is to characterize the block graphs which belong to A; . The following two defi-
nitions and two lemmas will be relevant in the sequel.

A Dblock graph G is a regular windmill graph if it is isomorphic to nK, + K,
for some positive integers n and p. Note that a regular windmill graph nI,+ K,
1s a tree if and only if it is a star A, = nk; + K. For an integer n > 4, we
denote by M, the graph obtained by taking n—2 disjoint copies of K, and
a new vertex vg, and then joining the vertex vy to exactly one vertex in each
copy of Ii,, . Note that M, is a graph of maximum degree n, minimum degree
n—2, and it has exactly one vertex of minimum degree and this vertex is a center
of M, . Figure 2 shows M, .
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Y

Figure 2.

LEMMA 2. Let G be a block graph of diameter d, mazimum degrec A, and
minimum degree §. If d > 3 and A > & + 2, then either in G there exist
nonadjacent vertices x and y such that |dg(z) —da(y)| > 2 or G = M, .

Proof. Let v and u be vertices of degree A and 6 in G, respectively.
Note that v and every other vertex of degree A is a cut vertex in G. Let o’
be any farthest vertex from v in G. Since d > 3, the vertices v and v’ are not
adjacent. In addition, v’ is not a cut vertex and it belongs to an end block of
G . Let B be the end block that contains v', and let v" be the only cut vertex
adjacent to v'. It follows that A > dg(v") > dg(v') + 1 and d¢(x) = da(v')
for each « € V(B)— {v"}. We distinguish two cases depending on the difference
A-6.

Case: A > §+2. In this case it is straightforward to see that if dg(v') < A-2
(dg(v') = A =1, resp.), then the vertices v and v’ (u and v’, resp.) have the
required property.

Case: A = §+2. Assume that |dg(z)—dg(y)| <1 for every two nonadjacent
vertices ¢ and y of G. We need only show that G is isomorphic to Ma . Our
assumption implies that every vertex of degree A —2 is adjacent to every vertex
of degree A. It follows that dg(v') = A — 1, so dg(v") = A. Consequently,
Ng(v'") — V(B) = {u} and, therefore, u is a unique vertex of degree A — 2
in G. Assume that Ng(u) = {v1,...,va—2}. We claim that each vertex of
Ng(u) is a cut vertex. For if not, let v; be a counterexample. Then the set
Ng(v;)U {vi} induces a block of order dg(vi)+ 1> A in G. But then we have
da(z) > A—1 for each z € Ng(v;)U{vi}, which is impossible since u € N¢(v;)
and dg(u) = A — 2. This implies the desired claim. In order to complete the
proof, it suffices to show that each vertex of N¢(u) belongs to an end block of
order A. For this purpose, let X; be the set of all vertices x of G for which the
shortest ¢ —u path passes through the vertex v; (i € {1,...,A -2} ). We now
claim that X; induces a block of order A in G. To prove this, let v! be a vertex
of X; which is farthest from w. Since v; is a cut vertex, v; is not adjacent to
u and, therefore, dg(vi) = A — 1. Furthermore, the choice of v! implies that
v; is a non-cut vertex and it belongs to some end block of G, say B; is an end
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block such that v} € V(B;). Since dg(vi) = A —1, B; is an end block of order
A . Note that the unique cut vertex which belongs to B; is of degree A and
therefore it must be the vertex v; . Consequently, v; is a vertcx of degree A and

A2
B; is an end block induced by X;. Hence J V(B; U X: =V(G) — {u}.
i=1
Finally, since no two vertices of {v,...,va_2} are a,(bd(‘(,llt (as the vertices of
Ng(vi) = V(B)U{u}—{vi} (i =1,...,A—2) are of degree A—1 and A—2),
it follows from the above that G is isomorphic to Ma . O

LEMMA 3. For every integer n > 4, M, does not belong to A, .

Proof. Assume to the contrary that M, € A; for some n > 4. Let G
be a graph such that A,(z,G) = M, for each vertex ¢ of G. Fix an arbitrary
vertex x9 of G and consider the graph A,(x¢,G). Since A;(z9,G) is iso-
morphic to M, , let vy be the unique vertex of degree n — 2 in A,(z¢,G),
and let vy,...,v,_2 be the neighbours of vy in A;(r¢,G). For cach ¢ €
{1,...,n—=2},let B; be the end block of A(x¢y,G) that contains the ver tex v;

Certainly, B; is a block of order n. We now choose any vertex v € V(B,)—{v, }
and consider the graph A;(v,G). Since A;(v,G) is isomorphic to ]W" and
n—2

V(Al(v,G)) n (V(G) Na(xo ) = {xo,v0} U U V(B;), exactly n —1 vertices
of Ai(v,G) belong to Ng(xg), say V(A 1(1),G)) N Ng(xo) = {x1,...,Tn-1}.

It 1s a simple matter to observe that vy must be the unique vertex of de-

gree n — 2 in A(v,G), the vertices wxg,xy,...,z,—1 form an end block in
n—2

A;(v,G) (we denote it by B, _1), exactly one vertex of {vo} U |J V(B;)
i=2

i1s adjacent to exactly one of the vertices wxg,xy,...,2,-1, and precisely vg
must be adjacent to exactly one of the vertices z,,...,x,-1, say vy is ad-
Jacent to a,-1. N( xt consider the graph A;(vo,G). In this graph we have

V(Al(vo, G)) = U V(Bi) — {v1,...,n-2,2n—1}. Furthermore, every vertex
1=1

of Ay(ve,G) belongs to a complete subgraph of order at least n —1 > 3 in
A1(vo, G). This contradicts the fact that A4;(ve,G) is isomorphic to M, be-
cause the center of M, only belongs to complete subgraphs of order at most
two in M, . Consequently, M, does not belong to A, . O

We now state and prove the main theorem of this section.

THEOREM 7. If G 1s a block graph, then G belongs to A; if and only if G
18 a path or a regular windmall graph.

Proof. Assume that G is a block graph of diameter d, maximum degree
A, and minimum degree §. The result is clear if d < 1. Thus assume that d > 2
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and consider two cases: d =2 or d > 3.

Case: d = 2. In this case G = (N, U--- U I,,) + Iy for some positive
integers ny < --- <ny, =n and p > 2. It follows from the parts (5) and (8) of
Lemma 1 that G € A, if and only if ny =--- = n, = n, that is,if and only if
G is a regular windmill graph. G = pIi\,, + It .

Case: d > 3. It is clear that if G is a path, G = Pyyy. then G € A; sinee
Ay (v,Cyyq) = Pyyy for each vertex v € V(Cyyy). It remains to prove that G
does not belong to Ay if it is not a path. Suppose to the contrary that G belongs
to Ay and G isnot a path. Then, let H be a graph such that A, (. H) = G for
cach vertex & of H. Let r be the maximum degree in H . Our assumptions on
G imply that A > ¢ > 1. In addition, it is casy to observe that H is a regular
graph of degrec r and » > A > 3. Now let xy be an arbitrary vertex of H and
consider the graph Aj(xg, H) = G . We distinguish two subeases: A > 6 4+ 2 or
A=6+1.

Subcase: A > 6 4 2. Using Lemma 3 we need only consider the case G %
My . In this case Lemma 2 implies that there exist two nonadjacent vertices o
and u in A;(xg, H) such that for their degrees dy, = d g, () and d, =

A, (ro.un) (1) we have |d.—dy| > 2, say dy > d,+2. We now consider the graphs
Ay(v,H) and A;(u, H) cach of which is isomorphic to G. The graphs A (e, H)
and A;(u, H) have d, and d, vertices in Ny (rg), respectively. This implies
that [Ny(v) N Ny(ao)| =7 —dy and |[Ny(uw) N Ny(eg)| = v — dy . Sinee d,, >
dy +2, we can find two different vertices @ and y such that {o,y} © (Npy(u) -
Ny(v)) N Ny(rg). Certainly, the vertices iy y, g, and u belong to the hlock
graph A (v, H) and. therefore, they are mutually adjacent in A (o, H) and in
H . Henee, w € Nyj(ag) and, therefore, v ¢ V(A (xy, H)) . a contradiction.

Subcase: A = 6+ 1. In this case every vertex of the graph A (. H) =2 G is
of degree A or A—1, and cach vertex of degree A is a cut vertex in Ay (ag, H).
In addition, each end block of A (xry, H) 1s of order A . Morcover, if B is an end
block in A (xry, H) and z 1s a unique cut vertex of Aj(xg, H) that helongs to
B, then : is a vertex of degrec A and, therefore, there exists exactly one other
block B’ in A4;(xg, H) that contains =, and B’ is of order two. This implics that
if a vertex » belongs to an end block in Ay (rg, H) then it helongs to exactly
one such block and we denote this block by B.(z). We now choose a vertex vy
in Aj(wo, H) such that dg,(z,,1)(ve,v) = d for some vertex v of A,(xy, H).
Let Vi be the set of all vertices at distance d from vy in Ay (g, H). We shall
use the notation V= N4 (0. (Vi) = Vi and V' = Ny (o ry(V]) = Vi Tt is
clear that the sets Vy, Vi, Vi' are nonempty and mutually disjoint. Morcover,
each vertex = of VyU {vp} is a non-cut vertex and it belongs to some end block
of Ay(xo, H), cach vertex x' of V] is a cut vertex and it belongs to some end
block of Ay(zg, H), each vertex =" of V' is a cut vertex, and for cach vertex
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a' of V) there exists exactly one vertex z' in V' such that together they form
a block in A;(xo, H).

We now consider the graph A;(vy,H) = G. In this graph we have
V(Al(UO,H)) = (V(A](i(),H)) — V(Be(v()))) U {.’L‘o} U (NH(I()) - NH(’U())).
Therefore the set Ny(x9)— Np(vo) has A—1 vertices, say Ny(zo)— Npu(vo) =
{z1,...,@a—1}. Since Ay(vo,H) is connected and Na, (v, n)(z0) =
{z1,...,2a-1}, there exists at least one edge joining a vertex of {z1,..., Ta—1}
to a vertex of V(Al(zo,H)) — V(Be(vo)). We may assume that za_; is ad-
jacent to a vertex z* € V(A (z9,H)) — V(Be(vo)). Then no other vertex of
{z1,...,2a-2]} is adjacent to a vertex of Ay(zo,H) — V(Be(vo)) . For if a ver-
tex z; (¢ € {1,...,A —2}) were adjacent to a vertex z' € V(Ai(zo,H)) —
V(Be(vo)), then a z* — 2’ path (in A;(zo, H)) together with the edges z'z;,
TiTo, ToTa-1, Ta—12* would form a cycle in A;(vo, H). Consequently, the ver-
tices 9 and z* would be in the same block of the block graph A;(ve, H) and,
therefore, they would be adjacent in A;(vo, H) and in H , which is impossible
since z* € V(A;(z0,H)) = V(H) — (Nu(z0) U {z0}) . We therefore henceforth
assume that ra_; is a unique vertex of {x1,...,za—1} which is adjacent to
a vertex of Aj(zo,H) — V(Be(vo)) in Aj(vo, H). We now show that the ver-
tices zg,Z1,...,Za—1 form an end block in A;(vg, H). To prove this, it would
suffice to show that every vertex x; (1 <¢ < A —2) is adjacent to the vertex
za—1 (since Aj(vo, H) is a block graph and N4, (v, 1)(z0) = {z1,...,2a-1}).
Suppose to the contrary that some vertex z;, € {zy,...,ra—2} is not ad-
jacent to xa_y. Then Ny, (vo,m)(7i,) € {zo,...,za-2} — {z;,} and there-
fore da,(ve,H)(Zi,) < A — 1, a contradiction. This proves that the vertices
To,...,Ta—; form an end block of order A in A;(vo,H). Moreover, since
{a*,z0,...,2a-2} € Na,(wo,H)(Ta-1), da,(vo,1)(xa-1) = A and, therefore,
there exists exactly one vertex z* € V(Al(zo,H)) - V(Be(vo)) adjacent to
A -1 in A](‘l)(), H) .

Next we show that z* is a vertex of degree A —1 in A;(zo,H). Suppose
to the contrary that da, (s, #)(z*) = A. Then consider the graph A,(z*, H).
Clearly, vy is a vertex of A;(z*, H). In addition, exactly A + 1 vertices of
Ay(z*, H) belong to the set Ny(zo)U{x¢} which is the disjoint union of the sets
{zo,...,xa-1} and Ng(z9) N Np(vo). By the above we have V(Ai(z*, H)) N
{zo,...,2a-1} = {Z0,...,2a-2} - Hence, there exist two vertices y and y' such
that V(4;(z*, H)) N Ny(x0) N Nu(vo) = {y,y'}. But then zo, y, y', and vo
belong to the same block of A;(z*, H). Thus z¢ is adjacent to v in A;(z*, H)
and in H , a contradiction. This shows that da,(zo,#)(z*) = A —1.

It follows from the above that r* ¢ V| (since each vertex of Vj is of degree
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A in Aj(xg,H)). We now show that «* ¢ V', For d = 3, this is evident.
Thus assume that d > 4 and suppose to the contrary that «* € V', Since
da,(zo. (%) = A — 1, there exists a vertex y € Ny(ry) 0 Ny(vg) such that
V(Ai(z*,H)) N (Nu (o) U {xo}) = {y.r0....,ra_2}. Now let us observe that
if v belongs to Na,(zo.1)(2*) NV, then Ny (oo y(@) S V(B () U {y} = {v}
and d4, (o, y(2) 2 A—1 for each x € V(B(v)) —{v}. Hence, Ny (e n(r) =
V(Be(v)) U {y} — {v} for each = € V(B.(v)) — {v}. Consequently, V(B (v))U
{zo,v0} — {v} C Na (2=, m)(y) and dg, ;- 11)(y) > A+ 1, a contradiction. This
shows that z* ¢ V;'.

Next we show that 2* € V. This is clear if d = 3. Assume that d > 4
and suppose to the contrary that =* ¢ 14 and, therefore, o* ¢ V, UV UV,
Choose any vertex v € V; and consider the graph A;(v, H). It is casy to ob-
serve that there exists a vertex y € Ny (ao)N Ny (vg) such that V(A (v, H)) =

\% (Al (v, A1 (20, H))) U {y,z0,.-.,2a—1}. On the other hand, our assumption

on z* implies that the vertices vy and z* are in the same component of
A (v, Al(xo,H)) . But now an z* — vy path in 4; (v, A (o, H)) and the edges
VoY, YTo, ToTa—1, Ta—1x* form a cycle in the block graph A,(v, H). This
implies that the vertices vp and z¢ are adjacent in A;(v,H) and in H, which
is impossible. It follows that z* € V;..

Let P = (vo,v1,...,v4 = 2*) be the shortest vo — z* path in A,(xo, H).
Let B; denote the block of Aj(zo, H) that contains the vertices v;_; and v,
of P (i =1,...,d). Note that By and B, are end blocks of A;(z¢,H). As a
matter of fact, By and B, are the only end blocks of A;(xo,H). For if not, let
B be another end block of A;(z¢,H), and let z € V(B) be a vertex of degree
A —1 in Ay(zo,H). Clearly, B is disjoint with the blocks Bj,..., B4, and,
therefore, we have dg, (2o, 1)-v(B)(v0, ") = da,(z0,H)(v0,2*) = d. On the other
hand, observe that Aj(z, H) consists of A;(z¢,H) — V(B), the block induced
by the vertices zg,...,za—1, and the edge z*za—_;. This combined with the
above forces da,(;,n)(vo, o) = d + 2, which is impossible since A;(z,H) = G
is a graph of diameter d. This proves that B; and By are the only end blocks
of Ai(zo,H). Consequently, By, Bs,...,By are the only blocks of A;(z¢,H).
Moreover, d is an odd integer, and By, Bj,..., By are blocks of order A, while
B,,By,...,By-1 are blocks of order two.

The proof may now be completed. We distinguish two cases: d > 3 or d = 3.
First, if d > 3, then we consider the graph A;(vq—2,H). Certainly, there
exists y € Ny(vo) N Ny(zo) such that V(A;(va-z,H)) = V(Ai(z0,H)) U
{y,z0,...,za-1} — V(Bg-2) — {vi—1}. Note that the set V(Bq) — {vi—1,va}
is nonempty and each its vertex z is adjacent to the vertex y in A;(v4—2, H)
(otherwise da,(vs_,,H) < A — 1). This implies that the vertices of V(Bg) U
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{y,20,...,a-1} — {va=1} are in the same block of A4;(vq—e, H). Hence, the
vertex xy is adjacent to the vertex a* = vy in Ay(vq—2, H) and in H , a contra-
diction. If d = 3, then we consider the graphs A,(vy, H), Ay(vy, H), A1(vy, H)
for vy € V(Bj) — {v2,v3}, and A (vy, H). Note that there exists a vertex
t € Ny(vo) N Ny(xo) such that V(A (vy, H)) = V(By)U {t,z0,....: ra-2},
N A (vs. i) (t) = {vo, 20, .., xa-2}, and, therefore,

Na (v, iy(v1) N {t, o, .. .ooaa} =0.

On the other hand, since V(A (v, H)) = V(By)U{2g,...,0a-1}, the vertex ¢
must be adjacent to the vertex v . Finally, there exists a vertex z € Nyj(ag) —
{zo,...,xn—2} — {t} such that V(A;(vi,H)) = {t,z,200,...,0a_2} UV(By) —
{ve}. Since {vf,rg,...,0a-2} C Nao,.m(t) and {t,z,2y,...,0a-2} C
N, (o, .1)(r0), the vertices £ and xg are of degree A in A (vy, H) and they do
not form a bridge in Ay (vy, H) (as ay is their common neighbour). This implies
that A;(v;, H) is not isomorphic to G, which is a final contradiction. (]

COROLLARY 8. If G 1s a tree, then G € A, if and only if G is a path or a
star. ]

In the next theorem we determine the cycles whose squares belong to the

family N .

THEOREM 8. [If (), is a cycle of length i, then its square C? belongs to N
of and only of n =3,4,5, or 6.

Proof. It is clear that C';f = Iy, Cf ~ Iy, C’}f = LI's belong to A,
Morcover, C¢ helongs to N since N(v,C¢ + Iy) = C¢ for each vertex v of
2+ IV, . Thus, it remains to prove that C? doces not beloug to A if 0 > 7.
Suppose to the contrary that 2 € A for some n > 7. Let G be a graph
such that N(r,G) = C? for cach @ € V(G). Fix an arbitrary vertex @9 of G.

Since N(rg,G) is isomorphic to (% | we may assume that vg,vq, ..., 0,1 are
the vertices of N(ag,G), and v,041 and viogy are the edges of N(xg,G) (all
indices are taken modulo 7). We next cousider the graph N(v,. G) which is also
1somorphic to C,‘f . Assume that wg,uy, ..., u,—; are the vertices of N(vy, G),
and let wuipy and g be the edges of N(vy, G). Since &y aund the vertices
vy, vy, vy, vy of N(ry,G) belong to N(vy, G), without loss of generality we
may assume that wy = v, wy = vy, uy = ro, uzy = vy, and uy = vy (sce Figure
3). But now the graph N(vs, () contains a subgraph with the edges ey rgvy .
Ty, Tols. DUy, oy, atts, gty and vgus . which is impossible in €% for

n > 7. This contradicts N(vy,G) = (2, and our theorem follows. O
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Un -2

vy = Ug Uy -9

vy

V4 = U4 Ug

Vg

Figure 3.

Finally, we have the following partial result on cycles whose squares belong

to .A].

THEOREM 9. If C, s a cycle of length n, then its square C2 belongs to A,
for n€ {3,4,5,6,7}, and C?% does not belong to A, for n > 10.

Proof. Certainly, C? = K;, C? = K, C} = K5, C? = Ky32 &
E—FE%—E, and C72 ~ belong to A; by Lemma 1. We now claim that C,Q,
does not belong to A; if n > 10. Suppose to the contrary that C2 € A, for some
n > 10. Then there exists a graph G such that A4,(z,G) = C? for each z €
V(G). Take any vertex zo of G and consider the graph A;(zo,G). Assume that
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{vo,v1,... yUn_1} is the vertex set and {vivig1,vivi42: 1 =0,1,... ,n—1} is the
edge set of Ay(zy,G) (all indices are taken modulo n). Now, the
graph A;(v2,G) = C2? contains the vertices vs, vs,...,vn_; of Ay(z0,G),

the vertex =z, and four vertices of N¢(zo). Assume that V(Al(vg,G)) -
{wo,ur,. ..y up_1}, V(Al(v2,G)) N Ng(zo) = {uo,ul,u;;,u“}" up = xg, and
Us = Us,...,U,—1 = vp—1. Then, without loss of generality we may assume that
{uittigr, uitige: 1 =0,1,...,n—1} is the edge set of A;(v2,G). But now, since
n > 10, the vertices v,_2, vh_1, vy, v1, uo, u; belong to the graph A, (vs, G)
and {vn—2, vo, v1,u0,u1} € N4, (vs,G)(Vn-1). This implies that v,_; is a vertex
of degree at least 5 in A, (vs,G) and, therefore, A;(vs,G) is not isomorphic to
C? | a contradiction. This proves that C? does not belong to A; if n > 10. O

There are a number of questions raised by the results presented in this section.
We present some of them. Indeed, the following simple question is still unresolved
by us. Do the graphs C? and CZ? belong to A; ? Since the square C% of C,
is a circulant graph, Theorems 8 and 9 also raise the more general question:
characterize those circulant graphs which belong to A and those which belong
to .A] .

Hall [17] has proved that the Petersen graph belongs to A . It is natural to ask
which generalized Petersen graphs (see [33, p. 2| for the definition) belong to A
and which of them belong to A; . In particular, which products C, x K, belong
to N (A, resp.)? Note that C3 x K, belongs to ', since N(z,G) = C; x Ko
for each vertex « of the graph G shown in Figure 4. Similarly, C3 x K, belongs
to A, , since C3 x K, is isomorphic to Cs, and Cg belongs to A; by Lemma
1. Buset [11] has shown that Cy x K, belongs to N .

A sunflower of order n > 3 is a graph S,, with the vertices vg,v1,...,vp-1,
Up, Uy, ..., Un—1 and the edges v;vi41, wivi, and uvi4q (¢ is taken modulo
n). It is easy to check that S3 ¢ AN . On the other hand, Figure 5 exhibits a
graph F of order 16 (the opposite sides of the square are to be identified) such
that N(z,F) = S, for each x € V(F). This implies that Sy € A'. For which n
does there exist a finite graph G such that N(z,G) = S,, for each r € V(G)?
Which sunflowers belong to A4; 7

Finally, find the paths P, for which the square P? belongs to N and those
for which the square P2 belongs to A; .

4. In this section we have only one result.
Theorem 9 Every graph H belongs to A; for j > 2.

Proof. It is easy to see that for the lexicographic product C2j+2[H) of the
cycle Caj42 of length 25 + 2 and the graph H we have A;(v,Crj+2[H])) = H
for each vertex v of Cpj+2[H]. This implies that H € A;. =]
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