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ABSTRACT. This paper deals with partially ordered sets for which a difference
(as a partial binary operation) is introduced. These structures, so-called D-posets,
are a natural generalization of quantum logics, real vector lattices, orthoalgebras,
MYV algebras. At the same time they give a new look at the fuzzy quantum logics.

1. Introduction

A usual mathematical description of the quantum mechanics is a quantum
logic [12], [15]. Recently there appeared many structures generalizing quantum
logics, for example, quasi-orthocomplemented posets [1], weakly complemented
posets [4], or orthoalgebras [6].

The fundamental notions of the quantum logics theory are observables and
states.

If L is a quantum logic (o-orthomodular poset) [12], then an observable x
is a o-homomorphism of logics, that is, a mapping = from the o-algebra B(M)
of Borel sets of a separable Banach space M into a given logic L such that
(1) z(M) =1;
(i) x(M ~ A) = z(A)* for any A € B(M);
(1) if A, , n € N is a countable set of Borel sets in M , then

T LJ A, = \/ z(Ay).
n== n=1

A state on the logic L is a mapping m: L — [0,1] such that
(1) m(1)=1;

ANS Subject Classification (1991): Primary 03G12. Secondary 81P10.
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(ii) if a,, n € N, is a sequence of mutually orthogonal elements in /..

then
o >
-
m \/ a, | = E m(a,).
n=1 n==1

There are also some alternative models for quantiim mechanics based on fuzzv
sets ideas: fuzzy quantum logics [13]. F-quantum spaces [11]. luzzy logies R and
h-fuzzy quantum logics [9].

2. D-POSETS

DEFINITION 1. Let (P.<) be a non-empty partially ordered sct {poscty. |
partial binary operation ~ is called a difference on P .and an clement b~ a s
defined in P if and only if a <b, and the following condilions are satisficd:

(1) b~a<h;

(2) b~(b~a)=a:

(3) ifa<b<c.then exb<c~a and (e ~a)~(c~b) =b~a.

Example 1. Let RT be a set of all non-negative real numbers. The dif-
ferenice b—a of real numbers a,. b € RY . a < b, satisfies the conditions (1) (3.

Example 2. Let ' be a family of all real functions from non-cmpty set
X into the interval [0,00). Let < be a partial ordering on 7 such that [ < g
il and only if f(t) < g(t) for every t € X . Let @: [0.oc) — [0.x ) be a strongls
increasing continuous function such that @(0) = 0. A partial binary operation
~ defined by the formula

(g~ Nty =2~ (2(g(h) —P(f(1))

for every fig€e F, [ <g,te X, is adifference on F'.
Specifically, if @(r) =, then (g~ f)(1)=g(t) — f(t).if ¢lr) = 7. then

(g~ N = Vg2 (t) — f2(1).  ete.

If we restrict our considerations to the unit interval [0.1]. [ = 0.1Y.
@:0,1] — [0,00), &(1) = oo, then f,g € F are fuzzy subsets of X' and
the difference g \ f,

(g~ N(t) = H(@(g(1) — 2(f(1))) -

coincides with a strict fuzzy difference introduced by We ber [16].
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Example 3. If £ is the system of all constant functions, F' C [0, )™ .
then the difference from Example 2 gives other examples of differences on R .

PROPOSITION 1. Let (12, <) be a poset with the difference, and let a,b, e, d e .

The following assertions are true.

() Ifa<b<c.thenb<a<ecxa and (c~a)~(b~a)=c~b:
(i) f b<c and a<c~b,then b<c~a and (¢c~b)~a=(c~a)~b;
(iii) ifa<b<c.then a<e~x(b~a) and ((: ~ (b~ (1,)) Na=c~b;
(iv) fa<e and b<c, then ¢ ~a=c~b if and only if a = b;
(v) fd<a<e, d<b<e, then exa=b~d if and only if ¢~ b=a~d.
Proof.

(1) From (3) and (1) we get that (¢~ a)~(ec~b)=b~a<¢~ a and
(c~a)~(b~a)=(c~a)~ ((e~a)~ (b)) =c~b.

(i) Irom the asswptions it follows that @ < ¢~ b < ¢, and from (3) we
obtain

c~(exb)<e~xa, ie. b<cwa.

Because, by (i), (e~ 0) ~a < ¢~ a, we get from (i) (e~ a)~ ((¢~b)~ a)

e~ (e~ b) =b. therefore
(e~a)~b=(c~a)~((e~a)~ ((e~b)~ a)) =(c~b)~a.
(iii) According to (i). we have b~ a < ¢~ a < ¢ and, by (3), we obtain
ex(e~a)<ex(b~a), ie. a<c~(bwa)<ec.
Using (ii) and (i). we get

(e~ (b~a)) ~a=(c~a)~(b~a)=c~\b.

(iv) If exa=c~b,then b=c~ (¢~b)=c~(cNa)=a.
The converse assertion is evident.

(V) If exa=b~d, then exb=(c~d)~(b~d)=(c~d)~(c~ a) =a~d.
The converse assertion can be proved by analogy. 0

23



FRANTISEK KOPKA — FERDINAND CHOVANEC

DEFINITION 2. Let (P,<,\) be a poset with a difference, and let 1 be the
greatest element in P. The structure (P, <,~,1) is called a D-poset.

A D-poset (P, <,~,1) satisfying the condition:

(4) if (an)s2, C P, ap <apq1 for any n € N, then \/ a, € P.

n=1
n=1

1s called a D-o-poset.

Example 4. Let X be a non-empty set, and let S(X) be the set of
all subsets of X . Let @ be a subset of S(X) containing X and closed with
respect to the formation of the set-theoretic difference of sets which are in the
inclusion relation. Then @ with <, being the inclusion relation, and ~ . being
the set-theoretic difference, forms a D-poset.

Example 5. Let (L,<,1,1,0) be an orthomodular poset (see e.g. [12]).
We put b~ a=>bAat for every a,b€ L, a <b. Then L is a D-poset.

Example 6. Let T be a vector lattice (a real vector space which is a
lattice). Let e € T, e >0, V={a €T : 0<a < e}. The system V" with
usual difference of vectors is a D-poset.

Example 7. Let H be a Hilbert space. A positive Hermitian operator .4
on H such that O < A < I, where O and I are operators on H defined by
the formulas Oz =0, Iz =z for any z € H, is said to be an effect ([3])

A system FE(H) of effects closed with respect to the difference B — A of
operators A, B € FE(H), A< B, is a D-poset.

Example 8 Let X be a non-empty set and let F' be a system of all

real functions f: X — [0,1]. Let &: [0,1] — [0,00) be a strongly increasing
continuous function such that ¢(0) = 0. If we put

(g~ D) =27 (2(9(t)) - 2(f(1)))

forevery f,g€ F, f < g, and for any t € X (see Example 2), then F becomes
a D-poset (a D-poset of fuzzy sets, see [7]).

Note that, in this case, g ~ f coincides with a nilpotent fuzzy difference of
Weber [16].
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Example 9. Aset A containing two special elements 0, 1 with 0 # 1 on
which there is a partially defined binary operation @ satisfying for all elements
p.q.r € A the following four conditions:

(i) if pdq is defined, then ¢ ® p is defined and pHqg=q D p
(commutativity);

(ii) if p®q is defined and (pdq) ®r is defined, then ¢ r and pD(gdr)
are defined, and (p@®q) @ r=p® (¢ ®r) (associativity);

(iii) for each p € A there is a unique q € A such that p@ g is defined and
phqg=1 (orthocomplementation);

(iv) if p@®p is defined, then p = 0 (consistency)

is called an orthoalgebra ([6]).

The unique element ¢ € A satisfying the conditions in (iii) is denoted by
q = p' and called the orthocomplement of p.

If pg € A, we define p < ¢ to mean that there exists » € A such that
pr is defined and p D r = ¢. It is not difficult to check that this element r is
defined uniquely. Indeed, if there are r,s € A such that p®r =q=p® s, then
l=(por)®q¢d =r®(p®q), which implies that ' = p® ¢ and r = (pD¢') .
Similarly, s = (p® ¢')’, therefore r = s.

Weput g~p=(pDq') for pge A, p<q.

We prove that the partial binary operation ~ is the difference on the
orthoalgebra A (in the sense of Definition 1).

(a) If p < q, then there exists r € A, r = (p®¢')’, such that g =pDHr =
p®(pdq), which gives (p®q') <gq,ie. gq~p<gq.

(b) Let p < q. Because 1 = (p@®q ) (p®q) =p® (¢ ® (p®q')'), we have
p'=4q ®(p®q), which implies that ¢~ (g~ p) = ((p® ) ®q) = () = p.

(¢) If p < q < w, then there exists s € A such that ¢ = s ® p. From the
equalities 1 = (¢®w')® (¢dw') = ((s®p)dw) ®(gdw') = (s®(pdw')) D
(qbw') = (pdw')® (s®(qgdw’)’) it follows that (pdw') = sd(gdw’) , which
is equivalent with the inequality (g ®w') < (p®w')’, thatis w~qg<w -\ p.

Calculate,

(wsp)s(wng) = ((gow) & (paw’)) = (((gov) ew')ap)’ = (d'©p) = q~p.
We have proved that every orthoalgebra is a D-poset.

We note that the connection between D-posets and orthoalgebras was noticed
firstly by Navara and Ptak [11]Y.

Y The authors are indebted to Dr. Navara who after the first version of the present paper
called our attention to this fact.
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Example 10. In [10], an MV algebra is defined as follows:

An MV algebra is an algebra (M, @, ), %,0,1), where Al is a non-empty set.

0 and 1 are constant elements of M, ¢ and @ are binary operations. and

x 18 a unary operation such that for all z,y,z € M the following axioms are
satisfied:

(A1) (zby) = (yda),

z=zd(ydz),

(A2) (zdy)®

(A3) z0 ==z,

(Ad) zdl=1,

(AD) (z)" =,

(A6) 0* =1,

(A7) zhzxr =1,

(A8) (z*®y) dy=(zdy") b,
(A9) 7Oy = (= D)

The lattice operations V and A are defined by the formulas
zVy=(x@y" )dy and zAy=(zdy")ey.

We write ¢ < y if and only if =V y = y. The relation < is a partial ordering
over M and 0 <z <1 for every = € M.

An MV algebra is a distributive lattice with respect to the operations V. A.
We put
y~z=(xdSy*)" for z,ye M, z<y.

The partial binary operation ~ is the difference on Al . Indeed:
(a) Let = <y. Then
(y~z)Vy=(zay) Vy=((toy) oy)dy=((z 0y )by
=(xa@ay) dy=@@al)ay=0ay=y.

therefore y Nz <y.
(b) Let = < y. We calculate

*

y~(y~z)=((y~ux) {Dy*)* = ((zpy" ) W) =y ) sy = ay =

(¢) Let » <y < z. By asimple calculation, we get 2* < y* < 0. 0* y |
and y* <z =1.
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Further,

(z~y)V(z~uwx)=

therefore z gy <z~ 2, and

)Ny =@ N0z =((yo") d(xwbz2* )*
(o) oy)o) = (1" oy)va)
(y" G x) =y~zx.

I

Il

We have proved that every MV algebra is a D-poset.
PROPOSITION 2. Fuvery D-poset contains the least element 0, and 0 =1~1.

Proof. Let a€ P. Then 1~a€ P, 1~a<1<1,and, by (3), we have
I ~ 1 <a, which implies that 1 ~ 1 is the least element in P, and we denote it
by 0. O
PROPOSITION 3. Let P be a D-poset. Then the following assertions are truc.
(i) a~0=a forany a € P,
(il) a~a=0 forany a € P;
(1) if a,be P, a<b, then b~a=0 if and only if b= a;
Y if a,be P, a<b, then b~a=0>b if and only if a = 0.

(v
Proof.
(i) For every a € P we have 0 < a~a <a.From (2) and (3) we get

a=ax(a~a)<a~0<a,

which implies a ~0 =a.
(ii) From the above we have a ~a =a ~ (a~ 0)=0.

The proof of (iii) and (iv) is evident. ]

3. Observables and states on D-o-posets

DEFINITION 3. Let I and T be two D-o-posets. A mapping w: P — T s
called a morphism (of D-o-posets) if the following conditions are satisfied:

(7) w(lp)=1p;-

[0
=1
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(8) if (an):czl CP,a€eP,a, /a (ap <anyy for any n € N and
o

a=\ ay), then w(a,) / w(a);

n=1

(9) if a,be P, a<b, then w(b~a)=w(b)~ w(a).

If P 1is the o-algebra of Borel sets of the real line R, then the morphism
x: B(R) — T is called an observable (on T').

If T is a D-poset of all real numbers from the interval [0,1] with usual
difference (and sum) of real numbers, then the morphism m: P — [0.1] is
called a state (on P).

If m: P — [0,1] is a state, then the conditions (8) and (9) are equivalent
to the condition

(10) if (an)5>y C P, a€ P, a, /a,then

o

m(a) =m(ay) + Z m(an N a,—1).

n=2

Let us note that, if z is an observable and m is a state on a o-orthomodular
poset, then x is a o-homomorphism and m is a o-additive mapping.

Example 11. Let P be a D-o-poset, a € P. A mapping z,: B(R) — P
defined via

1 if {0,1}NE ={0,1},
a if {0,1}NE = {1},
) =0 e if {0,1}NE = {0},
0 if{0,1}NE=0

is an observable on P . The observable z, is called an indicator of a.

The set R(z) = {z(E) : E € B(R)} is said to be a range of an observable
x . In general, the range of an observable on a D-poset is not closed with respect
to the difference of its elements (see the next example).

Example 12. Let F' be the D-poset of fuzzy sets (see Example 8), where
&(t) =t for every t € [0,1]. Let = be the observable on F' defined as that
in Example 10, where a € F' is the constant function, a = 0,8. Then R(x) =
{0;0,2; 0,8; 1}, but 0,8 0,2 =0,6 is not contained in R(x).
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Example 13. Every probability measure p: B(R) — [0,1] is an observ-
able on a D-poset of all real numbers from the interval [0,1] with usual differ-
ence of real numbers. More specifically, if (§2,5,p) is a probability space, then
the probability distribution pe of a random variable £ is an observable on the
D-poset [0,1].

If L is a quantum logic, x is an observable, and m is a state on L, then a
probability distribution m, of the observable z in the state m is an observable
on the D-poset [0, 1], too.

[t is easy to prove that the following proposition holds.

PROPOSITION 4. Let x© be an observable on a D-o-poset P. Then the fol-
lowing assertions are true:

(1) (AUB)\q(B)—r( )~ (Aﬁ B) for all A, B € B(R);
(i) if 2(A) =1, then (2(A) \ z(B)) € R(z), and, moreover,
r(ANB) = :1'(B) for any B e B(R)
(iii) if z(B) =0, then ( (A) ~ z(B)) € R(z), and, moreover,
(AU B) = z(A) for any A € B(R);
(iv) if z(A) <z(B), then z(B)~z(A) <z(B\ A).

THEOREM 1. Let x be an observable, and let m be a state on a D-o-poset
P. A mapping my: B(R) — [0,1] defined via

ma(E) = m(z(F)) for any FE € B(R),

is a probability measure on B(R).

Proof. We prove only the o-additivity of the mapping m, . Let (£, )02,

n
be a sequence of pairwise disjoint Borel subsets. Put 4,, = |J E;, n=1,2,....

fe o0 . .
I'he sequence (A, is monotonic, and
n=1 ?
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Let us calculate

n=1 n=1 =1 1
=m(r(A)) + i’"ll(l( 1)~ a(A, )
m(r(Ay)) + 3 m(ar(A, ~A,-0))
=m(r(k))) + i m(r(E,)) = i m(r(E,)) = 2\: ok
n=2 =1 =

The mapping m, is said to be a probability distribution of the observable
in the state m and. by Example 13, the mapping m, is an observable on the
D-o-poset [0, 1].

Now a mean value of the observable 2 in the state m can be defined by the
integral

E(x) = [ t m,.(dt)
/

if it exists and is finite.

4. Representation of observables

The functional calculus for compatible observables in quantum logics is based
on a representation of these observables by Borel measurable functions.

The functional calculus for observables in D-posets may be constructed in a
similar way.

LEMMA 1. Let a: B(R) — P be an observable on a D-o-posct P and lci
f: R —= R be a Borel measurable mapping. Then the mapping y: B(R) — P dc-
Jfined by the formula y(E) = x(f~(E)) for any E € B(R) is also an obsc reable

(and we write y = wxo f~1).

The proof of this Lemma requires only a routine verification of the conditions
in the definition of an observable.
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THEOREM 2. (Representation Theorem) Let =, y be two observables on a
D-o-posct 1P Then the following two conditions are equivalent:

(1) There is a Borel measurable function f: R — R such that
r(E) = y(ffl(E)) for any E € B(R).

(1) There is a chain M, M C B(R), such that
{o((=oc.r)) s reQf C{y(A): Ae My,

where Q is the set of all rationals.
Proof. Let M be alinear ordered set of the Borel subsets such that
{r(( ~o0. 1)) re Q) C {y(A) A€ ]\I}.

Then for every € @ there is a Borel subset A, € M such that o ((—~.r))

yA).

We note that. if y(A) < y(B) for A, B € M, then there are (', D € M such
that A C C and y(B)=y(C), DC B and y(A) =y(D).

Indeed. it suflices to put €' = AUB, D = ANB. Similarly, if A, B. ("€ M.
A C O and y(A) < y(B) < y(C), then there is D € M such that A C D C ('
and y(D) = y(B). It sullices toput D =AU (BNC).

Now we can construct by induction a sequence (B,)5—, € M such that

(0 oxary,)) =y(B)y) for any r, € Q and, if r; <rj, then B; C Bj.

Let B= (O B,.Put A, = B, ~ B. Because y(B) = x() =0, we have

n=1

.‘/(An) - -U(BH ~ B) = !/(B:1> N U(B) = y(Bﬂ) = ;I:((—oo,'r,,)) .

The sequence (A,,)7L, is constructed such that:
(i) x((—o0,1)) =y(A,) forany 1, € Q, n=1,2,...;
(11) 4, Q A} lf " < ’I'j;

Gil) () An=0.

n=1

We define an B(R)-measurable function f: R — R as follows:

0 ifteR\\UAnv
f(’) _ n=1

illf{’l‘,‘ S Q Dt e A,} if te U A,

n=1
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The function f is everywhere well-defined and finite. Moreover.

1 r, <Tk
f_ ((-OO,’I';,,)) = o
U AU <R\ U A,,,) it e > 0.
7, <Tk n=1

hence f is B(R)-measurable.
Let r€Q, r £0. Then

y(fFH((— u<7 TA,> y<GAj,>: \7!/( ’)1-4.;,)

i< =1 n=1 1=

\/ y(A \/ z((—oo,7k,))

n=1

( —00, Tk, ) =z((—o0,1)),
n=1

={r,eQ: r, <r}, rg, = max {r;,,rj,,....7;, }.

Similarly, if » > 0.

It is clear that y(f~'(R)) = z(R) because y(f '(R)) = 1.

Let [a,b) be an interval, a,b € Q, a <b. Then [a,b) = (—00,b) \ (—oc.a).

therefore
y(f 7 (la,0))) = 2(la,b)) -

Let us denote S = {[a, b): a,beQ, a< b}. It is not difficult to show that

where (rﬁ )n L

y(f " (Ja,b) U[e,d))) = z([a,b) U e, d)),
and
v(f(la,b) N [e,d))) = z([a,b) ~ [e.d)) .

Now we put

K={AeB(R): y(f~'(A4)) =z(A)}.

The system K contains the algebra s(S) over the system S. We show that A
is a monotone system.
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Let (E,,) , CK, E, € Enyy for any n € N. Then

B = Ve =+ U B

n=1

There holds: B(R) = o(S) € M(s(S)) € K, where ¢(S) denotes the least
a-algebra over S, and M(s (S) ) denotes the least monotone system over s(S),
which implies that K = B(R).

Conversely, let f: R — R be a Borel measurable function with y(f‘l (E)) =

r(E) for every E € B(R). Then the system M = {f~!(

—00,T): T € Q} is a
chain such that

{x((—o0,r)): T€Q} C{y(A): Ae M}.

O

The representation theorem enables to define the compatible observables

the joint observable and to prove, for example, the weak law of large numbers
in D-posets (see [2]), etc.
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