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COMPATIBILITY PROBLEM IN 
QUASI-ORTHOCOMPLEMENTED POSETS 

FERD INAND CHOVANEC 

(Communicated by Anatolij Dvurecenskij) 

ABSTRACT . The conditions when Boolean subalgebras in a quasi-orthocomple-
mented poset may be embedded into a Boolean a--algebra are studied. 

1. Introduction 

One of the actual problems of the mathematical description of quantum me­
chanics is the problem of simultaneous measurement of several observables. In 
the classical K o l m o g o r o v model [5], the measurement of non-quantum ob­
servables is performed within the framework of Boolean cr-algebra models [9]. 
For quantum mechanical observables there exists a model of quantum logics 
[10]. On the other hand, in the quantum logics there are also observables which 
have the classical character, i.e. their ranges are embedable into a joint Boolean 
(j-algebra. 

The main goal of the present paper is to present conditions showing when the 
ranges of observables in a quasi-orthocomplemented poset are embeddable into 
some Boolean a-algebra. This question is known as the compatibility problem 
and it has been solved for various classes of quantum logics using various notions 
of compatibility [1, 4, 6]. 

We recall that there is a different axiomatic model for measurements of quan­
tum mechanical observables based on fuzzy sets ideas, called an F-quantum 
space [8], where this problem has been solved, see [2]. 

We note that our methods are similar to classical ones for quantum logics, 
however, for the existence of a Boolean sub-cr-algebra we have to use very fine 
steps. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 81 P I 0 . 
K e y w o r d s : Quasi-orthocomplemented poset, Observable, Commensurability, C-cr-dis-

tr ibutive property, F-compatibility. 
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2. Quasi-orthocomplemented poset 

By a quasi-orthocomplemented poset (q.o.p.) we understand a partially or­
dered set P with a quasi-orthocomplement _L: P —> P such that the following 
conditions hold: 

(i) (a-1)1- = a for any a G P ; 
(ii) if a = 6 then 6X <| a x ; 

(iii) a1- ^ a for any a G P ; 
(iv) if { a n } n G N C P , ai = af for i 7- j , then 

W a n := supa n G P . 
n€N " G N 

E x a m p l e 2.1. Every Boolean cr-algebra is a q.o.p. 

E x a m p l e 2.2. Every quantum logic, i.e. a cr-orthomodular poset (see [7]) 
is a q.o.p. 

E x a m p l e 2.3. Let (ft, M) be an P-quantum poset (see [2]), i.e. ft is a 
nonvoid set and M C [0, l ] n is a system of fuzzy sets such that 

(i) if l(u) = 1 for any u G ft, then 1 G M; 
(ii) if / G M , then / x := (1 - / ) G M ; 

(iii) if l/2(u;) = 1/2 for any OJ G ft, then 1/2 g M ; 
(iv) U /n ^ M whenever j{ = / / - for i ^ j and { / n } n € N C M . 

nGN 

Then M is a q.o.p. 

E x a m p l e 2.4. Let V be an inner product space. Let L = L(V) = 
{ A c V : (A±)±=A), where _4X = {x G V: (x,y) = 0 for all y G - 4 } . 
Then L is a q.o.p., where the meet denotes the intersection of subspaces and the 
join is the minimal subspace of L containing given subspaces. We note that if V 
is a Hilbert space and L(V) = {A C V: (-4J")_L = A, A is a closed subspace} , 
then L(V) is a quantum logics. 

E x a m p l e 2.5. Let X = (0, oo) and the mapping _L, _L: X —> X, be 
a unary operation on X defined via X H 1 / X for any x G X. Let P be a 
nonempty subset of X such that: 

(i) M P ; 
(ii) if x G P , then x-1 := 1/x G P ; 

(iii) if {xn}n 6N C P , Xi — xf (i.e. x* • Xj - 1), then s u p x n G P . 
nGN 

The operation _L is a quasi-orthocomplement and P is a q.o.p. 
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LEMMA 2.6. Let P be a q.o.p. If a V 6 G P (aAbeP), then o 1 A f ) 1 G P 
(a±\Zb± eP) and (aW 6 ) x = a i A 6 i ( (a A 6 ) x = o J L V f t 1 ) . 

P r o o f . It is simple to verify it in a classical way. 

A nonempty set A C P is said to be a Boolean sub-(a-)algebra of a q.o.p. P 
if: 

1. There are minimal and maximal elements 0^ and 1A from A such 
that 0A _ a = 1A and a V a1- = 1 A for any a G A. 

2. With respect to V, A, _L, 0,4, 1^ , A is a Boolean sub-(a-) algebra (in 
the sense of S i k o r s k i [9]). 

Let B(R1) be a Borel a-algebra of the set of all reals. We say that a mapping 
x: ^ ( R 1 ) —• P is an observable of P if: 

(i) x(Ec) = x(E)1- for any E G B(RX), where Ec = R1 - £ ; 

(ii) xl (J En ) = V x(En) whenever Ei H Ej = 0 for i ^ j and 
VnGN / n€N 

{En}neN C B(R*). 
If x is an observable of P , then the range of x , that is, the set 

R(x) = {x(E): E G ^ ( R 1 ) } , is a Boolean subalgebra of P with the mini­
mal and maximal elements x(0) and x (R x ) , respectively. 

Let a G P. We define an observable xa as a mapping from ^ ( R 1 ) into P 
such that 

xa{E) =-. { 

r a A a x , if 0,1 £ E; 

a1-, if 0 G £ , 1 g £ ; 

a , if 0 £ .E, 1 G £ ; 

. a V o 1 , if 0,1 G F7; 

for any E G JB(R X ) . The observable xa plays the role of the indicator of the 
event a G P and the range of xa is the set R(xa) = {a, a x , a V a x , a A a x } . 

In accordance with the theory of quantum logics, we say that two elements 
a, 6 G P are 

(i) orthogonal and write aJL6 if a — b1-; 
(ii) compatible and write a<->6 if a A t , a x A & , o A i 1 G P and 

a = (a A 6) V (a A &-1), 6 = (a A 6) V ( a x A 6); 

(iii) strongly compatible and write a A i ) ifa<->6«->a-L<-+6 i-<-*a. 

It is evident that if a <-* 6, then a V 6 G P . 

We note that if a <-> 6, then it is not true, in general, that then a A 6. 
Indeed, let (fi, M) be an P-quantum poset, where M contains two different 
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constant functions / and g with 0 < f < g < 1/2. Then / <-> g and / <-> g1-, 

but fL**g±. 

It is easy to verify that a A 6 if and only if a <-> ft1- and a*1 <-> 6. Further, 

a A a-1-, O H a A a 1 H a i A a V a i H a , a A a 1 H a V a 1 for any a E P. 

LEMMA 2.7. I / a A l , tterc a V a i = 6 v 6 1 . 

P r o o f . Calculate 

a V a x = ((a A 6) V (a A 6 X )) V ( ( a x A 6) V ( a x A 6 X )) 

= ((a A 6) V ( a x A 6)) V ((a A 6 X ) V ( a x A 6 X )) = 6 V b± . 

We say that a q.o.p. P has 

(i) a c-f-distributive property if for any finite subset {a, a i , . . . , a n } C P 
n 

such that V ai E P and a <-> a^, the equality 
i = l 

«Л h / o i = У ( а Л ( ц ) (2.1) 

v i = l / i = l 

holds (provided that at least one side of (2.1) exists in P); 

(ii) a c-a-distributive property if for any a E P and any sequence 
{«n}nGN C P such that \J an e P and a <-> a n , the equality 

n Є N 

a A f \ / a n j = \J{aAan) (2.2) 

VnGN / nGN 

holds (provided that at least one side of (2.2) exists in P ) . 

Any Boolean cr-algebra, any quantum logic as well as any P-quantum space 
have the c-cr-distributive property. 

PROPOSITION 2.8. Let a q.o.p. P have the c-f-distributive property. The 
following statements are equivalent. 

(i) a A 6. 
(ii) There is an observable x of P such that x{E) = a and x{F) = b for 

some E,F E P ( R X ) . 
(iii) There is a Boolean subalgebra of P containing a and b. 
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COMPATIBILITY PROBLEM IN QUASI-ORTHOCOMPLEMENTED POSETS 

P r o o f . Lelt (i) hold. Put X\ = aA6, #2 = aAfe-1, #3 = a^Ab, X4 = a-LA6± 

and define a mapping x: B(RX) —> P via 

{ а Л а 1 , И" 1,2,3,4^ 

У*., ИЧеС, г 
if 1,2,3,4 fÉG; 

1,2,3,4; 

for any G G ^( lR 1 ) . The straightforward calculation shows that x is an observ­
able of P . If we put E = {1,2} and F = {1,3} , then we get (ii). The statement 
(ii) evidently gives (iii) and (iii) implies (i). 

3. Commensurabi l i ty 

We say that two nonempty subsets A and B of P are (strongly) compatible 

and write (A A B) A <-> B if (a A 6) a <-> 6 for all a G .4 and 6 G .B. 

It is clear that if A and i? are Boolean subalgebras of P, then A A F? if 
and only if _4 *-> B and moreover A n J5 ^ 0 implies 1^ = 1# . 

We say that a system of nonempty subsets of P, {At: t G T } , is 
(a-) commensurable if there is a Boolelan sub-(a-) algebra of P containing all 
At. 

The main problem of the present section is to give the necessary and suffi­
cient conditions ( = compatibility theorem) for a nonempty subset of P to be 
cr-commensurable. 

A nonvoid subset A of P is said to be f-compatible ( " / " as for finiteness) 
if for any finite subset { a i ? . . . , a n +i} of A we have: 

(i) u : = a i A--- A a n A a n + i G P , v := ax A • • • A a n A a^+ 1 G P ; 
(ii) wVv = a i A - " A o n . 

A subset A is strongly f-compatible if the set .ALIA1- is /-compatible, where 
A-1 = {a^ : a G A} . 

P R O P O S I T I O N 3.1 . 

(i) a <-> b (a <-> 6) 2/ and on/?/ 2/ {a, 6} is (strongly) f-compatible. 
(ii) Every nonempty subset of an (strongly) f-compatible set is (strongly) 

f-compatible. 
n 

(iii) T/ie (strong) f-compatibility of { a i , . . . , a n } implies f\ a{ € P 
i=l 

( V « . e P ) . 
i=l 

P r o o f . The first two statements are evident. 
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If { a i , . . . , a n } is /-compatible, then from the definition we have easily 
n 
A a» 6 P . Suppose now that { a i , . . . , a n } is strongly /-compatible. Then 

t = i 

{ai,...,a^} is /-compatible and therefore P 3 / \ a± = I V a%) > which 
t = i \ t = i / 

n 
implies \J ai £ P. 

t = i 

PROPOSITION 3.2. Le£ P be a q.o.p. with the c-f-distributive property. If 
n n 

{a, 6 i , . . . , 6n} C P is strongly f-compatible, then a A \J b{ and a <-> /\ bi. 
t = i t = i 

P r o o f . Denote J0 = {(ju... Jn) e {0 ,1 } - } - {(0, 0 , . . . ,0 )} , 6? = 6^ , 
b\ = bi for i = 1 ,2 , . . . , n. Prom the strong /-compatibility of {a, &i , . . . , 6n} 
we have 

P3\/(aAb?A...Ab>c) = \fiaAbi), 
JO t = l 

P3\f(a±Ab{1A...Abt) = \/(a±Abi), 
Jo « = 1 

therefore 

UA(\/ 6 . j j W a A f \/ M ) = ( V(aA6J
1

1A...A6n»)Jv(oA6rA...A6n-) 

= V(a A 6f A ••• A bi?) = V (a A 6J1 A ••• A fc1) = •'• = V(<* A 6*1) 
Jn Jn-l Jl 

= (aAbi) V(aA6jL) = a , 

where Jk = {(ji,...,jk) € {0 , l } f e } for * = l , 2 , . . . , n ; 

( a A | V 6 A J v | a x | V 6 f ) J = \ / ( « A ft* V a x A 6.) = \ / 6 < > 

n n 

which implies a <-• V 6». Analogously a1- <-» V «̂ • 
*=i t = i 

It is evident that 

(aAf V M Ivfa^Af y ^ j ) = (a A 6̂  A.. .A # ) v ( < / A 6^ A.. .A 6„-) 

= ьtл--
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( n \ X n 

V b{ J , and we have proved that a A \f 6». 
i = i / t = l 

Because the set {a, 6 X , . . . , 6X} is strongly /-compatible, from the above we 
n n 

have a «-+ V 6X and a A ^ 6*, too. 
t = i i = i 

LEMMA 3.3. Let P be a q.o.p. with the c-f-distributive property and A,B be 
two different Boolean subalgebras of P. The following statements are equivalent: 

(i) A^B. 
(ii) The set AUB is f-compatible. 

(iii) The set AUB is strongly f-compatible. 

P r o o f . The equivalence of (ii) and (iii) is evident, therefore, A1- = { a x : 
a G A} = A for any Boolean subalgebra A of P . 

Suppose (i). We prove that if a, c G A and 6, d E B, then c <-• a A 6 —• d. It 
is clear that c A ( a A 6 ) , c x A ( a A 6 ) G P and P 3 ( c A a x A 6) V ( c A o 1 A6X) V 

(cAaA6 x )V (cAa x A6 x ) = ( cAa x A6)V ( cAa x A6 x )v ( ( ( cAa)V ( cAa x ) ) A6X) = 
( c A a x ) V ( c A 6 x ) = c A ( a x V 6 x ) = c A ( a A 6 ) x . Analogously c x A ( a A 6 ) x G P . 

Calculate 
(c A (a A 6) x ) V ( c x A (a A 6 ) x ) = (c A a x ) V (c A 6X) V ( c x A a x ) V ( c x A 6X) = 

a i V 6 1 = ( a A 6 ) i ; 
(c A (a A 6 ) x ) V (c A (a A 6)) = (c A a x A 6) V (c A a x A 6X) V (c A 6X A a) V 

(c A 6X A a x ) V (c A a A 6) = (c A a x ) V (c A a) = c, that is c n ( f l A 6) x . 

Further, 

( c x A (a A 6)) V (c A (a A 6)) = ( (c x A a) V (c A a)) A 6 = a A 6; 

( c x A (a A 6)) V ( c x A (a A6) x ) = ( c x A a A 6) V ( c x A a x A 6) V ( c x A a x A6X) V 

(c x A 6X A a) = ( c x A a) V ( c x A a x ) = c x , therefore c x <-» (a A 6), which gives 

c A (a A 6). Symmetrically d A (a A 6). 

Let ai , a 2 , . . . , an+i E AU B. Denote a? -= a x , aj = a^, i = 1 , . . . , n, 
u = a f A ' " A o j , where ( j i , . . . ,Jn) G {0, l } n . Only one of the following 
alternatives holds: 

(1) uEA, 
(2) uEB, 
(3) u = a A 6, 

where a G -4 and 6 G B. In any case u A an+i • which implies u A a n +i , 
u A a x

+ 1 G P and {u A a n + 1 ) V ( « A a x
+ 1 ) = u, therefore, the set AU B is 

strongly /-compatible. 
The converse assertion is evident. 
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PROPOSITION 3.4. Let P be a q.o.p. with c-f-distributive property. Then 
any two compatible Boolean subalgebras of P are commensurable. 

P r o o f . If .A and B are compatible Boolean subalgebras, then AUB is the 
/-compatible set and 1A = IB • Define D = {aAb: a e A, b e B}. Evidently 
D C P and A, B C D, because o = a A l i 4 = a A l B and b = bAls = bAlA> 

(i) If u, v e D, then u A v. 

Let u = a Ab, v = c A d, where a, c e A and b, d e B. Then u Av = 

(a A b) A (c A d) = (a A c) A (b A d) e D C P . By the proof of Lemma 3.3, we 

have c ^ a A f t ^ d and from the c-/-distributive property we get that 

(aA&Ac- L Ad)V(aA6Ac ± Ad ± )V(aA6AcAd- L ) = (aAbAc±)V(aAbAd1) = 

(aAb) A (c1 V d1) = u A v1, 

therefore u Av1 e P. Analogously u1 Av, u1 A v1 e P. 

Calculate 

(u A v1) V (u1- Av1) = (a A b A c1) V (a A b A d1) V (a1 A b A cx) V (a1 A 

b1 A c1) V (a A b1- A c x ) V (a1 A 6 A d1) V (a1 A b1 A d1) V (a A b1 A d1) = 

(b A c2-) V (b1- A c x ) V (b A d x ) V (b1- A d1) = c1 V d1 = (c A d ) x = v1. 

By the same way we prove that (uAv1-) V(wAv) = u , which implies w <-• v1. 

Symmetrically u1- <-> i^, therefore, w A u . 

(ii) w A ii-1 = 0,4 for any u e D. 

Let u = aAb, where a e A and b e B. Then uAu1 = (aAb) A (ax Vb1) = 

(a A b A a x ) V (a A 6 A b1) = 0A V 0 B = 0A • 

(iii) The set F> is strongly /-compatible. 

Denote a0 = a1, a1 = a for any a e P. Let i*i, i^ , • • •, ^ n + i e D U D1. 
Then there is a set J C { ( j i , . . . , j n , j n + i , . . . , j2n) € {0, l } 2 n } such that 

u1A'-Aun = \Jwj, where Wj = a f A • • • A a£* A b3
x
n+1 A - - A ^ 2 n , a f G -4 

J 

and 6^n+i G .B for i = 1,2, . . . , n . Evidently itLj G -D and \/Wj e P, because 
J 

^± i f ; m for j 7-- m . 
Without loss of generality we can assume that wn+i = a n +i A bn+i • Due to 

the above we have Wj A un+\, therefore the elements Wj Awn+i a n d tvj Aun+1 

exist in P , moreover, (WJ Aun+i)\/(WJ Aun+1) = Wj . Using the c-/-distributive 

property we get that 

P B \J(WJ A wn+i) = f \J Wj ) A u n +i = ^ i A • • • A un A un+1 -=: u , 

P 3 V ^ - A u£ + 1 ) = f V ^ j A wn+i = ui A • • • A un A u £ + 1 :=: v . 
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Then uV v = \f(wj A u n + i ) V \J(WJ A u£ + 1 ) = \J(WJ A wn+i V Wj A u£ + 1 ) = 
J J J 

V Wj = Ui A • • • A un , which implies that the set D is strongly /-compatible. 
J 

Finally, denote by U = <u= \f Ui : u^ E D, n>l\ 
^ i=i > 

We claim to show that U is a Boolean subalgebra of P containing the 
Boolean algebras A and B. 

(1) If u,v EU, then uAveU. 
n 

Let u E [/", u = \J U{ and v € D. The set {i;, u i , . . . , u n } is strongly 
2 = 1 

/-compatible, then by Proposition 3.2, v <-> it, which implies u Av E P, more-

( n \ n 

V Wf ) A v = \J (ui A v) E U. 
i = i / i = i 

n m 
Suppose now that u, v E U, u = \J Ui, v = \J Vj . The set {VJ, u\,..., wn} 

t = i i = i 
is strongly /-compatible and, therefore, Vj <-> it for any j = 1,2, . . . , r a . Then 

m n m 
f / 9 V \J(uiAVj)= \J (uAVj) = uAv. 

3 = 1 i=l 3 = 1 
(2) u1- E U for any uEU. 

This result follows from the strong /-compatibility of the set D (see (iii)). 

(3) If u, v e U, then uVv EU. 

This result follows from (1) and (2). 
(4) u A u1- = OA and OA <u <1A for any u EU. 

n 
If u = V Ui, then from the strong compatibility of Uk and u for any 

t = i 
n / n \ 

& = 1,2, . . . , n, we have u A u 1 - - \J \Uk A /\ uf-) = OA and 0 i 4 = u A u 1 < 
k=i^ i = i ' 

it < ix V u1- = 1,4 for any u E U. 

(5) u A u for every u, v E U. 
n m 

In view of the above, u Av, u± Av1 E P. Let u = \/ ui and v = \J Vj . 
i=l j=l 

Then itj A u for any j = 1 , . . . ,ra and the strong /-compatibility of the set 

{ui,..., un , u i , . . . , vm} implies that P ^\J (u^ A-• • Au„~ Av?1 A • • • A v3^) = 
Jo 

m / m \ 
V (it-1 A Uj) = w 1 A \J Vj 1 = u-1- A v , where the set Jo is the same as in the 

3=1 \ j = i / 

proof of the Proposition 3.2. Symmetrically u Av^~ E P. 
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Calculate 

(u-t-Av) V(u±Av)= ( yu^-Avl1 A• • • Ai;^ J V (u1 A /̂jL A • - - Avm) 

(see proof of the Proposition 3.2), 

(w1 Av)V(uAv)= ( ^(u-1 AVJ)J V ( \/(uAvj)\ 

u± 

з 
m 

= \/ ((u±Avj)V(uAvj)) = \Jvj=v, 

i=i i=i 

which gives ^rL <-> i;. Symmetrically u *-• ;̂-L , therefore u <-> i;. 

(6) The distributivity in [/ follows from the c-/-distributive property and 
from (5). 

Prom ( l ) - ( 6 ) is evident that U is a Boolean subalgebra of P. 

PROPOSITION 3.5. Let A\,..., An be Boolean subalgebras of a q.o.p. P with 
the c-f-distributive property. The algebras A\,...,An are commensurable if and 

n 
only if the set (J A{ is f-compatible. 

»=i 

P r o o f . If Ai,..., -4n are commensurable, then there is a Boolean subal­
gebra B such that \J Ai C B and every Boolean algebra is /-compatible. 

i = l 

The sufficiency follows from the observation that the Boolean subalgebra 
m 

containing i l l , . . . , i l n consists of the elements of the form \J auAa2iA- • • Aani, 
t = i 

where aki G Ak for k = 1,. . ., n and m — 1. To prove that, we use the same 
arguments as in the proof of Proposition 3.4. 

The statement of Proposition 3.5 is incorrect if we assume only the mutual 
compatibility of i l l , . . . , An . Indeed, let X = { 1 , 2 , . . . , 8} and S be a system 
of all subsets of X with even number of elements. The system S is a q.o.p. 
Put A = { { 1 , 2 , 3 , 4 } , {5,6,7,8}, X, 0} , B = {{1,2,5,6} , {3,4,7,8} , X, 0} , 
C = { {1,3,6,8}, {2,4 ,5,7}, X, 0 } . Then il, B, C are pairwisely compatible 
Boolean subalgebras of S, but {1,2,3,4} n {1,2,5,6} n {1,3,6,8} = { 1 } , so 
A, B, C are no commensurable. 

THEOREM 3.6. A system {At: t €T} of Boolean subalgebras of a q.o.p. with 
the c -f-distributive property is commensurable if and only if the set (J At is 

ter 
f-compatible. 
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P r o o f . Let T0 be any finite nonempty subset of T. In view of Proposi­
tion 3.5, there is a Boolean subalgebra A(T0) containing all At for t G T0. 
Write A = \J {A(T0): T0 is a finite subset of T] . Simple verification shows 

T 0CT 
that jl i s a Boolean subalgebra of P including all At, t G T. 

PROPOSITION 3.7. Let P be a q.o.p.with c-a-distributive property. Then any 
Boolean subalgebra of P is contained in a maximal one and a maximal Boolean 
subalgebra of P is necessarily a Boolean sub-a-algebra. 

The proof of the proposition depends on the following results. 

LEMMA 3.8. Let P be a q.o.p.with the c-a-distributive property, let A be 
a Boolean subalgebra of P, let {an}nGN be a sequence of pairwise orthogonal 
elements of A and let b be any element of A. Put a= V an • Then 

nGlN 

(1) ai <-+ a, ai <-> a x for any i G N; 
(2) a A o i = 0 A ; 
(3) ai <-> a for any i G N ; 
(4) a A 6, a x A 6 , a A 6 x , a x A 6 x eP; 
(5) ai <-> a A 6, a» <-> (a A 6 ) x , â  <-> a A 6X , a{ <-> a x A 6, ai <-> a x A 6X 

for any i G N; 
(6) a <-* a x A 6, a <-> a x A 6X , a x <-* a A 6, a x <-> a A 6X , 6 <-> a A 6X , 

6X <-> a A 6; 
(7) a A a» A 6, a A a» A 6X /or any i G N; 
(8) (a A 6 ) x <-> (a^ A 6 ) x /ar any i G N; 
(9) a <-> 6, a <-> 6X ; 

(10) 6 A a x A 6 , 6 A a x A 6 x ; 
(11) a^ A 6X A a x A 6 for any i G N; 
(12) a A 6. 

P r o o f o f P r o p o s i t i o n 3.7. The first statement follows easily from 
Zorn's Lemma. 
In order to prove the second, suppose that A is a maximal Boolean subalgebra 
of P. Let {an}nGN be an arbitrary sequence of elements from A. Without loss 
of generality we may assume that ai _ af for i ^ j . Put a = \J an. If 6 is 

any element of A, then by Lemma 3.8, a <-> 6. It is clear that 6 <-> a V a x = 1A , 
6 A a A a x = 0^, which implies that A <-> A a , where ^4a = {a, a x , a V a x , 
aAa 1 } . Referring to Proposition 3.4, there is a Boolean subalgebra B containing 
Boolean subalgebras A and Aa, which gives A = B. Then Aa C A and, 
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therefore, the element a is from A, which implies that A is a Boolean sub-
cr-algebra of P. 

From the Proposition 3.7 is evident that the commensurability and cr-com-
mensurability are equivalent notions. 

THEOREM 3.9. Let A be a nonempty set of a q.o.p. P with the c-a-distri-
butive property. The following statements are equivalent. 

(i) A is strongly f-compatible. 
(ii) A is a-commensurable. 

P r o o f . For any a € A, define a Boolean subalgebra Aa via Aa = {a, a-1, 
a V o 1 , o A a 1 } . It is clear that the set (J Aa is /-compatible. Referring to 

aeA 
Theorem 3.6 and Proposition 3.7, the proof is finished. 

4. Calculus for compatible observables and a joint observable 

In the present section we apply the compatibility theorem for Boolean subal-
gebras of a q.o.p. P to build up the so-called functional calculus for observables 
of P and for the existence of a joint observable. We note that for compati­
ble observables of a quantum logic, the functional calculus has been build up 
by V a r a d a r a j a n [10] and for F-observables of an F-quantum space by 
D v u r e c e n s k i j and R i e c a n [3]. 

Throughout this section we shall assume that P is a q.o.p. with the c-cr-dis-
tributive property. 

It is well known that if x is an observable of P and if / is a Borel measurable 
real-valued function, then a mapping y = x o / _ 1 defined via 

y(E) = x(r1{E)), EEBiR1), 

is an observable of P. 

A Boolean sub-a-algebra A of P is said to be separable if A contains a 
generator of itself with count ably many elements. 

LEMMA 4 . 1 . A Boolean sub-a-algebra A of P is separable if and only if there 
is an observable x of P such that A = R(x) = {x(E): E E f^R 1 )} . Moreover, 
there is a measurable space (fi, S), a a-homomorphism h from S onto A and 
an S-measurable mapping g: fl —• R1 such that 

x(E) = h(g~1(E)), E e B(R1). (4.1) 

P r o o f . The sufficiency is evident. Conversely, if A be separable, due to 
the Loomis-Sikorski theorem (see, for example [9]), there is a cr-algebra S of 
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subsets of some set ft and a a-homomorphism h from S onto A. According 
t o V a r a d a r a j a n [10], there is a measurable mapping g: ft —» R1 such that 
(4.1) holds. 

We recall that an observable x and an observable y are compatible if 
x(E) <-» y(F) for any £ G ^ ( R 1 ) and F G ^ ( R 1 ) . Analogously we say that 
{xt: t €T} is a system of /-compatible observables if (J R(xt) is an /-comp­
atible set in P. teT 

THEOREM 4.2. Let P be a q.o.p. with the c-o-distributive property and let 
{xt: t G T} be a family of observables of P. If the observables xt, t G T , are 
f-compatible, then there is a measurable space (ft, S), real-valued S-measurable 
functions gt on ft, and a a-homomorphism h of S into P such that 

xt(E) = h(9r
1(E)) (4.2) 

for all t G T and J? G F^R1). Suppose further that either P is separable 
in the sense that every Boolean sub-a-algebra of P is separable, or that T is 
countable. Then there is an observable x and real-valued Borel functions ft of 
a real variable such that for all t ET, 

xt=xo f-1. (4.3) 

P r o o f . Let {xt: t G T} be a family of /-compatible observables. Ac­
cording to the compatibility theorem (Theorem 3.6), there is a Boolean sub-
cr-algebra A of P such that R(xt) C A for all t G T . The Loomis-Sikorski 
theorem entails that there is a measurable space (ft, S) and a a-homomorphism 
h from S onto A. Let St be a sub- cr-algebra of S such that ht := h/St is 
a cr-homomorphism of St onto the range R(xt) of xt for any t G T . Due 
to Lemma 4.1, we see that there is an S^-measurable gt: ft —> R1 such that 
xt(E) = ht(gr1(E)) = h(gt1(E)) for any E G ^ ( R 1 ) . This proves the equa­
tion (4.2). Theorem 6.9 of [10] entails that there are an observable x and Borel 
measurable real-valued functions ft such that (4.3) holds. 

The characterization of simultaneous observability given in Theorem 4.2 en­
ables us to construct a calculus of functions of several observables which are 
/-compatible. 

Let # i , x2,..., xn be /-compatible observables. Then we may define the sum 
of observables via 

x\ + x2 H h xn = x o (/x + / 2 H h / n ) " 1 , where xi = x o fr1. 
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Finally we apply Theorem 4.2 to the problem of existence of a joint observable 
of /-compatible observables. 

A collection {x»: i = 1 , . . . , n } of observables of P is said to have a joint 
observable if there is a tr-homomorphism w: B(Rn) —• P such that 

w (Pr1{E))=xi(E) forany E 6 B(Rl), * = l , 2 , . . . , n , 

where p» is the projection of lRn on R1. We call w a joint observable. 

We note that the joint observable in a quantum logic, which is not a lattice, 
need not exist even in the case when {xi: i = 1 , . . . , n} are mutually compatible 
(see [6, Example 6]). 

THEOREM 4.3. Let P be a q.o.p. with the c-a-distributive property. A system 
{xi: i = 1 ,2 , . . . , n} of observables of P has a joint observable if and only if 
#1, X2 , . . . , x„ are f-compatible. 

P r o o f . If # i , . . . , xn are /-compatible observables, by Theorem 4.2 there 
is an observable x and real-valued Borel functions ft such that Xi = x o / r 1 , 
i = 1 , . . . , n . 

Define a function / : R1 -* Rn via 

. / (*) = (/i(«),..-./»(*)), t e n 1 . 

The function / is ^(R^-measurable, i.e. f"x(H) € B(RX) for any H e B(Rn). 
Now we define a mapping w: B(Rn) —• P such that 

w ; ( f l r ) = x ( / - 1 ( ^ ) ) for HeB(Rn). 

It is evident that the mapping w is a a-homomorphism. 

Therefore, f^fo^E)) = {teR1: f(t) e PTX(E)} = {t e R1: fi(t) e E) 
= fr\E) for any E e B(R}), we have w f o " 1 ^ ) ) = x(f-1(Pr1(E))) = 

x(f^x(E)) = Xi(E), which implies that w is a joint observable of x i , . . . , xn . 

It is simple to verify that the joint observable is unique. 

REFERENCES 

[1] BRABEC , J.—PTAK, P . : On compatibility in quantum logics, Found. Phys. 12 (1982), 
207-212. . . 

[2] DVURECENSKIJ , A .—CHOVANEC, F . : Fuzzy quantum spaces and compatibility, In-
ternat. J. Theoret. Phys. 9 (1988), 1069-1082. 

[3] DVURECENSKIJ , A.—RIECAN, B . : On joint observables for F-quantum spaces, Busefal 
35 (1988), 10-14. 

102 



COMPATIBILITY PROBLEM IN QUASI-ORTHOCOMPLEMENTED POSETS 

[4] GUDDER, S. P . : Stochastic Methods in Quantum Mechanics, Elsevier/North-Holand, 

Amsterdam, 1979. 

[5] KOLMOGOROV, A. N . : Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933. 

[5] NEUBRUNN, T — PULMANNOVA, S.: On compatibility in quantum logics, Ac ta Math . 
Univ. Comen. 4 2 / 4 3 (1983), 153-168. 

[7] P T A K , P .—PULMANNOVA, S.: Quantum Logics. (Slovak), Veda, Bratislava, 1989. 

[8] RIECAN, B . : A new approach to some notions of statistical quantum mechanics, Busefal 

35 (1988), 4-6. 

[9] SIKORSKI, R . : Boolean Algebras, Springer-Verlag, New York, 1964. 

[10] VARADARAJAN, V. S.: Geometry of Quantum Theory, D . van Nostrand comp., I N C , 
New York, 1968. 

Received December 3, 1990 Department of Mathematics 

Revised April 21 , 1992 Technical University 

031 19 Liptovský Mikuláš 

Slovakia 

103 


		webmaster@dml.cz
	2012-08-01T08:11:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




