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DANUTA OZDARSKA — STANISLAW SZUFLA 

(Communicated by Milan Medved') 

ABSTRACT. Using the measure of weak noncompactness we give sufficient con­
ditions for the existence of a weak solution of a boundary value problem for the 
equation x" = f(t,x,xf) in Banach space. 

Let J = (0, a) be a compact interval in R and let E be a weakly sequentially 
complete real Banach space. In this paper we give an existence theorem for weak 
solutions of the boundary value problem 

x" = / ( t , x, x'), x(0) = x(a) = 0 . (1) 

Our approach is to impose on / weak compactness type conditions in terms 
of the measure of weak noncompactness introduced by D e B 1 a s i [4]. Let 
us recall that similar study relative to the strong topology has attracted much 
attention in recent years [2], [8], [11]. 

A function x: J —> E is called a weak solution of (1) if x has a weak second 
derivative x" on J , x(0) = x(a) = 0 and 

x"(t) = f(t, x(t), x'(t)) for t e J . 

Throughout this paper we shall assume that / is a weakly-weakly continuous 
function (cf. [3], [10]) from J xExE into E and | | / ( í ,æ,y) | | < M for t Є J , 
x,y Є E. It is well known that (1) is equivalent to the integral equation 

a 

x(t) = j G(t, s)f(s, x(s), x'(s)) d s , (2) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34G20, 34B15. 
K e y w o r d s : Boundary value problem, Measure of noncompactness. 
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where J denotes the weak Riemann integral and 

J (t - a) s/a H0<s<t<a, 

^ ' S) ~ \ (s - a) t/a ifO<t<s<a. 

Moreover 

a a 

f\G(t,s)\ds<^- and / | - § ^ ( M ) | ds < °- for teJ (3) 

o o 

(cf. [6, Ch. XII.4]). 

As in [4], for a bounded subset A of E we denote by /3(A) the measure of 
weak noncompactness of A denned by 

/3(A) = inf{e > 0 : there exists a weakly compact subset K such that A C K + sQ} , 

where Q is the unit ball. Recall that (3 has the following properties: 

1° If A C B, then /3(A) < (3(B); 
2° /3(A) = 0 if and only if A is relatively weakly compact in E; 
3° P(A UB) = max(/?(A), /3(B)) ; 

4° /^(Z™) = /3(A), ( A™ denotes the weak closure of A); 
5° P(A + B)< (3(A) + /3(B); 
6° /?(A,4)HA|/?(-4); 
7° /3(convA) = /3(.A); 

8° /?( (J AA)=/ i / ? ( j4 ) . 
V | A | < h 7 

For any set H of functions from J into E put 

. H(*) = [u(t) : ueH}, H(J) = {u(t) : u E H, t G j } . 

Arguing similarly as in the proof of Lemma 2.2 in [1], we can prove the following: 

LEMMA 1. If H is a strongly equicontinuous and uniformly bounded set of 
functions from J into E. then 

/3(H(J))= sup 0(H(t)). 
teJ 

Denote by CW(J,E) the space of weakly continuous functions J —> E en­
dowed with the topology of weak uniform convergence. 

In what follows we shall need the following Krasnosielskii-type: 
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LEMMA 2. Let g be a weakly-weakly continuous function from J x E into E. 
Then for any <p E E*, e > 0 and u £ CW(J, E) there exists a weak neighbour­
hood U of 0 in E such that 

\<p(g(t,x(t))-g(t,u(t)))\<e 

for all t £ J and x £ CW(J,E) such that x(s) — u(s) £ U for s £ J (cf [12, 
Lemma 2]). 

Our main result is the following: 

2 

THEOREM. If there exist positive numbers p, q such that P^k~+q^r < 1 and 
o z 

t3(f(JxXxY))<p/3(X)+qf3(Y) (4) 

for every bounded subsets X, Y of E, then the problem (1) has a weak solution. 

P r o o f o f t h e T h e o r e m . Let C\W(J, E) be the space of all weakly 
continuous functions u: J —• E having weakly continuous weak derivative u', 
endowed with the topology of weak uniform convergence. (More precisely, a net 
(xa) converges to x in C\W(J,E) if and only if xa —> x and x'a —> x' weakly 
uniformly). Denote by B the set of all functions x £ Ciw(J,E) which satisfy 
the inequalities 

max ( sup | | x ( t ) | | , sup | | | x ' (« ) | | ) < M - ^ , 

\\x'(t) - X'(T)\\ <M\t-T\, \\x(t) - X(T)\\ <Ma\t- r | / 2 , (t,TeJ). 

It is clear that B is a convex closed subset of C\W(J, E). 

We define an operator F by 

a 

F(x)(t) = JG(t,S)f(S,x(S),x'(s)) ds ( xЄB, í є J). 

By (3) for each x £ B the function u = F(x) satisfies the inequalities 

ll«"(*)ll = | | / M 0 , s ' ( i ) ) | | <M, \\u'(t)\\ < M f , | K t ) | | < M^- , 

for t G J, and consequently by the mean value theorem 

| | u , ( t ) - u , ( r ) l l ^ - t - ' l « - 7 - | » \\u(t) - U(T)\\ <Ma^P- , for t,T e J. 
Zi 
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This proves that 
F(B)cB. (5) 

Moreover, by Lemma 2, for given tp G E*, y G B and e > 0 we can choose a 
weak neighbourhood U of 0 in E such that 

\<p(f(t,x(t),x'(t)) -f(t,y(t),y'(t)))\ <e, 

for i 6 J and x e B such that #(s) — y(s) G U and x'(s) — y'(s) G U for 
s e J. 

Hence, by (3), 

\V(F(z)(t) - F(y)(t))\ 

< a2є/8, = \J G(t,S)v(f(s,x(s),x'(s)) - f(S,y(s),y'(s))) ds 
0 

\<p((F(x)y(t)-(F(y))'(t))\ 
a 

J — (t,s)<p(f(s,x(s),x'(s)) - f(s,y(s),y'(s))) ds <ae/2, 

o 

for t e J and x G B such that x(s) — y(s) G U and x'(s) — y'(s) G U for 
s G J . 

From this we deduce that the operator F is continuous. 

Now we shall prove the following: 

L E M M A 3. If V c B and 

V C cofw(F(V) U {0}) , (6) 

then V is relatively compact in C\W(J,E). 

P r o o f . As V C B, the sets V and V = {x' : x G V} are uniformly 
bounded and strongly equicontinuous. 

Since for convex subsets of E the closure in the norm topology coincides 
with the weak closure (cf. [5, Th. II. 1]), it is clear from (6) that 

V(t) Cconv jJ f G(t,s)f(s,x(s),x'(s)) ds: x G V \ U {0} ), 

V'(t) C c o n v N J - ^ ( t , s)f(s,x(s),x'(s)) ds : x G V 1 U {0} J , (teJ). 

(7) 
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Fix t £ J. We divide the interval J into ra parts 0 = to < ti < • • • < tm = a 
such a way that AU = U — ti-i = — (i = l , . . . , r a ) . Put Ti = (*i-ij*t) and 

TTL 

hi = sup{|G(t, 5)| : s e Ti} = \G(t, s{)\, where SiETi. Since for each x eV 

a 

jG(t,s)f(s,x(s),x'(s)) ds = J2 jG(t,s)f(s,x(s),x'(s)) ds 
0 i = 1 Ti 

m 

e^AtiConv{G(Us)f(s,x(s),xf(s)) : x E V, seT{} 
i = i 

^ A ^ c o n v Y ( J A / ( J x y ( J ) x V V ) ) ) , 
t = l ^ |A|</ii ' 

from (7), (4) and corresponding properties of /3 it follows that 

P(V(t)) <p(l J G(t,s)f(s,x(s),x'(s)) ds : x e v\ j 

m 

<J2^tihiP(f(J x V(J) x V-'(J))) 
i = l 
m 

< £ Ati\G(t,Si)\(P0(V(J)) +q/3(V'(J))) . 
i=l ' 

On the other hand, if m —• 00, then 

m -

Ş2Ati\G(t,Si)\^ \G(t,s)\ds. 
І=I r! 

Thus 

0 (V(t)) < j \G(t, s)\ ds (p(3(V(J)) + q/3(V'(J))) , 

0 

and by (3) 

8 

Analogously, we can prove that 

ß (V(t)) < - £ (pß(V(J)) + qß(V'(J))) 

ß (V'(t)) < f (pß(V(J)) + qß(V'(J))) . 
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By Lemma 1 the above inequalities imply that 

m a x ( / 3 ( y ( J ) ) , | / ? ( y ' ( J ) ) ) < £(pP(V(J))+qfl{V'{J))) 

,2 
< (p^+4)^(/3(V(J)),p(V'(J))). 

-,2 
As p-y- + g - | < 1, this shows that fi(V(J)) = P(V(J)) = 0, i.e. the sets 

V(J) and V'(J) are relatively weakly compact in E. 

By Ascoli's theorem, this proves that the sets V and V are relatively com­
pact in CW(J, E), so that V is relatively compact in C\W(J, E). This ends the 
proof of Lemma 3. 

Now we return to the proof of the Theorem. We define a sequence (yn) by 
yo = 0, yn+1 = F(yn) (n G N) . Let Y = {yn : n G N} • As Y C B and 
Y = F(Y) U {0}, from Lemma 3 it follows that Y is relatively compact in 
C\w(J, E). Denote by Z the set of all limit points of (yn). We shall show that 
Z = F(Z). If y G F(Z), then y = F(x) for some x e Z. Thus there exists 
a subnet (xa) of (yn) such that xa —± x. From the continuity of F it follows 
that F(xa) —» F(x) = y. As (F(xa)) is also a subnet of (yn), we see that 
y G Z. Conversely, let y G Z. Then there exists a subnet (ya) of (yn) such 
that ya —> i/ and 2/a = F(xa), where (x a) is also a subnet of (yn). Since the set 
Y is relatively compact, (xa) has a convergent subnet ( x 7 ) . Let x = l i m x 7 . 
Then x e Z and y7 = F(xy) —• F(x). On the other hand, 2/7 —* H • Hence 
y = F(x) G F ( Z ) . 

Let us put R(X) = convF(X) for X C B, and let ft denote the family of 
all subsets X of B such that Z C X and -R(X) C X. From (5) it is clear that 
B G ft. Denote by V the intersection of all sets of the family ft. As Z C V, 
Y is nonempty and Z = F(Z) C R(Z) C R(V). Since R(V) C R(X) C X for 
all X G n, R(V) C V, and therefore V G SI. Moreover, R(R(V)) C R(V), 
and hence R(V) G ft. Consequently, V = R(V), i.e. V = convF(V). In view 
of Lemma 3 this implies that V is a compact subset of B. Applying now the 
Schauder-Tychonoff fixed point theorem to the mapping F\y , we conclude that 
there exists x G V such that x = F(x). It is clear that x satisfies (2) and hence 
x is a weak solution of (1). 
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