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ON GOLOMB BIRULERS 
AND THEIR APPLICATIONS 

HARALD G R O P P 

ABSTRACT. Golomb birulers are generalizations of Golomb rulers which have 
been investigated because of applications in radio astronomy. A survey of Golomb 
rulers and difference triangle sets is given. All small Golomb birulers are deter­
mined. Moreover applications in configuration theory are discussed. 

1. Introduction 

1.1 Definitions and Notations. 

In order to measure all the distances from 1 to 6 it is not necessary to 
have a ruler with 7 marks 0,1,2,3,4,5,6. A ruler with 4 marks in the posi­
tions 0,1,4,6 suffices, since all the distances from 1 to 6 can be expressed as 
differences in the set {0,1,4,6} as follows: 

1 = 1 - 0 , 2 = 6 - 4 , 3 = 4 - 1 , 4 = 4 - 0 , 5 = 6 - 1 , 6 = 6 - 0 . 

However, this is the biggest example of a ruler with 5 + 1 marks which 
measures the first s(s + l ) /2 natural numbers exactly once. The more general 
question is: What is the shortest length of a ruler with a given number of marks 
such that all the occurring differences are distinct? 

This question is motivated by applications in several fields, e.g. radar pulses, 
radio antennae signals, crystallography, and coding theory. For more details and 
further references see [2]. 

1.2 C o n t e n t s of t he sect ions. 

In section 2 the known results on Golomb rulers and difference triangle sets 
are surveyed. All Golomb rulers with size at most 15 are known. The natural 
generalization of Golomb rulers are DTS (difference triangle sets). These struc­
tures have a lot of applications in mathematics (cyclic configurations) and in 

A MS S u b j e c t C I a s s i f i ca t io n (1991): Primary 05B30, 05B10. Secondary 94C30. 
Key w o r d s : 2-configurations, Difference triangle sets, Golomb birulers. 

517 



HARALD GROPP 

other sciences (radar pulses, radio astronomy, x-ray diffraction crystallography). 
Another possible generalization, the so-called Costas arrays, which can be re­
garded as two-dimensional Golomb rulers are not discussed here. For further 
details see [1] and [2]. 

Birulers are discussed in this paper for the first time. Section 3 contains 
the existence results for small Golomb birulers with size at most 8. Also some 
2-DTS are presented there. In section 4 these results are applied to construct 
2-configurations. 

This paper should be understood as a first step into the investigation of 
birulers rather than a large collection of deep results. Its main aim is to get the 
reader interested in the problems which are exhibited here. 

2. Golomb rulers and difference triangle sets 

2.1 Perfect rulers. 

DEFINITION 2.1. A ruler of size S and length L is a series of S numbers 
a\, a-2,. . . , as such that a,\ + a2 + • • • + as = L and all sums of i consecutive 
numbers (1 < i < S) are different. 

If L = S(S + l ) / 2 . the ruler is called perfect. 

A ruler of size S and length L is usually described by a difference triangle, 
where the first row (or base row) contains the S numbers a\, a 2 , . . . , as , the sec­
ond row contains the sums of 2 consecutive numbers a\ + a 2 , a 2 +«3 • • • •, «:s-i + « s 
and so on, and the last row contains only L. 

A ruler of size 3 and length 6 can be described as follows: 

1 3 2 
4 5 

6 

Of course, this ruler is perfect. Moreover, it is the unique perfect ruler of 
size 3 . As usual a ruler a\, «27 • • •, o>s a n ( l its mirror ruler as, a>s~\, • • • , a\ are 
called equivalent. 

The proof of the following theorem contains the construction of all perfect 
rulers and is due to S. G o l o m b . 

THEOREM 2.2. There is no perfect ruler of size S > 3. 

P r o o f . For a perfect ruler the following holds: 

s 
L = S(S+l)/2 = ^2г. 
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Hence the base row consists of the numbers from 1 to 5 in a certain order. For 
5 = 1 the ruler consists of the number 1. 

If 5 > 1, the only possible neighbour of 1 in the base row is 5 . Otherwise 
the sum of 1 and its neighbour would be a number which also occurs in the base 
row. If 5 = 2, the ruler is 1,2 (or equivalently 2,1). 

If 5 > 2, the only possible neighbour of 2 is again 5 , since the number 
5 + 1 occurs already as sum of 1 and 5 . Thus the numbers 1 and 2 occur 
at the 2 ends of the ruler. Since they both are neighbours of 5 it follows that 
5 = 3 and the ruler is 1, 3, 2 (or equivalently 2, 3,1). 

2.2 Golomb rulers. 
The fact that there are no bigger perfect rulers leads to the following defini­

tion. 

DEFINITION 2.3. A ruler of size 5 With smallest possible length is called a 
Golomb ruler. 

Consider the following ruler of size 4 and length 11: 

1 3 5 2 
4 8 7 

9 10 
11 

Since there is no perfect ruler with length 10 the above example shows a ruler 
of smallest possible length, a Golomb ruler. In fact, there are 2 non-equivalent 
Golomb rulers of size 4. The second one is the following: 

2 5 1 3 
7 6 4 

8 9 
11 

There are even 4 non-equivalent Golomb rulers of size 5. Two of them which are 
exhibited below even produce the same set of differences: {1 ,2 , . . . , 17} \ {14,15} . 

1 3 6 2 5 1 7 3 2 4 
4 9 8 7 8 10 5 6 

10 11 13 11 12 9 
12 16 13 16 

17 17 

All lengths of Golomb rulers of size at most 15 are known. The following 
table shows the size 5 , the length of a Golomb ruler L(S), the difference of two 
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consecutive lengths, the number of non-equivalent Golomb rulers of this length, 

a n d one example for each length . 

5 ЦS) ЦS) - ЦS - 1 ) Number Fxarnple 

1 

2 

1 

3 2 

1 

1 

1 

1,2 

3 6 3 1 1,3,2 

4 11 5 2 1,3,5,2 

5 17 6 4 1,3,6,2,5 

в 25 8 5 1,3,6,8,5,2 

7 34 9 1 1,3,5,6,7, 10,2 

8 44 10 1 1,4,7, 13,2,8,6,3 

9 55 11 1 1,5,4, 13,3,8,7, 12,2 

10 72 17 2 1,3,9,15,5,14,7,10,6,2 

11 85 13 1 2,4,18,5,11,3,12,13,7, 1,9 

12 106 21 1 2,3,20, 12,6, 16, 11, 15,4,9, 1,7 

JЗ 127 21 1 5,23,10,3,8,1,18,7,17,15,14,2,4 

14 151 24 1 6, 1,8,13, 12, 11,24, 14,3,2,27, 10, 16,4 

15 177 26 1 1,3,7, 15,6,24, 12,8,39,2, 17, 16, 13,5,9 

T h e most astonishing length seems to be 1/(10) — 72. T h e numbers L(S) 

grow quite regularly for 5 < 9 while L(10) - F(9) > 1(11) - L ( 1 0 ) . For further 

details see [2]. 

I would like to mention the fact tha t there seems to be no general way of 

describing the solutions. In some sense there has not been any kind of a m a t h ­

emat ica l theory of Golomb rulers. T h e only way to obta in the above results 

which is known currently is more or less an extensive use of comput ing t ime 

which makes further progress in this field ra ther difficult. 

2.3 Di f ference t r iang le s e t s . 

T h e concept of a ruler can be generalized in the following way. 

D E F I N I T I O N 2.4 . A difference triangle set or an (J , J ) - D T S is a set of I 

rulers of size J such that all the IJ(J + l ) / 2 elements in thar triangles arc 

distinct. If the largest clement (called the length of the D T S ) is smallest possible 

the D T S is called optimal. If the length is IJ(J-f l ) / 2 the D T S is called perfect 

(or a perfect system of difference sets (PSDS) ). 

Of course, perfect rulers are perfect (1 , J ) - D T S whereas Golomb rulers are 

o p t i m a l ( 1 , J ) - D T S . 

T h e lengths of difference triangle sets have been investigated by engineers 

who needed the results for applications. Most of the results have been published 

in n o n - m a t h e m a t i c a l journals. However, there is a good survey in [9] which 

contains a lot of details and references. Many explicit solutions are exhibited in 

[8]. Some results about opt imal and perfect D T S can also be found in [4]. T h e 
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known lengths of opt imal DTS are shown in the following table [9]. The bold 
entries indicate perfect DTS. 

J - 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 

34 44 55 72 85 106 127 151 177 = 1 1 3 6 11 17 25 

2 2 7 13 22 34 51 

3 3 10 19 32 49 77 

4 4 1 2 2 4 41 65 

5 5 1 5 3 0 51 83 

6 6 19 3 6 6 0 

7 7 22 4 2 71 

8 8 2 4 4 8 8 0 

9 9 2 7 5 4 

10 1 0 31 6 0 1 0 0 

11 1 1 34 6 6 

12 1 2 3 6 7 2 

13 1 3 3 9 7 8 

14 1 4 43 8 4 

15 1 5 46 9 0 

16 1 6 4 8 

17 1 7 5 1 

18 1 8 55 1 0 8 

Of course, the- first row of this tahle corresponds to the tahle of Golomh rulers 
in 2.2. 

In the following some especially interesting explicit solutions of [8] are cxhih-
ited. T h e higgest known length of an optimal DTS with I > \ and maximal 
J is 77 for a ( 3 , 6 ) - D T S . The 3 triangle's contain 63 distinct numhers . Those 
which are not contained are 36 ,41 ,44 .47 ,50 ,51 , 57 ,60 ,65 , GG, G7, G9, 71, 73 . 

1 2 1 3 - 1 8 22 21 
3 15 31 40 43 

16 33 53 61 
34 55 74 

5G 76 
77 

4 6 20 19 9 14 
10 26 39 28 23 

30 45 48 42 
49 54 62 

58 68 
72 
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5 7 17 8 27 11 
12 24 25 35 38 

29 32 52 46 
37 59 63 

64 70 
75 

Especially remarkable is the existence of a perfect (10,4)-DTS. This means 
that in the following 10 triangles the 100 smallest natural numbers occur ex­
actly once. This is the biggest known perfect DTS with J — 4 . 

1 44 53 2 7 51 23 14 
45 97 55 58 74 37 

98 99 81 88 
100 95 

15 31 30 17 6 43 20 22 
46 61 47 49 63 42 

76 78 69 85 
93 91 

3 29 33 24 9 27 41 19 
32 62 57 36 68 60 

65 86 77 87 
89 96 

10 25 48 11 12 28 39 13 
35 73 59 40 67 52 

83 84 79 80 
94 92 

26 38 18 4 50 16 5 
34 64 56 54 66 21 

72 82 70 71 
90 75 
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3 . B iru lers 

3 .1 Per fec t b i ru l er s . 

While the previous section surveys already known results on difference tri­
angle sets, this section introduces the new concept of a biruler and contains the 
first results on small birulers. While it is clear tha t the application of birulers 
is also possible in configuration theory (compare [4] and section 4) there is also 
hope tha t birulers are of good use in the fields mentioned in the beginning as 
radio as t ronomy e t c 

The name biruler is used as a generalization of the word ruler in the same 
sense as a biplane is a generalization of a finite projective plane. 

D E F I N I T I O N 3 . 1 . A biruler of size S and length L is a series of S numbers 
a\, «2 , • • • , as such that a\ + a<i + • • • + as — L and no number occurs more than 
twice as a sum of i consecutive numbers. 

If L is smallest possible the biruler is called perfect. 

Again the same description as above is used. The difference tr iangle of a bir­
uler must not contain a number more than twice. There are the following perfect 
birulers of size at most 5 (up to equivalence). They are due to S . G o 1 o m b 

[3]. 

1 1 
2 

1 2 1 1 1 2 
3 3 and 2 3 

4 4 

1 2 2 1 
3 4 3 

5 5 
6 

1 2 2 3 1 
3 4 5 4 

5 7 6 

T h e following theorem is similar to Theorem 2.2 and states tha t there are no 
big perfect birulers. 

T H E O R E M 3 . 2 . There is no perfect biruler of size S > 5 . 

P r o o f . The base row of a perfect biruler of size S contains (let S > 5 ) 

(i) the numbers from 1 to 5 / 2 twice each for even 5 , and 
(ii) the numbers from 1 to ( 5 — l ) / 2 twice each and the number (S + l ) / 2 

once for odd S . 
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If 5 is even, possible neighbours of 1 are only the 2 numbers 5 / 2 . Thus 
the difference 1 + 5 / 2 occurs twice, which implies tha t the 2 numbers 5 / 2 are 
also the only possible neighbours of 2 . If 5 = 6 , this implies the following base 
row 1 , 3 , 2 , 2 , 3 , 1 . In the second row the number 4 occurs three t imes, which is 
contradic tory to the definition of a biruler . If 5 > 6 , there is a contradict ion 
since the numbers 2 need further neighbours, which do not exist . 

If 5 is odd the neighbours of 1 are ( 5 — l ) / 2 and ( 5 + l ) / 2 . Again the 
other neighbour of ( 5 + l ) / 2 is the number 2 . Since 5 > 5 , the numbers 2 are 
not neighbours of each other. Two further neighbours of 2 are needed which , 
however, do not exist. 

3 .2 G o l o m b b iru lers . 

Golomb birulers are defined and all small examples are investigated. 

D E F I N I T I O N 3 . 3 . A biruler of size S vnih smallest possible length is called 

Golomb biruler. 

A perfect ruler of size 6 (and length 12) does not exist (compare Theo­
rem 3.2). Hence the following biruler of length 13 is a Golomb biruler. 

1 2 4 1 3 2 
3 6 5 4 5 

7 7 8 6 
8 10 10 

11 12 
13 

A computer search for all possible Golomb birulers of size 6 yields the result 
tha t there are exactly 2 non-equivalent Golomb birulers; the second one looks 
as follows; 

1 3 2 4 1 2 
4 5 6 5 3 

6 9 7 7 
10 10 9 

11 12 
13 

The computer search is continued for all Golomb birulers of size at most S. 
One of 3 known birulers of size 9 with length 29 is the following (Probably no 
such biruler with shorter length exists): 
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1 1 4 5 3 4 3 6 2 
2 5 9 8 7 7 9 8 

6 10 12 12 10 13 11 
11 13 16 15 16 15 

14 17 19 21 18 
18 20 25 23 

21 26 27 
27 28 

29 

T h e following table contains all the known results about perfect b inders and 
Golomb b inders in a similar manner as the table concerning rulers in 2.2. 

S L(S) L(S)-L(S-1) Number Solutions 

1 1 
2 2 1 
3 4 2 

4 6 2 
5 9 3 
6 13 4 

18 

23 

1 1 
1 11 
2 121 

112 
1 1221 
1 12231 
2 124132 

132412 
3 1144332 

1242531 
1254231 

4 11544332 
12425531 
13252631 
13425512 

A comparison with the corresponding table for rulers shows that 

(i) the numbers L(S) behave quite "reasonably", at least for these small 
values of S , and 

(ii) the number of non-equivalent Golomb b inders of a certain size is not 
1 for the bigger known values which is different from the s i tuat ion of 
rulers. 

Whe the r these propert ies are t rue in general or not will depend on future 
results on bigger values of S . The computing t ime which was spent for S < 8 
was quite small. However, a further search for b inders with bigger S will soon 
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need much more time. That is the reason why I decided to stop at this point 
and hope for an improvement of the used methods in the future. 

3.3 2-Difference triangle sets . 

A quite natural generalization of birulers will be introduced in the following. 
Some small examples are exhibited in order to indicate problems rather than to 
give complete solutions. 

DEFINITION 3.4. A 2-difference triangle set or a 2-(I, J)-DTS is a set of I 
birulers of size J such that no number occurs more than twice in the I triangles 
which contain IJ(J + l ) /2 elements. If the largest element (called the length of 
the 2-DTS) is the smallest possible, the 2-DTS is called optimal. 

LEMMA 3.5. The following 2-(2,4)-DTS is optimal. 

1 3 4 2 1 5 3 2 
4 7 6 6 8 5 

8 9 9 10 
10 11 

P r o o f . The length of a 2-(2, 4)-DTS is at least 10 . However, such a 2-DTS 
cannot exist since there is no perfect ruler of size 4 . Hence length 11 is smallest 
possible and the above 2-DTS is optimal. 

R e m a r k 3.6. The above 2-DTS indicates a construction method which 
can be used in general to obtain "good" 2-DTS. Take a Golomb ruler of size S. 
Since it is not perfect for large 5 some numbers do not occur in the triangle. 
E.g. the second triangle* does not contain 4. This improves the chance to find a 
suitable partner triangle which need not be a ruler. The first triangle contains 
4 twice. 

The strategy described above is used to construct the following 2- (2, 5)-DTS 
of length 17: 

1 3 6 5 2 1 4 3 6 2 
4 9 11 7 5 7 9 8 

10 14 13 8 13 11 
15 16 14 15 

17 16 

A Golomb ruler of size 5 not containing 8 is combined with a triangle of 
length 16 which contains 8 twice. However, it is not yet decided whether this 
2-DTS is optimal since it is possible that there is also a 2-(2,5)-DTS of length 
16. 
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4. 2 - c o n f i g u r a t i o n s 

4.1 A p p l i c a t i o n of b i ru lers . 

Golomb rulers and opt imal difference triangle sets have been used to construct 
configurations (see [4], [5]). In the same way birulers can be used to obta in 
2-configurations. The definition of a A-configuration can be found in [6] and is 
repeated below for the special case of symmetric 2-configurations . Some of the 
results on the existence of 2-configurations are cited below, for further details 
see [6]. 

D E F I N I T I O N 4 . 1 . A symmetric 2-configuration (Ujfc)2 l'3 a finite incidence 
structure consisting of a set of v points and a set of v subsets (called lines) 
of this set such that 

(i) there are k points on each line and k lines through each point, 
(ii) two different points are connected by at most 2 lines and two different 

lines intersect each other in at most 2 points. 

The construct ion of 2-configurations from birulers is described in [6] and 
explained below by giving an example. Take the perfect biruler of size 5 . 

1 2 2 3 1 
3 4 5 4 

5 7 6 
8 8 

9 

T h e first line £$ of the 2-configuration contains 6 points , point 0 and the 
first entries of each row of the above triangle . Hence £o = { 0 , 1 , 3 , 5 , 8, 9} . Now 
construct £{ by adding i (mod 18) to all elements of £o : 

U = { 1 , 2 , 4 , 6 , 9 , 1 0 } , . . . , £ l 7 = { 1 7 , 0 , 2 , 4 , 7 , 8 } . 

T h e 18 lines ^o- • - • -^17 f o r m a 2-configuration (18e)2 • 

T h e same procedure is possible for all v > 18 . By adding i (mod v) to £Q 
we obta in a 2-configuration (^6)2 with a cyclic au tomorphism of order v. 

However, for v — 17 this procedure is not successful, since —8 = 9 (mod 17) . 
This shows tha t the existence of a suitable biruler is sufficient for the existence 
of the corresponding 2-configuration. Tha t it is not at all necessary will be seen 
in the following subsection. 

4 .2 E x i s t e n c e of 2 -conf igurat ions . 

T h e investigation of 2-configurations was already s ta r ted dur ing the 19th 
century. A historical survey can be found in [7]. 
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There are exactly 3 non-isomorphic 2-configurations (165)2, one of which 
was cons t ructed by E. Kummer in 1864. None of the 3 ment ioned 2-configur-
at ions has an au tomorphism of order 16 . Hence none of them can be constructed 
by the ubiruler me thod" . 

Whi le this Kummer-2-configuration is a quite well-known combinatorial s truc­
ture , the existence of a 2-configuration (176 )i has been in doubt unti l recently; 
it was const ructed in [6]. 

In general , the existence of a 2-configuration (vk)2 implies v > k(k — l ) / 2 + l . 
For k < 6 the reverse implication is also t rue (for details see [6]). However, there 
is no 2-configuration (227)2 • This was proved by Hussain (1946) for the first t ime 
and can be deduced from a general theorem, the Bruck-Ryser-Chowla Theorem 
(1950). 

T h e unti l now obtained birulers of size 6 do not help to construct a 2-con-
figuration (237)2 • No other method has been used successfully either to obta in 
such a s t ruc ture . Since neither non-existence proof is available, its existence is 
still in doubt . 

For v > 24 the Golomb birulers of size 6 help to construct an example 
of a cyclic 2-configuration (^7)2- By analyzing all suitable birulers (not only 
the op t imal ones) it will even be possible to construct all 11011-isoiiiorphic cyclic 
2-configurations with given parameters , e.g. all cyclic 2-configurations (1S(, )2 

and (24 7 ) 2 . 

I hope tha t these combinatorial applications as well as the first results on 
birulers convince the reader tha t this research should be continued. I also recall 
tha t it should be investigated if and how birulers can be used in those 11011-
ma thema t i ca l fields of application mentioned earlier and explained in [2]. 
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