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ON RECIPROCAL SUMS OF TERMS 
OF LINEAR RECURRENCES 

JAROSLAV HANCL*) — P E T E R KISS**)1) 

(Communicated by Stefan Porubsky) 

A B S T R A C T . The paper deals with the irrationality of infinite series, where terms 
are reciprocal of terms of a linear recurrent sequence with constant coefficients. 

Let G = {Gn}£Lo be a linear recursive sequence of order k (> 1) defined 
by 

Gn = A\Gn-\ + A2Gn-2 + • • • + AkGn-k (n>k), 

where Ai, A2,..., Ak and the initial terms Go, G\,..., Gk-\ are given rational 
integers - not all zero. Denote by a = a\, a2,... ,a3 the distinct roots of the 
characteristic polynomial 

G(x) = xk - A\xk~l - A2x
k'2 Ak. 

Suppose that s > 2 and the roots have multiplicity m = m\, m2,... ,m3 . Then, 
as it is well known, the terms of the sequence G can be expressed by 

Gn = f(n)an + f2(n)an + - - - + f3(n)an (1) 

for any n > 0 , where f(x), f2(x),..., f3(x) are polynomials over the number 
field Q(a, a2,..., a3) of degree m — 1, m2 — 1 , . . . , m3 — 1, respectively. 

In the sequel we suppose that a is a dominant root of G(x) (i.e. \a\ > \ai\ 
for i = 2 , . . . , s) and Gn ^ 0 for n > 0. 

If k = 2 and Go = 0, G\ = 1, we denote the second order linear recursive 
sequence by R, furthermore if Go = 2 and G\ = A\, then the sequence will be 
denoted by V. For these sequences the characteristic polynomial is x2 — A\x — A2 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11J72. Secondary 11B37. 
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and we denote its roots by a and /3 (/3 = a2)> where \a\ > |/3| by the above 
restriction. The terms of the sequences R and V can be written in the form 

i?n = (a"- /?" ) / (<*- /J) (2) 

and 
Vn = an+pn (3) 

for any n > 0. 

In the special case A\ = A2 = 1 the sequences i?, V are the known Fi­
bonacci and Lucas sequences which will be denoted by F and L. 

It is known that for the Fibonacci numbers 

0 0 

Y/l/F^ = (7-VE)/2 (4) 
n=0 

(see [5] and [6]) and so the sum of this series is an irrational number. Solving 
two problems of E r d 6 s and G r a h a m [4], C . B a d e a [2] has shown that 

£ -1J--+. (5) 
n = l 

and 
0 0 

£ l / £ 2 « (6) 
n = l 

are also irrational. 

For the sequence V, with restriction A\ > 1, R . A n d r e - J e a n i n [1] 
obtained the following result. If e = 1 or e = — 1, then 

00 

* = Ee"iy-" (?) 
n=0 

is an irrational number. Furthermore, if A\ + AA2 = D is not a perfect square 
and |/31 < 1, then 1, a, 3> are linearly independent over Q. 

As a consequence of a more general theorem P . B u n d s c h u h and 
A . P e t h 6 [3] obtained a transcendence result for the sequences R with A\ > 0 
and A2 = 1: Let {J3n}£_0 be a sequence of integers such that \Bn\ is not a 
constant for large indices and 

\Bn\ < R2níx 
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for any e > 0 and n > n(e). Then 

oo 

£ £ n / / ? 2 " (8) 
n=0 

is a transcendental number. 

The aim of this paper is to give similar results for general sequences. For the 
most general linear recurrences G (with restriction |a| > |a, | for i = 2 , . . . , s) 
we prove: 

THEOREM 1. Le G be a linear recurrence of order k defined by (1) and let 
{bn}n

<Ll be a sequence of non-zero integers. If {kn}n
<L.l is a sequence of positive 

integers such that 

}™o(b" • II /(fc0«*')/(/(fcn)«*n) =0, (9) 
^ ^ 1=1 

then the sum of the series 

Jtbn/Gkn (10) 
n = l 

is an irrational number. 

This theorem implies some consequences for second order linear recurrences 
R and V. Let k = 2 and denote by D the discriminant of the characteristic 
polynomial x2 — A\x — A2 of sequences R and V. Thus 

\/Ď=yjAl+4A2 = \a-l3\ 

and by (2) and (3) for the sequences R and V the function f(n), defined in 
(1), is f(n) = l/y/D or -l/y/D (according to a > 0 or a < 0 ) and f(n) = 1 
respectively. Substituting these values into (9) from Theorem 1 we immediately 
obtain: 

COROLLARY 1. Let t (> 0) and k be fixed integers with t > k and let 
{°n}n

<Li be a sequence of non-zero integers. Define the sequence {kn}n
<Ll by 

kn=t2n-k. If 
lim bn/(ahy/D)n = 0 , 

n—*oo 
then the sum of the series 

oo 

/ J bn/Rt2n-k 
n = l 

is an irrational number. 
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C O R O L L A R Y 2. If k>0 and 

lim bn/a
kn=0, 

n—>oo 

then 
oo 

/]bn/Vt2»-k 
n=l 

is irrational for any fixed integer t with t > k . 

In the case k = 0 we can give a weaker condition for the sequence {bn}n
<

=1. 

THEOREM 2. If {bn}n
<L1 is a sequence of non-zero integers such that 

lim bn/a
t2n'1 = 0 , (11) 

n-->oo 

then the sum of the series 
CO 

/ J bn/Rt2n 

n=l 

is an irrational number. 

THEOREM 3 . Let V be a generalized Lucas sequence defined by (3) , such that 
\/31 < 1. Then the sum of the series 

oo 

n = l 

is an irrational number for any fixed positive integer t. 

N o t e s . The irrationality of the sums (4) and (5) follows from Corol­
lary 1 with t = 1, and with k = 0 and k = — 1, respectively, since D = 5 , 
a = ( l + y/h ) /2 and 0 < | a/y/D\ < 1 in this case. Theorem 3 with t = 1 
implies the irrationality of sums (6) and (7) with e = 1. The irrationality of 
(8) follows from Theorem 2 with t = 1 since 

1-^1/1*0 <*-
for any e, £\ > 0 if n is sufficiently large. 

For the proof of the theorems we need the following result which can be found 
in [7] in a more general form. 
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LEMMA. Let {an}n
<Ll and { t n } ^ ! be sequences of integers such that 

0 < |6 n | < \an\ < | a n +i | for every n > n0 . If lim bn/an = 0, then the 
n—^00 

sum of the series 
bn £ 

n=l ß l • ° 2 

is an irrational number. 

P r o o f of T h e o r e m 1. By condition (9) it is easy to see that the se­
quence {kn}n

<L1 is strictly increasing from some index and that the sum (10) 
is convergent. (10) can be written in the form 

E6n/G*„=£&nP(n-l)/P(n), 
n = l n = l 

where P(m) denote the product 

m 

i = l 

and so by the lemma it is enough to prove that 

Cn = bnP(n — \)/Gkn —> 0 as n —• oo . 

By (1) we have 

6 n(fl / ( f c ' ) a*0(fl ( i + F ( A : , ) )) 
Cn~ ' / (* n )a- - ( l + F(*n)) ' ( 1 2 ) 

where 

-tm\ j~2(m) faAm , • I"^m) i a ' \ 

But, using that 0 < |o:j/a| < 1 for i = 2 , . . . , s, it can be easily seen that 
F(kn) —* 0 as n —> oo and 

П-Ì 

ГJ(l + F(fc.))=c(n)<ć 
1 = 1 
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for any n, where c depends only on the parameters of the sequence G. So by 
(9) and (12) we get 

lim Cn = 0 
n—^00 

which proves the theorem. 

P r o o f o f T h e o r e m 2. By (2) and (3) we have 

a í 2 " - / 3 t 2 " a ' - - 1 - ^ " - 1 n 
Rt2n = „_,? = v ' 2 - 1 r-jfl = = Rt 1 1 v«-'-a - / ? w a-ß 

аnd so 
oo oo s n v 

£ W-*«- = (-/.«.) E 6»/ ( II V'--' ) • 
n = l n = l ^ i = l ' 

By (3) we have 

bn/Vt2n-, = (bn/at2"-1) • (1/(1 + (/J/a)'2""1)) 

from which, by the Lemma and (11), the theorem follows. 

P r o o f o f T h e o r e m 3. By (3) the numbers Vt2n are positive since 
t2n is even. C . B a d e a [2] proved that if {aw}^-! is a sequence of positive 
integers and 

a n + i > an — an + 1 

oo 
for all large n , then the sum of the series ]£ l / a n is irrational. Thus we have 

n=l 
only to prove that 

Vt2n + l > ( V ( 2 n ) 2 - V t 2 n + l (13) 

for any sufficiently large n. Using (3), (13) can be written in the form 

a'2 n + l (1 + (/9/a)'-"+1) > a'2"+l ( l + (/3/a)'2")2 - a'2" ( l + (/Jta)'2") + 1 • 

Dividing the inequality by at2 we obtain 

0 > 2 • at2n(/3/a)t2" - 1 - (p/a)t2" + 1/a'2" = 2/?t2" - 1 - (/3/a)'2" + 1/a 

which holds for any large n since |/?| < 1 and \a\ > 1. 
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