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SOME DIOPHANTINE APPROXIMATION RESULTS
CONCERNING LINEAR RECURRENCES

J. P. JONES*) — P. KISS**D

ABSTRACT. Let R, and V, (n =0,1,2,...) be sequences of integers defined
by Rn = AR,_1 — BR,_o and V,, = AV, _; — BV,,_2, where A and B are
fixed non-zero integers and Rp =0, Ry =1, Vp =2, Vi = A. Furthermore let
D = A? — 4B . We show that

1
c- R2

<

v
VD -
SRS

holds for infinitely many n if and only if |[B| =1 and ¢ £ VD/2. We also show

that the “best” rational approximations of the irrational number VD have the
form p/q=Vn/Rn.

§1. Introduction

Let R, and V,,(n =0,1,... ), be sequences of integers defined by a second
order linear recurrence

Rn:A'Rn_l—B'Rn_z (n:2,3,...),
Vn:A'Vn_l—B'Vn_Q (TL:2,3,...),

where A and B are fixed non-zero integers and the initial terms of the sequences
are Rg =0, Ry =1, Vo =2 and V; = A. Let « and S be the roots of the
characteristic polynomial 2 — Az + B and let D denote its discriminant. Then
we have

(i) D=A*-4B, (i) A=a+p, (ii) B=ap. (1)
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Throughout the paper we suppose that D >0, D # 0O (D is not a square) and
also that 0 < A, (sce discussion of 0 < A below). Plainly |8| = |«] if and only
if D<0.Thus when D >0 and D # 0O, o and A are irrational real nunbers
and we can suppose that |3] < |o|. Furthermore, since 3 # o, the terms of the
sequences R, and V, are given by

AU L
(iv) Ro="""L" (v) Veza"4pm (1)
a—f3

For the derivation of (iv) and (v) see e.g. [1], [6] or [7]. From these equations it
is not difficult to sce that =

Rn+l \/5 2\/5

. o . D - ‘ 9
(1) R, « —"(”//j)n 1 (11) R ————(”// o1 (2)

Since 4] < |a, it follows from (2) that
(1)  lim *Iz]?—l =« and (i1) lim ;?l =a-p=VD. (3)

Thus R, 4+;/R, is an approximation to the irrational number o« and V,,/R, is
an approximation to the irrational number /D . The quality of the approxima-
tion (3) (1) to « has been investigated in earlier papers. In [2] it was proved that
the inequality

1
R"'zl

o Rn+1
g Rn

holds for infinitely many n if and only if |B| = 1. In [2] it was also proved
that when |B| =1 and p/q is a rational number such that (p,q) = 1, then the
inequality

Pl 1
a— = e
ql " VD¢
implies that p/q = R,+1/Ry for some n > 1. In some other special cases similar

results follow from [3] and [8]. The quality of the approximation of « by the
ratio R,4+1/R, was studied in the papers [4] and [5], in the general setting when
|B| # 1 and even for D < 0.

In this paper we consider the approximation of /D by rationals of the form
V./Rn . We shall see that the approximation by V,,/R,, is the best possibility
when |B|=1.

Throughout we will assume that 0 < A. There is no loss of generality in
making this assumption. To see this, let A be a positive integer and suppose V,
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and R, are the sequences defined by A and B, with characteristic roots a and
J,and V! and R), are the sequences defined l)y —A and B, with characteristic
100t9 o au(l,@'. Tll( 'n D' = D and the assumption 0 < A is equivalent to
a — = D. Hence from our assumption 0 < D, i.e. that |3] < |a|, we obtain

A+ VD A-VD
2 ’ 2 ’

and
., —-A-VD . —A+VD

(y:——2-——:~a, /3':~—§—:~/3.

Therefore o'/p' = /. Hence we have from (1) (iv) and (v) that

V.V,

R,n R" .
Thus approximating /D by rationals V,,/R,, when 4 < 0, is equivalent to

approximating —v D by rationals V/R; , when 0 < A. So we shall suppose
0 < A together with our other assumptions, 0 < D, B # 0 and D # 0.

We shall prove the following theorems:

THEOREM 1. Let ¢ be a rcal number. Then the inequality

1
PRl ow

holds for infinitely many n if and only if |B| =1 and ¢ < V/D/2.
THEOREM 2. Suppose |B| =1 and B+5 < A. All sufficiently large solutions
r/q of )
ZERE (4)
vo-il< 7o

have the form p/q = V,/R, for some positive integer n.

THEOREM 3. Suppose |B| =1 and B+5 < A. Then infinitely many rational
numbers p and q satisfy the inequality

|\/——§< L (5)

c-q?

2V/D. When ¢ = 2D, every sufficiently large rational

has the form p/q = Vy,/R, . for some positive integer n.

if and only if ¢

<
solution p/q of (5)
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§2. Proof of the theorems

Proof of Theoreml. From (1) (ii), (iii) we have af = B and
a — 3 =D so that by (1) (iv), (v) we have

Vn a™ + / n 2\/5/311 2/1"((y" _ /}n)
Rn \/— \/_<an _ /}n ) amn — //371 \/5 . R'zl

_ 2B™(1 —(f/a)™)

-~ VDR
Hence the inequality of Theorem 1 is equivalent to |B|"|1 — (3/a)"| < VD/2c.

Since || < |a| we have (/a)* — 0 as n — oo. Theorem 1 follows.

(6)

In the proofs of Theorems 2 and 3 below we shall use the following lemma.
A proof of it can be found in [9], (Chapter 7 in the 5th edition).

LEMMA 1. Let v be irrational. If there exist integers p and ¢ > 1 such that
< 1
q 242"
then p/q 1is one of the convergents to the simple continued fraction ezxpansion of

v, that is, p/q = hn/k, holds for some n where h,/k, 1s the nth convergent
to vv.

-

Proofof Theorem 2. We will consider four cases according as B = +1
and A is odd or A is even. The assumption B + 5 < A is equivalent to saying
that when B = —1 and A is even, then 4 < A; when B = —1 and A is odd,
then 5 < A; when B = +1 and A is even, then 6 < A; and when B = +1
and A is odd, then 7 < A. From these it follows that 2 < v/D/2 if B = —1
and 5/2 < V/D/2 if B = +1. We shall use these inequalities in the following
when we apply Lemma 1.

First suppose that B = —1 and A = 2a, where a is an integer and a > 2.
In this case 4 < A and we have VD = V4a? + 4. In this case it is easy to check
that the simple periodic continued fraction expansion of VD is

VD = (2a,a,4a). (7)
Let v = VD. Since D # 0O, v is irrational. When v = (ag,a1,az2,...) is

the simple continued fraction expansion of an irrational number v, then, as is
well known, see [9], the nth convergent r, = (ao,a;,...,a,) to v is given by
Tn = hy/kn, where h, and k, are sequences defined by

h_, =0, hoy=1, hi=a;hi_y +hi_o, (:=0,1,...), (8)
k._'):l, k_] :0’ ki:("iki—l —+—k‘,‘_2’ (120,1,) (9)
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In our case, from (7) we have ay = 2a and
Azi—] = a and ay; = 4a, (1 =0,1,...). (10)

Consequently by (8), hg = 2a, hy = a-2a+1 = 2¢* +1 and hy, =
4a - (2a* + 1) 4+ 2a = 8a® + 6a. On the other hand, from the definition of the
sequence V,, Vo =2=2h_,, Vi=A=2a=hg, V) =2a-2a+2 =2 Iy and
Vs = 8a® 4+ 6a = hy.

We now extend these equations by proving that
Vaio  =2-hyy, (11)
Vaigr = ha,y (12)
for : > 0. Equations (11) and (12) will be proved by induction. The equations

hold for ¢ = 0 and ¢ = 1. Suppose (11) and (12) hold for indices 0,1,... 2.
Then from (8) - (12) we have

V2(i+1) = Vz,‘+2 = 2a- Vzi+1 + Vo, = 2ahy; 4+ 2hgy—y = 2(ahy, + hyy—y) = 9"2i+1

SV

“hagipny -

Also
Vatit1y+1 = 2aVaige + Vaigr = 4dahgigyr + hoy = hoig)-

Hence (11) and (12) are established for all ¢ > 0.
Similarly as above, by (9) we have Ry =0 =k_;, Ry =1 =ky, R, = 2a
=2ky, R3 =4a® +1 = ky and we can show by induction that for any 7 > 0

Ryi  =2-kyiy, (13)
and

R21+1 = k21~ (14)

Now suppose (4) holds, i.e. |v/D—p/q| < 2/vV/Dg?* for some p and ¢. Then,
since 2 < \/5/2, Lemma 1 implies that p/q = h,/k, for some n. Hence by
(11), (12), (13) and (14), we have p/q = V,,/R,, which implies the theorem.

Next suppose B = —1 and that A = 2a + 1 is odd. Since 5 < A, we have
2 < a. In this case VD = V4a? + 4a + 5. /D is irrational and 2 < \/5/2
The periodic continued fraction of v/D is VD = (2a + 1,a,1,1,a,4a + 2) =
(ap,a1,aq,...), where ay =2a+ 1 and

asit1 =a, Gsi42 =1, asiy3 =1, asiya =a, asiys =4a+2,
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for : > 0. By an argument similar to the above but longer, we can show that
for 1 >0

Vsi =2-hsiy, R3i =2-ksioy,
Viig1 = hsi, Riit1 = ksi s (15)
Viizo = hsiys, R3iyo = ksiys.

Now suppose (4) holds for some rational p/q. Since 2 < vD/2, Lemma 1
implies that p/¢ = r, = h,/k, for some n. Hence by (15) the theorem holds
when n =5 —1, n =5 or n =5 +3. If n is of the form n = 5+ 1 or
n = 57 + 2, then we still have to prove that

\/_ o < VD =ry|. (16)

Suppose first that n = 5: + 1. By the elementary properties of the continued
fraction expansion of an irrational number v, we have

fy = ral 1 (7)
7 ' kn(gn+1kn + kn—l)
where 6; is defined by v = (ao,a1,a2,...,aj-1,0;) and 0; = (aj,a;41,...).

By (17), to prove (16), we have to show that

kn—l \/-5
8, —
+1 + k. < 5 (18)
When n = 52+ 1 we have
Ont1 = bsi42 = (1,1,a,4a + 2,a)
and one can check that
2a — 1+ \/B
Os5ipp = ———
sivs = 2ot (19)
Furthermore, from (9), (15) and (3) we have
kn_y _ ks _ ks; _ R3iqq _ 1
kn ksita aksi + ksi—1 aRziy1 + R3i/2 a+ Rju
2. R3i+1 (20)
< . 1 +e€
ad —
2a
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for any € > 0, if 7 is large enough. But

~A—F\/E_«2(1-%1-%\/5

and from (19) and (21), after a short calculation, we have

1 oD VD

Osi42 + 1 ‘?a+1< 5

since a > 2. Together with (20), this proves inequality (18).
When n = 5¢ + 1, we can prove inequality (16) by a similar argument.

We now consider the third case, B = 1 and A is even. Then A = 2a and
B+ 5 < A implies 3 < a. In this case

VD = 4a* —4=(2a—-1,T,a-2,1,4a - 2)

and we have
Vaivr = haigr, Raiy1 = kaiqy, (22)
Vai =2 hgi, Ryi =2 k4iy,
for ¢ > 0. Suppose (4) holds for some rational p/q. Since 2 < /D /2, Lemma 1
inplies that p/q is a convergent to the continued fraction expansion of VD,
i.e. that p/q = rn = h,/kn . Hence from (22), p/q = V;/R;,if n is of the form
n=4i+1 or n = 4i— 1. Similar to the above, for the other convergents we can
prove that

< 1\/1_)—r4,,+2 and < I\/_ Tan|,

\/—‘ k4n+2 \/_ k

by using

2a —4+ VD
an = 174 “2,1, -2V
ants = (1,4a a ) py—

2a — 1+4++D
647'+1 :<1’a_27114a_2):T5~_.

This completes the proof of the theorem in this third case.

589



J. P. JONES — P. KISS

Finally assume B =1 and A4 is odd. Then A =2a+1. B4+ 5 < A implies
3 < a. In this case VD = V4a? ¥ da - 3 = (2a,1,a = 1,2,a — 1,1,4a), where

a 1s an integer, and we can show that

‘51+| = ’Im’+1 s R:;.+| = 1~'m+| \
Viego = hgigs Raipo = Foigs (23)
"?mr:; =2. ]'m+5 \ R.’h+1{ =2. l\'m+5 \

for all + > 0. Furthermore'it can be shown that

2(14—\/5

Ons1 = (l,a—1,2,a—-1,1,4a) =

4a — 3

2a — 1+ VD

H(in+3 = <2Jl -1,1,4a,1,a —1) = L,;*il—‘“ N
2a —

20 -3+ VD

Bonys = (TdaTa—T,2a-1) = 2+ VD
4a — 3

from which we obtain

<|VD —r,]
,/ Ch2

n
when n=6i, n=64+2 or n=6+4, (: =0,1,2,...), using 3 < a. Hence
the theorem is proved in all four cases.

Proof of Theorem 3. If a rational number p/q, with p and ¢ suffi-
ciently large, satisfies the inequality (5), with ¢ = 2¢/D, then inequality (4) is
also satisfied by p/q. Consequently by Theorem 2, there exists a positive integer
n such that p/q = V,/R,, .

If ¢ > 2 and p/q is a solution of (5), then by Lemma 1 p/q is a convergent

to the simple continued fraction expansion of VD and so, by (11)- (15), (22)
and (23), p=V, or p=V,/2 and ¢ = R, or ¢ = R, /2 for some n. From
these by (6), with V,, = 2p and R, = 2¢,

-

follows. From (5) and (24) we obtain the inequality ¢ < 2v/D. From (24) it also
follows that (5) has infinitely many p, ¢ integer solutions if ¢ < 2V D . Thus we

have proved every assertion of the theorem.
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